
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 1841–1851
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

1841

Alignment verification to improve NMT translation
towards highly inflectional languages with limited resources

George Tambouratzis
ILSP, Athena R.C.
6 Artemidos Str.,

Maroussi, 15125, Greece
giorg t@athenarc.gr

Marina Vassiliou
ILSP, Athena R.C.
6 Artemidos Str.,

Maroussi, 15125, Greece
mvas@athenarc.gr

Abstract

The present article studies translation quality
when limited training data is available to trans-
late towards morphologically rich languages.
The starting point is a neural MT system, used
to train translation models with only publicly
available parallel data. An initial analysis of
the translation output has shown that quality
is sub-optimal, mainly due to the insufficient
amount of training data. To improve trans-
lation, a hybridized solution is proposed, us-
ing an ensemble of relatively simple NMT
systems trained with different metrics, com-
bined with an open source module designed
for low-resource MT that measures the align-
ment level. A quantitative analysis based on
established metrics is complemented by a qual-
itative analysis of translation results. These
show that over multiple test sets, the proposed
hybridized method confers improvements over
(i) both the best individual NMT and (ii) the en-
semble system provided in the Marian-NMT
package. Improvements over Marian-NMT
are in many cases statistically significant.

1 Introduction

The state of the art in MT involves corpus-based
systems developed with machine-learning meth-
ods. These methods learn from corpora the models
needed for translation. A key strength of this ap-
proach is that the system is adapted specifically
towards the data it is trained with.

For many years, the most successful data-driven
approaches were phrase-based and syntax-based
Statistical MT (SMT; Koehn, 2009). However,
lately Neural MT (NMT) based on the encoder-
decoder architecture and the concept of attention
(Sutskever et al., 2014; Bahdanau et al., 2016) has
become very popular. Indeed, since 2015, in MT
shared tasks (Cettolo et al., 2015; Bojar et al., 2015;
Bojar et al., 2016) most top-performing systems
have been NMT systems. This trend is confirmed

in the most recent MT shared task (Barrault et al.,
2019), where 80% of participating systems are of
NMT type. Though NMT represents the state of
the art for MT, specific weaknesses have been re-
ported:

• NMT performance suffers from the lack of
data resources (Koehn and Knowles, 2017),
giving lower translation performance, espe-
cially when training with out-of-domain rather
than in-domain data.

• Recent advances in NMT models have been
shown (Sennrich and Zhang, 2019) to allow
good translations to be achieved with smaller
parallel corpora of typically 105 sentences,
though substantial improvements are achieved
when the corpus size reaches 106 sentences.
However, training sets of such sizes are not
available for all languages.

• Translation performance is affected by non-
parallel texts and non-literal translations
(Carpuat et al., 2017).

• The integration of multiple algorithms into
an NMT system does not necessarily improve
translation (Denkowski and Neubig, 2017).

• The time complexity of training a new NMT
system can be very high, with training ses-
sions of the order of weeks.

NMT requires very large amounts of parallel
data, measured in millions of parallel sentences.
This is reflected by the separate studies carried
out for MT with limited resources, which in-
cludes initiatives such as Lorelei 1. In the case
of morphologically-rich languages, the require-
ments for parallel corpora are further exacerbated.

1https://www.darpa.mil/program/low-resource-
languages-for-emergent-incidents
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Proposed approaches for translating towards low-
resource and morphologically-rich languages have
included transfer learning (Zoph et al., 2016) as
well as multilingual and multi-way NMT (Rikters
et al., 2018).

In this paper, an effort to improve the translation
quality is presented, when translating towards a
morphologically-rich language, while reducing the
training time. This approach combines the output
of multiple NMT systems with an NLP module
developed for an example-based MT paradigm, re-
sulting in a hybridized solution. The latter module
is fast and runs independently of its original MT
system and thus the computational complexity of
the proposed hybrid solution is not substantially
increased over the base NMT system.

The idea of combining multiple MT models to
produce a higher performing MT system has been
studied extensively in the area of MT. For instance
in the recent shared task (Barrault et al., 2019)
more than 20 entries consist of ensembles of mul-
tiple NMT systems. Ensembles of weaker NMT
systems of the same general architecture have been
proposed by Freitag et al. (2017) to train a higher
performing NMT system. In addition ensembles
of factored NMT models have been proposed for
automatic post-editing and quality estimation (for
example Hokamp, 2017).

This base NMT system is described in section
2. The training data used is reported in section 3.
The proposed hybridization is presented in section
4, whilst the improvements attained are presented
in section 5. Future developments are discussed in
section 6.

2 Overview of the Base NMT System

Since NMT systems have achieved the highest
translation quality in recent evaluation contests, the
Marian-NMT package (Junczys-Dowmunt et al.,
2018) is adopted for experimentation here. Marian-
NMT development was funded by the European
Commission to consolidate NMT research and in-
corporates the most recent advances in NMT. Its
code is optimized to reduce the CPU/GPU time
required to complete the simulations of NMT sys-
tems.

For creating NMT systems, three of the models
provided by Marian-NMT were chosen, termed as
the “transformer”, “amun” and “s2s” models. The
“transformer” model has been based on the work of
Vaswani et al. (2017) and uses a simple structure

incorporating attention mechanisms and dispensing
with recurrence to implement a fast NMT system.
The other two models are more conventional, using
a recurrent neural network to implement the trans-
lation. The “amun” model follows the approach
of Bahdanau et al. (2016), employing a recurrent
neural network but allowing the model to automati-
cally search for wider ranges of the source language
(SL) to connect with the target language side (TL)
words. Finally, “s2s” implements a recurrent neural
network-based encoder-decoder model with atten-
tion mechanism, using the architecture proposed in
(Sennrich et al., 2017). Hereafter, the three models
are identified via the names used within Marian-
NMT, which are also used in evaluations (cf. Bojar
et al., 2018).

The main configuration parameters used for each
model are depicted in Table 1, to enable replication
of experiments. For each model, different optimiza-
tion options from Marian-NMT during the valida-
tion phase are used to create three NMT variants
of each model, namely optimizing with (i) BLEU,
(ii) entropy and (iii) word-wise normalized cross-
entropy (denoted as “ce-mean” and representing
the default optimization for Marian-NMT).

Regarding the main NMT parameters, all recur-
rent networks comprise 1,024 units in the hidden
layer, an encoder depth of 6 layers and an embed-
ding size of 512. All cells used both in the en-
coder and decoder side are gated recurrent units
(GRU). The transformer dimension is set to 2,048.
To reduce the lexicon size, a total of 85,000 merge
operations are allowed using the BPE (Byte Pair
Encoding) method proposed in (Sennrich et al.,
2016), this being the default setting for marian-nmt
applications.

Initially, the three Marian-NMT models are
trained to provide the base NMT systems. Typ-
ically, for a single-GPU system (equipped with an
NVIDIA Titan XP GTX1080 GPU card driven by
an Intel i-9700K CPU), 24 hours are required for
training the transformer, 130 hours for amun and
308 hours for s2s. This is equivalent to a ratio of
1:5:12 to train the respective systems.

3 Experimental Set-up

The experiments aim to improve the translation
accuracy of an NMT system, taking into account
limited training data and constrained computing
resources. In order to investigate translation into
a lesser-used and highly inflectional language, we
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Common to all 3 models
layer-normalization yes

exponential smoothing yes
beam-size 6
normalize 0.6

early-stopping 5
Transformer-specific

transformer-dropout 0.1
transformer-dropout-attention 0.1

transformer-dropout-ffn 0.1
Amun and s2s-specific
dropout-rnn 0.2
dropout-src 0.1
dropout-trg 0.1

Table 1: Key NMT hyper-parameters used

corpus senten. wordEn wordGr
raw(Europarl) 1.23M 31.8M 31.9M

raw(DGT) 4.90M 97.8M 87.2M
train(DGT 6.13M 129.6M 119.1M
+ Europarl)
devel(Eparl) 3,000 77,681 78,610

testset2(Eparl) 1,000 27,712 27,630
testset1(Pres.) 200 2,873 2,757

Table 2: Corpora for training and evaluation

have chosen the English-to-Greek language pair.
When selecting the training corpora, it has been

decided to refrain from using expensive language
resources such as specialized or hand-built parallel
corpora. Instead, only standard publicly available
parallel corpora have been adopted, namely the
Europarl and DGT-Acquis corpora2, as listed in
Table 2.

The largest part of the Europarl corpus and the
entire DGT-Acquis corpus are used to train the
NMT system. Three small portions of the Europarl
corpus have been reserved for test and validation
purposes. More specifically, two independent sets
of approx. 3,000 Europarl sentences each are ex-
cluded, to ensure that the NMT evaluation is un-
biased. In the present experiment, one of these
sets is used for in-training validation. The other
set is reserved to allow additional cross-evaluation
of experiments in the future, without invalidating
the previously trained models. Finally, a sample

2The Europarl corpus (ver.7) was retrieved from
https://www.statmt.org/europarl. The DGT-Acquis cor-
pus was retrieved from https://ec.europa.eu/jrc/en/language-
technologies/dgt-translation-memory

of 1,000 sentences from Europarl (Testset2) is re-
tained to provide an unseen in-domain test set.

Another independent test set was drawn from
the PRESEMT project resources, comprising 200
sentences which have not been used to either train
an MT model or create any resources used herewith
(denoted as Testset1).

A preliminary analysis of the NMT outputs has
shown that translations are commendably fluent,
though errors are evident. A sample of amun
translations is shown in Figure 1. In sentence
#1, the term “Αμερικανοί” (Transl. “Americans”)
is erroneously used as a translation of the terms
“American”, “European”, and “Japanese monopo-
lies”. Similarly, in sentence #2, the phrase “η κατ-
απολέμηση της φτώχειας” (meaning “the reduc-
tion of poverty”) is used to translate semantically
diverse phrases, including “genetically modified
organisms”, and “the negative social effects of un-
bridled, unregulated globalization”. Repetition is a
widely reported weakness of NMT systems, most
frequently attributed to insufficient training data.

An additional problem concerns the translation
of rare words (i.e. words with low frequency in the
corpus), due to the limited vocabulary that NMT
systems can directly handle. This is especially
severe when translating towards languages with
complex morphology, which increases the effective
vocabulary size. For example the word “ostensibly”
is translated into Greek as “ostenfigher” (ungram-
matical). Similarly the word “room” is translated as
“δωματείο” instead of the correct “δωμάτιο” (mean-
ing room), whilst the word “indistinct” is translated
as “άχωρος” which is not a valid Greek word.
Αnother issue is that entire phrases present in

the source text may be omitted in the translation.
For instance the sentence “Businesses have under-
taken the education” is translated by a transformer
NMT as “H εκπαίδευση έχει αναλάβει�, [meaning
“education has undertaken”]. Hence, the subject
“business” has been deleted.

4 Improving NMT via the Alignment
Verification Method (AVM)

4.1 Aim of AVM

To improve translation accuracy, the main errors
need to be identified in an automated manner. The
idea is that a poor alignment between source text
and translation indicates substantial loss of mean-
ing during translation. On the contrary a high align-
ment score is indicative of a high likelihood that
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Figure 1: Example translations generated by amun,
with repetitions of texts highlighted in grey

the NMT output is an accurate translation.
To this end a module will be added to imple-

ment alignment verification (AVM), by determin-
ing the match between the input sentence and its
translation. The establishment of representative
alignment scores allows in turn the combination of
multiple NMT models, using AVM to evaluate the
accuracy of each candidate translation and thus se-
lect the best translation on a sentence-by-sentence
basis. For this research, MT software and tools
released via open-source code have been surveyed
and the Phrase Aligner Module (PAM, cf. Troulli-
nos, 2013) has been selected. The architecture of
the proposal hybrid NMT is depicted in Figure 2.

4.2 PRESEMT essentials

PAM was developed as part of the PRESEMT hy-
brid MT methodology (Tambouratzis et al., 2017
(Tambouratzis et al., 2017)). PRESEMT was de-
signed to create MT systems requiring only very
limited amounts of specialized, expensive linguis-
tic resources. Frequently, the most expensive re-
source is the parallel corpus of SL – TL sentences.
PRESEMT uses parallel corpora of only a few hun-
dred sentences, augmented by very extensive but
comparatively inexpensive monolingual corpora.

Within the PRESEMT methodology, the small
parallel corpus serves to establish the transforma-
tion from the SL structure to the TL one, using
the Phrase Aligner module. This module, handling
sentence pairs from this parallel corpus, identifies
the correspondence of words and phrases from SL
to TL, to determine the translation accuracy.

4.3 Description of the PAM module

PAM utilizes a limited-size bilingual lexicon (of
typically 30 to 40 thousand token pairs) together
with a publicly available parser. Details on these re-
sources are reported in section 4.4, as their choices
are language-specific. Based on these resources,
PAM establishes for the set of parallel sentences
the alignment of both words and phrases from SL
to TL, in three hierarchically ordered stages:

1. Within the first stage, the alignment of words
is based on equivalences provided by the bilin-
gual lexicon. Dedicated PAM processes re-
solve cases where (i) words have multiple ap-
pearances within a sentence and (ii) multiple
potential translations of an SL word exist in
the TL side.

2. Within the second stage, words are aligned
by establishing statistical correspondences be-
tween grammatical features across the SL and
TL pair. These correspondences are automati-
cally extracted from the lexicon.

3. Within the third stage, any remaining words
are aligned and grouped into phrases on the
basis of the alignments of their neighboring
words that are successfully aligned. To imple-
ment this, the principle of locality across lan-
guages is adopted (words at a small distance
to each other in SL also tend to be located
close to each other in TL).

The key PAM principle is that decisions made at
a later stage have a lower degree of confidence than
those made at an earlier stage (Troullinos, 2013).

4.4 Using PAM for Alignment Verification

In the current application, PAM determines the
suitability of each candidate translation, based on
its match with the source sentence. Thus, the as-
sumption made is that the input sentence and the
candidate translation represent the corresponding
SL and TL entries of a parallel corpus and PAM
determines their level of parallelism.
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As the requirement is to grade various transla-
tions, the PAM operation is reversed, to identify
the quality of match between the input sentence
and the generated translations. When PAM was
used in PRESEMT, sentence pairs from the par-
allel corpus with a very low percentage of suc-
cessful alignments were discarded without mea-
suring their degree of parallelism, as poor exem-
plars of the structural transformations from SL to
TL. Here, PAM is modified so that for all pairs
of input sentence and NMT-translation the word
alignments and assignments of words to phrases
are calculated. This allows the re-roled PAM to
grade any source/translation pair, no matter how
poor the match of the two sentences is.

Two metrics have been established to calculate
divergence between the SL sentence and its NMT-
derived translations. The first metric (Uscore)
calculates the number of unaligned words of the
source sentence, after PAM is applied. The aim is
to have as few unaligned words as possible, so the
lower Uscore is, the better the translation is.

Uscore = #unaligned words (1)

The second metric (Wscore) is a weighted com-
bination of several indicators of alignment between
source sentence and candidate translation. This
summarizes in one measurement the type of align-
ments and the stage at which they were achieved.
Hence, for a sentence with K words, Wscore is
defined as:

Wscore =
K∑
i=1

(wi ∗ align stagei) (2)

In equation (2), align-stagei denotes the stage (cf.
section 4.3 for the different stages) at which the i-th
SL word is aligned successfully to a TL word, and
wi denotes the relevant weight for this stage. In the
case of the weighted metric Wscore, the higher the
score, the more accurate the corresponding transla-
tion is. The actual weight values must reward the
establishment of alignments at an earlier rather than
a later stage. Thus, wi should be larger than wj , for
i smaller than j. For the purposes of the present ar-
ticle, wi is set to integer values of 5, 2 and 1 for the
first, second and third stage respectively (other sets
of weight values that follow this reasoning produce
similar results to those reported here). The code of
PAM has been modified to integrate Wscore and
Uscore calculation, though the actual alignment

Figure 2: Proposed hybrid NMT approach

algorithms within PAM have remained intact. The
associated PAM resources (the TL-side parser and
bilingual lexicon) remain unchanged. For process-
ing the SL language, Treetagger (Schmid, 1994) is
used, with a reported tagging accuracy exceeding
96%.

5 Experimental Results

To determine the quality of the NMT-based trans-
lations (amun-, s2s- and transformer-based mod-
els), two widely used MT evaluation metrics are
utilised, namely BLEU (Papineni et al., 2002) and
NIST (Doddington, 2002). To calculate both these
metrics, the mt-eval package (version 13a) is used.

For PAM, the PRESEMT bilingual lexicon from
Greek to English is used, which contains approx.
8,000 lemmas and 40,000 Greek-English token
pairs. This lexicon is from the same domain as
testset1 and is thus out-of-domain for testset2, pro-
viding a more limited coverage for this testset.

Two different types of experiments are possi-
ble, depending on whether the ensemble comprises
multiple NMT architectures, or only one type of
architecture. The first experiment reported here
involves NMT ensembles that all share the same ar-
chitecture, but are optimized with different criteria.
The second type of experiment studies ensembles
which consist of systems with different architec-
tures, to investigate if their combination results in
a better translation quality.

5.1 NMT Ensembles of a single architecture

The results obtained for testset1 of the English-
to-Greek translation pair are depicted in Table 3,
when running the single transformer, amun and
s2s models respectively, as well as their ensembles.
The corresponding results for testset2 are depicted
in Table 4.

In Tables 3 and 4, the first 3 rows correspond to
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single NMT models generated when Marian-NMT
is trained to optimise (i) BLEU, (ii) entropy and
(iii) the word-wise normalised cross-entropy (this
is denoted as “ce-mean”).

The final three rows of Tables 3 and 4 report
the accuracy of translations obtained by NMT en-
sembles. Marian-NMT implements a standard en-
semble method, which allows the user to combine
different models provided they use the same lex-
icon. The user may specify weighting factors to
boost selection of the models deemed to be better.
For this article, this ensemble combines the three
aforementioned NMT models (i), (ii) and (iii), with
equal weights for all NMTs. The last two rows
report the accuracy of ensembles using PAM with
(i) Uscore and (ii) Wscore, respectively.

A key difference of the Marian-NMT ensem-
ble is that it is able to recombine partial results
of the translation process from each NMT model
and thus may generate a new translation that is
different from all the translations of single-NMT
systems. On the contrary, Uscore and Wscore grade
the translations generated by single-NMT models
in the ensemble, and then select the highest-scoring
translation to be the translation produced by the
PAM-based ensemble.

To evaluate the quality of translations produced
by the PAM-based ensembles, two baselines are
selected. The first baseline is the “ce-mean” option
of the Marian-NMT translation system.The second,
and stronger, baseline is the Marian-NMT ensem-
ble (referred to as “Marian-ensemble” hereafter).
Entries that exceed the first baseline are depicted in
bold. Entries with scores that exceed the stronger
Marian-ensemble baseline are annotated with an
asterisk.

Based on Table 3, for testset1 the best BLEU
scores are achieved by the Marian-NMT ensem-
ble in comparison to single-NMT models. The
PAM-Wscore ensemble gives a higher accuracy
than the Marian-NMT ensemble, whilst the accu-
racy of PAM-Uscore is lower than PAM-Wscore.
On the whole, it is Marian-ensemble and PAM-
Wscore that generate the best NIST and BLEU
scores.

A broadly similar situation is found when using
testset2 (Table 4). Here, the improvement con-
ferred by the ensemble methods over the three base
models is much more marked. For instance, for
BLEU, the score is only 19.0 to 20.0 for single
NMT models, but rises to more than 28.0 for the

ensembles, which equates to more than eight BLEU
percentage points of improvement.

5.2 Statistical analysis of ensemble results

One question is whether the improvements con-
ferred by the ensembles are statistically significant.
To that end, the BLEU and NIST scores of all
the independent sentences are assembled, form-
ing two populations of scores (one for BLEU and
one for NIST) for each experimental run. Then the
Wilcoxon and sign tests are used to determine if
these populations have significant differences.

For testset1, the scores of the single NMT sys-
tems and the NMT-ensembles are relatively close,
differing by less than 2 BLEU points. Applying
the sign and Wilcoxon tests, Marian-ensemble pro-
duces statistically better NIST scores (at a 0.05
level) than the default Marian-NMT output for
amun and s2s models, but not for the transformer
model.

For the transformer and s2s models, the scores
generated by PAM-Wscore are significantly better
that those of single-model Marian-NMT, according
to both the Wilcoxon and sign tests (at a 0.05 level).
Similarly, PAM-Uscore gives statistically superior
results to Marian-NMT (ce-mean optimization) for
the s2s model (at a significance level of 0.05).

Comparing the ensembles to each other, Wscore
consistently produces higher scores than Uscore.
This superiority is statistically significant at a 0.05
level according to both Wilcoxon and sign tests, for
the transformer and the amun models.

PAM-Wscore achieves consistently higher trans-
lation scores than Marian-ensemble for both BLEU
and NIST. According to the Wilcoxon test, these
differences are statistically significant, at a 0.05
level, only for the s2s (BLEU score) and the trans-
former model (both BLEU and NIST scores).

Turning to testset2, the results are more clearly
separated. All three ensembles (i.e. PAM-Wscore,
PAM-Uscore and Marian-ensemble) have statisti-
cally superior scores to Marian (optimised with
ce-mean) for both BLEU and NIST, at a signifi-
cance level of 0.01. This extends to all three NMT
models (amun, transformer and s2s), and indicates
that both Marian-ensemble and the two PAM-based
ensembles give substantially higher scores than sin-
gle Marian-NMT models.

On the other hand, when comparing PAM-
Wscore to PAM-Uscore for testset2, no statistically
significant difference (at a 0.05 level of signifi-
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cance) between the two systems is discerned by
either the Wilcoxon or sign test. Similarly, no sta-
tistically significant differences at a 0.05 level are
found between the PAM-based ensembles and the
Marian-ensemble and only small differences at a
0.10 level. Thus, even though PAM-based ensem-
bles achieve scores higher than Marian-ensemble,
differences are not significant.

5.3 Measuring improvement over baselines
To quantize the improvements achieved by the pro-
posed PAM-Wscore approach, in this section the
computational requirements posed by each NMT
system are also considered. To this end, the most
accurate NMT system is defined for each dataset
and metric combination. Two baselines are cho-
sen, namely the most accurate NMT model and the
most accurate Marian-ensemble.

We focus on the transformer model, which is the
least expensive model to train. For each ensemble
using transformers, the aim is to determine how
close to the Marian-ensemble baseline this is. Re-
sults are shown in Table 5, where the accuracy of
each transformer NMT is expressed as a fraction
of the Marian-ensemble score.

The best single transformer model achieves for
testset1 88.7% of the baseline BLEU score and
93.1% of the NIST score. Using the Wscore en-
sembling method, this rises to 90.7% for BLEU
and 95.2% for NIST, showing a gain of 2%.

Turning to dataset2, the single transformer
scores just 70.5% in comparison to the baseline
BLEU score and 73.4% of the NIST score (there-
fore it is 27% to 30% lower). The Wscore ensem-
ble improves relative scores, reaching 92.7% and
94.5% of the baseline scores for BLEU and NIST
respectively. This equates to an increase of ca. 22%
in both scores, making the final result directly com-
parable to s2s, though GPU training requirements
are reduced by a factor of 12.

5.4 Subjective studies
A second type of evaluation moves away from met-
rics to focus on analysing the translation errors by
different models, with subjective methods. For in-
stance, when transformer NMT models are tasked
to translate testset1, the BLEU-optimised NMT
generates 26 ungrammatical words, the entropy-
optimised NMT generates 24 ungrammatical words
and the cross-entropy optimised model produces
23 ungrammatical words. The Wscore-ensemble
reduces the ungrammatical words to 21, improving

Figure 3: Examples of poor translations produced
by Marian-ensemble (omitted parts are underlined in
source).

translation. The ungrammatical words were deter-
mined in all cases by visual inspection of the body
of translations complemented by spell-checking
tools to aid detection.

Further inspection of translation quality has
involved comparing the Marian-ensemble and
Wscore-ensemble outputs. The length (in words)
of translations per test sentence is found to differ
substantially between the two ensembles, with the
difference being more than 1/10 for 9% of sen-
tences, more than 1/4 for 2.5% of sentences and
more than 1/2 for 1% of sentences (close to iden-
tical results are obtained for testset1 and testset2).
As such deviations are unexpectedly large, an anal-
ysis was performed, with typical examples being
shown in Figure 3. As can be seen, PAM assists the
Wscore-ensemble in retaining all phrases of the sen-
tence. On the contrary, Marian-ensemble fails to
ensure this, and frequently discards portions of the
input sentence. In one case (sentence #774) Marian-
ensemble results in a null-length translation, and in
another (sentence #648) the final translation covers
less than 10% of the input text, radically distorting
meaning. Both PAM-ensembles are unaffected by
such phenomena.
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6 Conclusions and Future Work

This article has studied the creation of transla-
tion systems towards highly inflectional languages,
when the amount of in-domain training data is lim-
ited. Emphasis has been placed on improving the
translation accuracy of NMT models that can be
trained more rapidly and cost-effectively (in terms
of CPU processing power) and rendering this per-
formance comparable to that of more complex mod-
els. The Marian-NMT package has been chosen as
the starting point to create NMT models for the En-
glish to Greek language pair. Using only publicly
available text corpora, the NMT models produce
commendably fluent translations. Identified errors
in the NMT translations are typical of a lack of
training data.

A hybrid methodology has been proposed that
samples an ensemble of NMT models to select the
final translation, chosen by a module calculating
the alignment level between the input sentence and
each translation. This module was developed for
resource-poor MT systems.

The proposed hybrid approach has resulted in
higher BLEU and NIST scores, compared to those
of single NMT models. Improvements are in many
cases statistically significant even over the ensem-
ble system provided within the Marian-NMT pack-
age, indicating the promising nature of the hybrid
approach. Also, the translation process is found to
be more robust, giving more consistent translations
in comparison to the Marian-NMT ensemble sys-
tem, which occasionally omits large portions of the
input text from the translation.

One of the advantages of the proposed method
is that it is general-purpose and does not rely on
the use of ensembles of Neural MT systems with
a specific architecture. Instead, it can be used to
combine the results of different types of Neural MT
systems, or MT systems that belong to different
paradigms, or even to combine human translations.

In addition the proposed method can be used to
clean up a corpus of parallel sentences or several
such corpora, by removing sentence pairs for which
the source and target-language texts do not have a
high degree of parallelism. Similarly, the proposed
method may be used to filter a corpus consisting
of original text and its MT-derived translation, to
produce a parallel corpus for training of other MT
systems, fulfilling a role similar to that proposed
by (Rikters and Fishel, 2017). One point for future
research is how effective a filtering system based on

PAM would be, in comparison to already proposed
systems.

Future work involves some relatively simple ac-
tivities that can be imminently implemented, such
as releasing the modified version of PAM for ex-
perimentation by interested parties. Another short
term activity involves using the proposed method
with sacreBLEU instead of the BLEU and NIST
metrics provided by mt-eval. Future experiments
will investigate the effectiveness of this hybrid ap-
proach for other language pairs. One area of inter-
est would be to determine the effectiveness of the
PAM-based method when very limited dictionaries
are available as well as the limitations when the
accuracy of the parser used is relatively low. All
these represent issues for the future.

It is also planned to study the approach using
systematic optimisation of the PAM parameters, to
identify in more detail configurations that produce
more accurate translations. Another possibility is
to use PAM to detect sub-sentential parts of the
translated sentences with particularly poor align-
ments between input and translation and seek better
translations of only these specific parts.

Another direction is to investigate more exten-
sively cases where the translation is not sufficiently
close to the input sentence. Then, comparisons to
other low-scored translations are more difficult and
result in a reduced level of confidence of the chosen
translation. Such a line of study will evaluate more
thoroughly the robustness of the proposed method.
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BLEU NIST
criterion transformer amun s2s transformer amun s2s

BLEU-optimised (1) 35.22 36.92 35.28 6.238 6.440 6.459
Entropy-optimised (2) 34.80 37.91 35.25 6.213 6.532 6.428
Ce-mean-optimised (3) 34.96 37.77 35.58 6.222 6.524 6.476

Marian-ensemble (1,2,3) 35.63 38.38 39.70 6.305 6.590 6.707
PAM–ensemble + Uscore 33.94 37.25 39.57 6.128 6.463 6.721*
PAM–ensemble + Wscore 35.99* 38.56* 39.79* 6.384* 6.584 6.758*

Table 3: Translation accuracy of NMT models and ensembles, where each ensemble consists of identically struc-
tured NMTs that have been optimized with different criteria (using testset1)

BLEU NIST
criterion transformer amun s2s transformer amun s2s

BLEU-optimised (1) 18.27 19.11 18.92 4.100 4.271 3.894
Entropy-optimised (2) 20.41 19.07 20.04 4.944 4.260 4.396
Ce-mean-optimised (3) 18.84 18.83 20.48 4.254 4.129 4.526

Marian-ensemble (1,2,3) 26.48 26.95 28.79 6.454 6.507 6.735
PAM–ensemble + Uscore 26.35 27.61* 28.96* 6.407 6.467 6.684
PAM–ensemble + Wscore 26.68* 27.45* 28.85* 6.363 6.513* 6.716

Table 4: Translation accuracy of NMT models and ensembles, where each ensemble consists of identically struc-
tured NMTs that have been optimized with different criteria (using testset2)

Testset1 Testset1 Testset2 Testset2
Model BLEU NIST BLEU NIST

Best NMT (single model) 95.5% (amun) 97.4% (amun) 71.1% (s2s) 73.4% (transf)
Best NMT (Marian-ensemble) 100% (s2s) 100% (s2s) 100% (s2s) 100% (s2s)

Transformer (single model) 88.7% 93.1% 70.9% 73.4%
Transformer (Marian-ensem) 89.7% 94.0% 92.0% 95.8%

Transf PAM + Uscore 85.5% 91.4% 91.5% 95.2%
Transf PAM + Wscore 90.7% 95.2% 92.7% 94.5%

Table 5: Scores achieved for testset1 by different transformer models in comparison to the two baseline models,
reported in the first two rows. Scores are normalized over the Marian-ensemble score (cf. row 2).
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Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the
First Conference on Machine Translation: Volume
2, Shared Task Papers, pages 131–198, Berlin, Ger-
many. Association for Computational Linguistics.
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