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Abstract

In this work, we consider the problem of uncer-
tainty estimation for Transformer-based mod-
els. We investigate the applicability of uncer-
tainty estimates based on dropout usage at the
inference stage (Monte Carlo dropout). The
series of experiments on natural language un-
derstanding tasks shows that the resulting un-
certainty estimates improve the quality of de-
tection of error-prone instances. Special atten-
tion is paid to the construction of computation-
ally inexpensive estimates via Monte Carlo
dropout and Determinantal Point Processes.

1 Introduction

Quantifying the uncertainty of machine learning
models is an important aspect of trustworthy, reli-
able, and accountable natural language understand-
ing (NLU) systems. Obtaining measures of uncer-
tainty in predictions (also known as uncertainty es-
timations, UE) helps to detect out-of-domain (Ma-
linin and Gales, 2018), adversarial, or error-prone
instances that require special treatment. For exam-
ple, such instances can be additionally checked by
human experts or another more advanced system
or alternatively rejected from classification (Her-
bei and Wegkamp, 2006). Besides, uncertainty
estimation is an essential component of various ap-
plications such as active learning (Shelmanov et al.,
2021) and outlier/error detection in a dataset (Lar-
son et al., 2019).

Many modern NLU methods take advantage of
deep pre-trained models that are based on the Trans-
former architecture (Vaswani et al., 2017) (e.g.,
BERT (Devlin et al., 2019) or ELECTRA (Clark
et al., 2020)). Obtaining reliable uncertainty estima-
tions for such neural networks (NNs) can, therefore,
directly benefit a wide range of NLU tasks, yet im-
plementing UEs, in this case, is challenging due to
the huge number of parameters in these deep learn-
ing models. The approximations of Bayesian infer-
ence based on dropout usage at the inference stage

– Monte Carlo (MC) dropout (Gal and Ghahramani,
2016), provide a realizable approach to quantifying
UEs of deep models. However, they are usually ac-
companied by serious computational overhead due
to the necessity of performing multiple stochastic
predictions. Importantly, training ensembles of in-
dependent models (Lakshminarayanan et al., 2017)
leads to even more prohibitive overheads.

In this work, we investigate various MC dropout-
based approaches to uncertainty quantification of
NLU models on the widely-used General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018). The main contributions
of our work are two-fold:1

• We show that the use of the MC dropout with
pre-trained Transformer models significantly
improves the quality of UEs in NLU tasks
compared to deterministic baselines.

• We are the first to our knowledge to apply
a modification of the MC dropout based on
determinantal point processes (DPP; Tsym-
balov et al. (2020)) to Transformers and show
that this approach allows obtaining the UEs
competitive to the standard MC dropout at a
fraction of its cost. To improve the stability
of the DPP-based dropout for Transformer-
based models, we extend the method pre-
sented in Tsymbalov et al. (2020) by aver-
aging multiple dropout masks sampled with
DPP.

2 Related Work

Three dominating approaches to uncertainty es-
timation in neural networks exist: (i) interpreta-
tion of the model’s logits from the uncertainty
estimation perspective (Gal, 2016), which is the
basic one; (ii) ensembling, where a discrepancy

1Code of our experiments: https://github.com/
skoltech-nlp/certain-transformer

https://github.com/skoltech-nlp/certain-transformer
https://github.com/skoltech-nlp/certain-transformer
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between models’ predictions are interpreted as a
sample variance (Lakshminarayanan et al., 2017);
(iii) Bayesian neural networks (Teye et al., 2018),
which have a built-in mechanism to capture uncer-
tainty via a single model.

There are a few recent works that investigate un-
certainty quantification for NLP models and use
MC dropout techniques. Dong et al. (2018) use
Bayesian UEs for the analysis of semantic parser
predictions for correctness. Zhang et al. (2019)
propose an additional training loss component that
facilitates smaller inter-class and bigger intra-class
distances in the vector space of the output layer.
Experiments with convolutional NNs on text classi-
fication datasets show that this modification helps
to improve error detection using MC dropout UEs.
For quantifying model data uncertainty, Xiao and
Wang (2019) use NNs to parameterize a probability
distribution (mean and variance) instead of mak-
ing a prediction directly. For quantifying model
uncertainty, the authors leverage the MC dropout.
Modeling both types of uncertainties in convolu-
tional and recurrent NNs helped them to improve
the performance in regression and classification
NLP tasks. Kochkina and Liakata (2020) apply
UEs to the problem of rumor verification.

3 Uncertainty Estimation of Deep
Transformer Neural Networks

In this section, we describe types of dropout, un-
certainty estimation methods, and the Transformer-
based neural classifier used in our experiments.

3.1 Types of Dropout

We use two types of dropout described below.

Monte Carlo Dropout The dropout (Srivastava
et al., 2014) has emerged as a powerful and univer-
sal regularization technique applicable to most DL
architectures, with the Transformers not being an
exception. Despite originally being an empirical,
engineering way to fight the overfitting, it then ob-
tained a theoretical explanation as a special case of
Bayesian NNs, where activations are drawn from
the Bernoulli distribution (Gal, 2016). This allows
to represent a vector of outputs xh of the h-th layer
of the network as a function of its weights Wh,
activation function σ, and a dropout mask Mh:

xh = σ(xh−1 |Wh,Mh),Mh ∼ Bernoulli(1−p),

where p ∈ [0; 1] is the dropout rate.

This theoretical explanation enables the use of
the dropout not only at the training stage but also
at the inference stage via sampling of multiple
masks M (t)

h , t = 1, . . . , T for each dropout layer
of the network h and subsequently providing an
ensemble of models parameterized by these masks:
ft(x) = f

(
x |
{
M

(t)
h

})
. The obtained UEs are rel-

atively fast, convenient, and applicable to various
tasks, such as regression (Tsymbalov et al., 2018),
image classification (Gal and Ghahramani, 2016),
and active learning (Gal et al., 2017; Siddhant and
Lipton, 2018).

Monte Carlo Dropout with Determinantal
Point Processes The models obtained from the
standard dropout masks usually show a high de-
gree of correlation in predictions between them,
limiting the power of the resulting ensemble. Re-
cently, it was proposed to improve the diversity
of predictions by considering the correlations be-
tween neurons and sampling the diverse neurons
via the mechanism of Determinantal Point Pro-
cesses (DPP; Kulesza and Taskar (2012)), an ap-
proach for sampling diverse elements from a set of
points. This setup was proposed by (Tsymbalov
et al., 2020) and evaluated for the simple multilayer
perceptrons and CNNs. In this work, we aim to
extend this approach to Transformer models.

DPP-based dropout masks MDPP
h for the h-th

layer are constructed using the correlation matrix
Ch between neurons as a likelihood kernel for the
DPP: MDPP

h ∼ DPP
(
Ch

)
. The probability to

select a set S of activations on the layer h is given
by

P [MDPP
h = S] =

detCS
h

det
(
Ch + I

) ,
where CS

h is a square submatrix of Ch obtained
by keeping only rows and columns indexed by the
sample S. The matrix of correlations between ac-
tivations of the h-th layer Ch is estimated empiri-
cally based on some set of points, which represents
the data distribution well enough (i.e. training set).
The key feature of the approach is that DPP tends
to sample neurons with low correlations between
them, which in turn improves the overall diversity
of the obtained models. More information about
DPP is presented in Appendix B.

To improve the stability of the DPP-based
dropout for Transformer-based models, we create
a final dropout mask by sampling from DPP and
averaging multiple initial masks.



1835

3.2 Uncertainty Estimates
Let T be a number of stochastic passes, i.e., the
number of dropout masks to be sampled. We use
the three following UEs (also known as acquisition
methods) for the classification with C classes:

• Sampled maximum probability:

1−max
c

p̄T (y = c | x),

where p̄T is an average probability for the
class c prediction over multiple stochastic
passes t = 1, . . . , T .

• Probability variance averaged over classes:

1

T

C∑
c=1

T∑
t=1

(
pt(y = c | x)− p̄T (y = c | x)

)2
.

• Bayesian Active Learning by Disagreement
(BALD) proposed by Houlsby et al. (2011)
describes the mutual information between out-
puts and model parameters:

H(x)+
1

T

C∑
c=1

T∑
i=1

p(y = c | x) log
(
p(y = c | x)

)
,

where H(x) is the entropy of the ensemble
mean.

We would like to note that all these estimates can
be used for any ensembling technique, including
the MC dropout and the DPP-based dropout.

3.3 Classification Models
In this work, we focus on the ELECTRA (Clark
et al., 2020) model, which is a recent successor
to BERT (Devlin et al., 2019). It is based on the
same Transformer architecture but takes advantage
of the harder “replaced token detection” objective
instead of the “masked language model” objec-
tive. This gives better pre-training capabilities and
makes ELECTRA the state-of-the-art Transformer
in natural language understanding benchmarks. We
should note that ELECTRA is regularized with mul-
tiple dropout layers, which facilitates the usage of
the MC dropout. For example, the body of the
“ELECTRA-base” model has 37 dropout layers.

We also experiment with DistilBERT (Sanh
et al., 2019), which is a smaller Transformer ob-
tained from the middle-size BERT (Devlin et al.,
2019) via a distillation procedure (Hinton et al.,
2015). This model provides the faster inference
and has smaller memory requirements but retains
97% of the language understanding capabilities of
the original model according to Sanh et al. (2019).

4 Experiments

4.1 Experimental Setup
We evaluate the UEs on the basis of their ability to
detect misclassification. High UEs should indicate
potential errors in the model output, while low un-
certainties should correspond to correctly classified
instances. In this vein, we transform the original
task into a binary classification task by comparing
predictions of a model with the ground truth labels
in the validation dataset. Uncertainty estimates on
the validation dataset are treated as the outputs of
the binary classifier that is trained to look for po-
tential errors. We calculate the ROC AUC score
using the new ground truth labels and UEs and use
this score as the main evaluation metric.

The baseline in this task is the UE calculated
based on the maximal probability of the original de-
terministic model. We compare it to the estimates
obtained using multiple stochastic predictions with
activated dropout layers. Three variants of esti-
mates are calculated: 1) based on the model, in
which MC dropout is applied to all dropout layers;
2) based on the model with the MC dropout applied
only to the last layer; 3) based on the model with
the DPP-based sampling applied to the last dropout
layer. For calculating these UEs, we conduct 20
stochastic predictions. The dropout rate in these
passes for the MC dropout is 0.1, which is shown
to be optimal in the preliminary experiments. For
the DPP dropout, we sample and average multiple
masks produced by DPP. In experiments with SST-
2 and ELECTRA, we average as many masks so at
least 30% of neurons remain active during the pass
(this roughly can be considered as a “dropout rate”
of 0.7). For MRPC, we choose the “dropout rate”
equal to 0.2 and for CoLA: 0.4. For DistilBERT,
we use the “dropout rate” of 0.4 in all tasks.

We train three versions of models with differ-
ent random seeds. For each model, another five
random seeds are used to produce predictions for
stochastic methods. Multiple models and predic-
tions are used for estimating the standard deviation
and conducting the statistical significance testing.

4.2 Datasets
We evaluate UEs and dropout variants on the
widely used NLU benchmark GLUE (Wang et al.,
2018). Specifically, we perform experiments on
three tasks: Stanford Sentiment Treebank (SST-2;
Socher et al. (2013)), Corpus of Linguistic Ac-
ceptability (CoLA; Warstadt et al. (2019)), and
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Model Tasks
Dropout Type Acquisition Dropout Layers SST-2 MRPC CoLA
No (baseline) Max. probability - 79.7±3.4 78.6±4.1 78.7±2.0

MC Sampled max. probability last -0.1±0.2 -0.5±0.4 -0.1±0.1
MC Probability variance last -1.9±1.0 -3.0±0.7 -1.4±0.7
MC BALD last -5.0±1.7 -5.6±1.3 -3.9±1.3
DPP Sampled max. probability last 3.2±2.4 0.0±0.7 -0.4±0.7
DPP Probability variance last 2.7±3.1 1.5±2.3 -1.1±1.3
DPP BALD last 0.7±2.7 2.1±3.1 -2.0±2.1
MC Sampled max. probability all 3.2±1.6 5.5±2.6 3.2±0.6
MC Probability variance all 4.7±2.1 7.2±3.1 2.9±0.4
MC BALD all 5.2±2.4 7.5±3.3 2.8±0.4

Table 1: The misclassification detection performance (ROC AUC) (±SD) for the baseline with the ELECTRA
model and performance improvements over the baseline for various UE methods. Statistically significant improve-
ments (p-value≤ 0.05) are highlighted.

Microsoft Research Paraphrase Corpus (MRPC;
Dolan and Brockett (2005)). The SST-2 task is
to predict the sentiment of a given sentence (pos-
itive/ negative). The SST-2 dataset was randomly
subsampled to 2% of the original size to emulate
the situation with a small amount of training data.
The CoLA task is to determine whether the given
sentence is grammatical or not. The MRPC task is
to predict whether two given sentences are seman-
tically similar or not. We select these three datasets
for their compact size.

4.3 Model and Training Details

We use the middle-size pre-trained ELECTRA-
base model with 110 million parameters and the
DistilBERT model with 66 million parameters ob-
tained from the middle-size BERT. The implemen-
tation of the models is provided by the Huggingface
Transformers library (Wolf et al., 2020). For fine-
tuning models, we follow the approach described
by Clark et al. (2020) and Devlin et al. (2019):
train for 4 epochs with 10% warm-up and a linear
learning rate scheduler. For all models and tasks,
we use the same learning rate equal to 5e-5. For
ELECTRA and SST-2 and MRPC tasks, the batch
size is 16. For ELECTRA and CoLA, the batch
size is 32. For DistilBERT, the batch size is 32 for
all tasks. Although calibrating these hyperparam-
eters can yield some performance improvements,
the aforementioned settings allow achieving good
results across all tasks.

4.4 Results and Discussion

ROC AUC scores for the misclassification detec-
tion task and ELECTRA are presented in Table 1.

The results for DistilBERT are presented in Table
3 in Appendix A. While the classifier performance
does not significantly variate across multiple ver-
sions of the fine-tuned models, the difference in the
misclassification detection performance is statisti-
cally significant. Therefore, we present the abso-
lute values of the performance only for the baseline
(UE based on maximum probability), while for
other methods, we present the improvement over
the baseline across multiple runs. Tables with re-
sults also present the standard deviation of scores.

We note that the UE based on the maximum
probability of the deterministic model is a strong
baseline. Overall, Transformers are able to indi-
cate their potential mistakes with just the proba-
bility from the softmax layer. Applying the MC
dropout to all dropout layers in the network always
gives a reliable boost in the misclassification de-
tection. For SST-2 and MRPC tasks, UE based
on BALD demonstrates better performance than
sampled maximum probability and variance, while
on CoLA, all UEs perform comparably well. The
biggest improvement can be achieved for MRPC
and ELECTRA: up to 7.5% ROC AUC.

On the contrary, the UEs based on the MC
dropout applied only to the last layer do not per-
form well. We see that the misclassification detec-
tion performance always deteriorates compared to
the baseline, especially, for variance and BALD.

UEs that take advantage of the DPP-based masks
applied to the last dropout layer are somewhere in
the middle in terms of quality compared to the
MC dropout variants. Although this method also
does not give any improvement for CoLA, unlike
the last layer MC dropout, DPP gives a significant
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advantage over the baseline on the SST-2 task for
both models and on the MRPC task for ELECTRA.
We note that although DPP-based sampling and the
last layer MC dropout diverge in terms of “dropout
rate” (e.g., in the experiment on the SST-2 task with
ELECTRA, 0.7 for the DPP dropout versus 0.1 for
the MC dropout), this aspect does not explain the
performance difference. Applying dropout rates
higher than 0.1 to the MC dropout downgrades the
performance of the misclassification detection due
to the overall decrease of the model quality, while
for DPP, only 30% of neurons is more than enough
to retain the model performance and obtain better
UEs on the SST-2 task.

Despite the fact that the DPP-based approach
appears to be worse than applying the MC dropout
on all layers, it is much faster since it is applied
to only the last dropout layer. For practical appli-
cations, obtaining UEs normally should not cause
a significant overhead compared to the standard
model inference time. This strikes the methods
based on the MC dropout since they require multi-
ple stochastic predictions. However, for most of the
pre-trained Transformers, if only the last dropout
is replaced with the MC variant, the outputs of the
massive Transformer “body” are not affected dur-
ing the stochastic predictions. This means that the
body outputs can be calculated only once, and only
the last linear layer with the softmax activation
should be recalculated multiple times. As the last
layer contains less than 1% of total parameters, this
favors the UEs that do not use stochastic inference
on dropout layers except the last. Compared to
masks generated uniformly with the MC dropout,
sampling masks with DPP has some insignificant
computation overhead, but, as we showed, it can
give a useful contribution to the misclassification
performance (for MRPC and SST-2) even if it is
used only in the last dropout layer.

We performed an investigation of computation
time overhead for calculating UEs with various
MC dropout options for the development dataset.
The results for ELECTRA are presented in Table 2.
The computations were conducted with the Nvidia
2080ti GPU and the Intel Xeon 5217 CPU. We use
BALD as an acquisition function, but other func-
tions have comparable execution time. The MC
dropout placed on all layers of Transformers gives
better improvements, but it causes roughly 2,000%
overhead (in the case of 20 stochastic passes), with
less than 10% overhead for the last layer MC and

Inference time, sec.
UE Method SST-2 MRPC

Deterministic, − 3.07 ± 0.03 1.43 ± 0.04
MC dropout, all 65.5 ± 0.7 30.2 ± 0.2
MC dropout, last 3.17 ± 0.06 1.51 ± 0.05
DPP dropout, last 3.33 ± 0.02 1.57 ± 0.01

Table 2: The inference time of the ELECTRA model
on the development dataset with BALD UE.

DPP. Therefore, DPP can provide a better trade-
off between computation time and performance of
error detection.

5 Conclusion

In this work, we evaluated several UEs for the state-
of-the-art Transformer model ELECTRA and the
speed-oriented DistilBERT model in the text clas-
sification tasks. To obtain estimates, we leverage
multiple stochastic passes using the MC dropout,
and the DPP-based dropout proposed by (Tsym-
balov et al., 2020). We show that by activating all
dropouts in the model for stochastic predictions,
one can beat the baseline deterministic uncertainty
estimate by the significant margin in the binary
misclassification detection task. We also demon-
strate that replacing the last dropout layer with the
DPP dropout can yield significant improvements
over the baseline in some cases, but less than the
usage of the MC dropout on all dropout layers. De-
spite being inferior compared to the latter, the DPP
dropout can provide a better trade-off between com-
putation time and performance of error detection,
which can be important for practical use cases.

In future work, we are seeking to improve UEs
quality obtained using the DPP dropout with the
help of calibration (Safavi et al., 2020) and conduct
experiments on sequence tagging tasks.
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A Results for DistilBERT

Model Tasks
Dropout Type Acquisition Dropout Layers SST-2 MRPC CoLA
No (baseline) Max. probability - 76.6±2.6 76.6±0.8 73.0±1.7

MC Sampled max. probability last -0.0±0.1 -0.1±0.3 0.0±0.1
MC Probability variance last -0.5±0.4 -0.6±0.7 -0.2±0.4
MC BALD last -1.7±0.6 -1.6±1.1 -1.1±0.7
DPP Sampled max. probability last 0.6±1.0 0.2±0.6 -0.1±0.2
DPP Probability variance last 0.6±1.3 0.4±1.2 -0.4±0.6
DPP BALD last 0.5±1.6 0.2±1.5 -0.8±1.0
MC Sampled max. probability all 0.6±0.2 2.1±0.6 1.4±0.7
MC Probability variance all 2.0±0.8 2.4±1.0 1.3±1.0
MC BALD all 2.3±1.0 2.4±1.2 1.1±1.0

Table 3: The misclassification detection performance (ROC AUC) (±SD) for the maximal probability baseline with
the DistilBERT model and performance improvements over the baseline for various UEs. Statistically significant
improvements (p-value ≤ 0.05) are highlighted.

B Determinantal Point Processes

Determinantal point processes (DPPs) are specific
probability distributions over a set of points. They
allow choosing the subset of points enforcing the
diversity between the samples. The DPPs were
introduced for the needs of statistical physics (Mac-
chi, 1975), and found their applications in machine
learning (Kulesza and Taskar, 2012)

For example, consider the situation where we
observe N news from different outlets during one
specific day. Let us also assume that we can mea-
sure the corresponding texts’ pairwise similarity. In
this case, DPPs allow choosing a number n� N
of most non-similar news for the day, giving a good
representation of the agenda. Most importantly,
DPPs have efficient implementation for the exact
sampling and several even more efficient approx-
imate solutions. We also note that DPP sampling
is stochastic, i.e., it provides a different result for
each repetition. That is an essential property for
the uncertainty estimation problems we consider in
this work.

Formally, let us assume that the kernel matrix
K of pairwise similarities between the considered
points X is given. DPPs are similar to the al-

gorithm of finding maximum volume submatrix
of K (Goreinov et al., 2010; Çivril and Magdon-
Ismail, 2009) as geometrically determinant of the
matrix is equal to the scaling volume of a corre-
sponding linear transformation. In this case, a large
volume is good because it corresponds to orthog-
onal vectors (i.e. non-similar vectors). Likewise,
DPPs sample points S with probabilities:

P [S ⊂ X] = detKS ,

where KS is the submatrix of the matrix K corre-
sponding to points S.

As probability takes values between 0 and 1,
the matrix K needs to be positive semidefinite
and should not have minors with determinant
larger than 1. In practice, usually only some un-
normalized likelihood matrix L is given. The stan-
dard approach is to normalize it in the following
way:

K = L(L+ I)−1.

In this case, we can directly calculate the submatrix
probabilities:

P [X = S] =
detLS

det(L+ I)
.


