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Abstract

Gorman and Bedrick (2019) argued for us-
ing random splits rather than standard splits
in NLP experiments. We argue that random
splits, like standard splits, lead to overly op-
timistic performance estimates. We can also
split data in biased or adversarial ways, e.g.,
training on short sentences and evaluating on
long ones. Biased sampling has been used in
domain adaptation to simulate real-world drift;
this is known as the covariate shift assumption.
In NLP, however, even worst-case splits, maxi-
mizing bias, often under-estimate the error ob-
served on new samples of in-domain data, i.e.,
the data that models should minimally gener-
alize to at test time. This invalidates the co-
variate shift assumption. Instead of using mul-
tiple random splits, future benchmarks should
ideally include multiple, independent test sets
instead; if infeasible, we argue that multiple bi-
ased splits leads to more realistic performance
estimates than multiple random splits.

1 Introduction

It is common practice in NLP to collect and anno-
tate a text corpus – and split it into training, de-
velopment and test data. These splits are often
based on the order in which texts were published
or sampled, and are referred to as ‘standard splits’.
Gorman and Bedrick (2019) recently showed that
system ranking results based on standard splits dif-
fer from results based on random splits and used
this to argue in favor of using random splits. While
perhaps less common, random splits are already
used in probing (Elazar and Goldberg, 2018), in-
terpretability (Pörner et al., 2018), as well as core
NLP tasks (Yu et al., 2019; Geva et al., 2019).1

Gorman and Bedrick (2019) focus on whether
there is a significant performance difference δ

1See also many of the tasks in the SemEval evaluation
campaigns: http://alt.qcri.org/semeval2020/

Figure 1: Data splitting strategies. Each ball corre-
sponds to a sentence represented in (two-dimensional)
feature space. Blue (dark)/orange (bright) balls repre-
sent examples for training/test. Numbers represent sen-
tence length. Heuristic splits can, e.g., be based on sen-
tence length; adversarial splits maximize divergence.

between systems S1 and S2; M(Gtest , S1) −
M(Gtest , S2), in their notation. They argue Mc-
Nemar’s test (Gillick and Cox, 1989) or bootstrap
(Efron, 1981) can establish that δ 6= 0, using ran-
dom splits to sample from Gtest . This, of course,
relies on the assumption that data is representative,
i.e., was sampled i.i.d. (Wolpert, 1996).

In reality, what Gorman and Bedrick (2019)
call the true difference in system performance, i.e.,
δ =M(Gtest , S1)−M(Gtest , S2), is the system
difference on data that users would expect the sys-
tems to work well on (see §2 for practical examples)
– and not just on the corpus that we have annota-
tions for. Our corpus-based estimates of δ can in
fact be very misleading, i.e., very different from
performance on new samples of data. In this pa-
per, we investigate how misleading our estimates
can be: We show that random splits consistently
over-estimate performance at test time. This favors
systems that overfit. We investigate alternatives
across a heterogeneous set of NLP tasks. Based on
our experiments, our answer to community-wide
overfitting to standard splits is not to use random
splits but to collect more diverse data with different
biases – or if that is not feasible, split your data
in adversarial, not random, ways. In general, we
observe that estimates of test time error are worst
for random splits, slightly better for standard splits

http://alt.qcri.org/semeval2020/


Task Benchmark Source/Domain New Samples

POS TAGGING WSJ News Xinhua
PROBING SentEval Toronto BC Gutenberg
EMOJIS S140 Twitter S140∗

QE WMT 2016 IT WMT 2018
HEADLINES Gigaword News Gigaword∗

NEWS UCI News UCI∗

Table 1: Data used in our experiments. *: We time slice
the original data to create different samples.

(if those exist), better for heuristic and adversar-
ial splits, but error still tends to be higher on new
(in-domain) samples; see Figure 1.

Our results not only refute the hypothesis that
δ can be estimated using random splits (Gorman
and Bedrick, 2019),2 but also the covariate shift
hypothesis (Shimodaira, 2000; Shah et al., 2020)
that δ can be estimated using reweightings of the
data. While biased splits are useful in the absence
of multiple held-out samples, and have been
proposed before (Karimi et al., 2015),3 they often
overestimate performance in the wild. Our code is
made publicly available at https://github.com/
google-research/google-research/tree/

master/talk_about_random_splits.

2 Experiments

We consider 7 different NLP tasks: POS tagging
(like Gorman and Bedrick (2019)), two sentence
representation probing tasks, headline generation,
translation quality estimation, emoji prediction,
and news classification. We experiment with these
tasks, because they a) are diverse, b) have not been
subject to decades of community-wide overfitting
(with the exception of POS tagging), and c) three of
them enabled temporal splits (see Appendix §A.5).

Data splits The datasets which we will use in
our experiments are presented in Table 1. For all
seven tasks, we will present results for standard
splits when possible (POS, PROBING,QE, HEAD-
LINES), random splits, heuristic and adversarial
splits, as well as on new samples. In the case of
EMOJIS, HEADLINES and NEWS, which are all
time-stamped datasets, we leave out historically

2Or cross-validation, as more recently proposed in
Szymański and Gorman (2020). In this very interesting follow-
up paper, about Bayesian inference of δ, the authors write that
their ”estimates are valid insofar as the data sets used to esti-
mate the Bayesian models comprise a representative sample
of a coherent population of data sets.” Our results show how
off this assumption is.

3Karimi et al. (2015) discuss temporal splits and splits
based on neighbor-based heuristics that are similar in spirit to
our worst-case splits.

more recent data as our new samples. All new
samples are in-domain samples of data where mod-
els are supposed to generalize, i.e, samples from
similar text sources.4 This is a key point: These
are samples that any end user would expect decent
NLP models to fair well on. Examples include a
sample of newspaper articles from newspaperA for
a POS tagger trained on articles from newspaper
B; tweets sampled the day after the training data
was sampled; or news headlines sampled from the
same sources, but a year later.

We resample random splits multiple times (3-10
per task) and report average results. The heuris-
tic splits are obtained by finding a sentence length
threshold and putting the long sentences in the test
split. We choose a threshold so that approximately
10% of the data ends up in this split. The idea of
checking whether models generalize to longer sen-
tences is not new; on the contrary, this goes back, at
least, to early formal studies of recurrent neural net-
works, e.g., Siegelmann and Sontag (1992). In the
§A.3, we present a few experiments with alterna-
tive heuristic splits, but in our main experiments we
limit ourselves to splits based on sentence length.

Finally, the adversarial splits are computed by
approximately maximizing the Wasserstein dis-
tance between the splits. The Wasserstein distance
is often used to measure divergence between dis-
tributions (Arjovsky et al., 2017; Tolstikhin et al.,
2018; Shen et al., 2018; Shah et al., 2018), and
while alternatives exist (Ben-David et al., 2006;
Borgwardt et al., 2006), it is easy to compute and
parameter-free. Since selecting the worst-case split
is an NP-hard problem (e.g., by reduction of the
knapsack problem), we have to rely on an approxi-
mation. We first compute a ball tree encoding the
Wasserstein distances between the data points in
our sample. We then randomly select a centroid for
our test split and find its k nearest neighbors. Those
k nearest neighbors constitute our test split; the rest
is used to train and validate our model. We repeat
these steps to estimate performance on worst-case
splits of our sample. See §A.4 for an algorithm
sketch. Random, heuristic, and adversarial results
are averaged across five runs.

4Domains are commonly defined as collections of simi-
lar text sources (Harbusch et al., 2003; Koehn and Knowles,
2017). In addition to using similar sources, we control for low
A-distance (Ben-David et al., 2006) by looking at separabil-
ity; e.g., a simple linear classifier over frequent unigrams can
distinguish between Penn Treebank development and test sec-
tions with an accuracy of 64%; and between the development
and our new sample with an accuracy of 69%.

https://github.com/google-research/google-research/tree/master/talk_about_random_splits
https://github.com/google-research/google-research/tree/master/talk_about_random_splits
https://github.com/google-research/google-research/tree/master/talk_about_random_splits


POS tagging We first consider the task in Gor-
man and Bedrick (2019), experiment with heuristic
and adversarial splits of the original Penn Treebank
(Marcus et al., 1993), and add the Xinhua section
of OntoNotes 5.05 as our New Sample. Our tagger
is NCRF++ with default parameters.6

Probing We also include two SentEval probing
tasks (Conneau et al., 2018) with data from the
Toronto Book Corpus: PROBING-WC (word classi-
fication) and PROBING-BSHIFT (whether a bigram
was swapped) (Conneau et al., 2018). Unlike the
other probing tasks, these two tasks do not rely on
external syntactic parsers, which would otherwise
introduce a new type of bias that we would have to
take into account in our analysis. We use the offi-
cial SentEval framework7 and BERT (Devlin et al.,
2019) as our sentence encoder. The probing model
is a logistic regression classifier with L2 regular-
ization, tuned on the development set. As our New
Samples, we use five random samples of the 2018
Gutenberg Corpus8 for each task, preprocessed in
the same way as Conneau et al. (2018).

Quality estimation We use the WMT 2014
shared task datasets for QUALITY ESTIMATION.
Specifically, we use the Spanish-English data from
Task 1.1: scoring for perceived post-editing ef-
fort. The dataset comes with a training and test
set, and a second, unofficial test set, which we use
as our New Sample. In the §A.2, we also present
results training on Spanish-English and evaluating
on German-English. We present a simple model
that only considers the target sentence, but per-
forms better than the best shared task systems: we
train an MLP over a LASER sentence embedding
(Schwenk et al., 2019) with the following hyper-
parameters: two hidden layers with 100 parameters
each and ReLU activation functions, trained us-
ing the Adam stochastic gradient-based optimizer
(Kingma and Ba, 2015), a batch size of 200, and
L2 penalty of strength α = 0.01.

Headline generation We use the standard
dataset for headline generation, derived from the
Gigaword corpus (Napoles et al., 2012), as pub-
lished by Rush et al. (2015). The task is to generate
a headline from the first sentence of a news article.

5https://catalog.ldc.upenn.edu/
LDC2013T19

6github.com/jiesutd/NCRFpp
7github.com/facebookresearch/SentEval
8tinyurl.com/zyq3yvn

Our architecture is a sequence-to-sequence model
with stacked bi-directional LSTMs with dropout,
attention (Luong et al., 2015) and beam decod-
ing; the number of hidden units is 128; we do not
pre-train. Different from Rush et al. (2015), we
use subword units (Sennrich et al., 2016) to over-
come the OOV problem and speed up training. The
ROUGE scores we obtain on the standard splits are
higher than those reported by Rush et al. (2015)
and comparable to those of Nallapati et al. (2016),
e.g., ROUGE-1 of 0.321. As our New sample, we
reserve 20,000 sentence-headline pairs each from
the first and second halves of 2004 for validation
and testing; years 1998-2003 are used for training.
For all the experiments we report the error reduc-
tion in ROUGE-2 of the model over the IDENTITY

baseline, which simply copies the input sentence
(other ROUGE values are reported in the §A.1). In
§5, we will explore how much of a performance
drop on the fixed test set is caused by shifting the
training data by only five years to the past.

Emoji prediction Go et al. (2009) introduce an
emoji prediction dataset, collected from Twitter
and is time-stamped. We use the 67,980 tweets
from June 16 as our New Sample, and tweets
from all previous days for the remaining exper-
iments. For this task, we again train an MLP
over a LASER embedding (Schwenk et al., 2019)
with hyper-parameters: two hidden layers with 50
parameters each and ReLU activation functions,
trained using the Adam stochastic gradient-based
optimizer (Kingma and Ba, 2015), a batch size of
200, and L2 penalty of strength α = 0.01. See §5
for a discussion of temporal drift in this data.

News classification We use a UCI Machine
Learning Repository text classification problem.9

Our datapoints are headlines associated with five
different news genres. We use the last year of this
corpus as our New Sample. We sample 100,000
headlines from the rest and train an MLP over a
LASER embedding (Schwenk et al., 2019) with
the following hyper-parameters: two hidden layers
with 100 parameters and ReLU activation func-
tions, trained using the Adam stochastic gradient-
based optimizer (Kingma and Ba, 2015), dynamic
batch sizes, and L2 penalty of strength α = 0.01.

9tinyurl.com/yysysmtr

https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
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Splits

Task Model Standard Random Heuristic Adversarial New Samples

POS TAGGING NCRF++ 0.961 0.962 0.960 0.944 0.927

PROBING-WC
BERT

0.520 0.527 0.232 0.250 0.279
PROBING-BSHIFT 0.800 0.808 0.695 0.706 0.450

HEADLINE GENERATION∗ seq2seq 0.073 0.095 0.062 0.040 0.069

QUALITY ESTIMATION†

MLP-Laser
0.502 0.626 0.621 0.711 0.767

EMOJI PREDICTION - 0.125 0.196 -0.040 0.091
NEWS CLASSIFICATION - 0.681 0.720 0.634 0.618

MSE (New Samples) 0.179 0.030 0.015 0.011 -

Table 2: Error reductions over random baselines on Standard (original) splits, if available, Random splits (ob-
tained using cross-validation), Heuristic splits resulting from a sentence length-based threshold, Adversarial splits
based on (five) approximate maximizations of Wasserstein differences between splits, and on New Samples. We
bold face the lowest error reduction, i.e., where results differ the most from the random baseline. We see that stan-
dard and random splits consistently over-estimate real performance on new samples, which is sometimes
even lower than performance on adversarial splits. We also report the mean squared error (MSE) with respect
to New Samples, which shows Adversarial estimates empirical error best. Note: While annotator bias could
explain POS tagging results, there is no annotator bias in the other tasks. ∗: For HEADLINES we use an identity
baseline. Scores are ROUGE-2; see §A.1 for more. †: For QUALITY ESTIMATION, we report RMSE. The WMT
QE 2014 best system obtained RMSE of 0.64; our system is significantly better with 0.50 on the standard split.

3 Results

Our results are presented in Table 2. Since the re-
sults are computed on different subsamples of data,
we report error reductions over multinomial ran-
dom (or, for HEADLINES, identity) baselines, fol-
lowing previous work comparing system rankings
across different samples (Søgaard, 2013). More
formally, we present error reduction as r = ps−pb

1−pb ,
where ps and pb are the performances of the system
at hand and the multinomial random baseline.

Our main observations are the following: (a)
Random splits (and standard splits) consis-
tently under-estimate error on new samples.
The absolute differences between error reductions
over random baselines for random splits and on
new samples are often higher than 20%, and in
the case of PROBING-BSHIFT, for example, the
BERT model reduces 80% of the error of a ran-
dom baseline when data is randomly split, but only
45% averaging over five samples of new data from
the same domain. (b) Heuristic splits sometimes
under-estimate error on new samples. Our heuristic
splits in the above experiments are quite aggressive.
We only evaluate our models on sentences that are
longer than any of the sentences observed during
training. Nevertheless for 5/7 tasks, this leads to
more optimistic performance estimates than evalu-
ating on new samples! (c) The same story holds for

adversarial splits based on approximate maximiza-
tion of Wasserstein distances between training and
test data. While adversarial splits are very challeng-
ing, results on adversarial splits are more optimistic
than on new samples in 4/7 cases. Note the fact
that random splits over-estimate real-life perfor-
mance also leads to misleading system rankings.
If, for example, we remove the CRF inference layer
from our POS tagger, performance on our Random
splits drops to 0.952; on the New Sample, however,
performance is 0.930, which is significantly better
than with a CRF layer.

Discussion In the spirit of earlier work (Sak-
aguchi et al., 2017; Madnani and Cahill, 2018;
Gorman and Bedrick, 2019), we provide recom-
mendations for future evaluation protocols: (i) In
the absence of multiple held-out samples, using
biased splits better approximates real-world per-
formance and can help determine what data charac-
teristics affect performance. (ii) Evaluating on new
samples is superior and also enables significance
testing across datasets (Demsar, 2006), providing
confidence estimates. Several benchmarks already
provide multiple, diverse test sets (e.g. Hovy et al.,
2006; Petrov and McDonald, 2012; Williams et al.,
2018); we hope more will follow. What explains
the high variance across samples in NLP? One rea-
son is the dimensionality of language (Bengio et al.,



2003), but in §A.5 we also show significant impact
of temporal drift.

Conclusions We have shown that out-of-sample
error can be hard to estimate from random splits,
which tend to underestimate error by some margin,
but even biased and adversarial splits sometimes
underestimate error on new samples. We show this
phenomenon across seven very different NLP tasks
and provide practical recommendations on how to
best bridge the gap between experimental practices
and what is needed to produce truly robust NLP
models that perform well in the wild.
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ROUGE-1 ROUGE-2 ROUGE-L

Standard 0.080 0.073 0.097

Random 0.109 0.095 0.127
Heuristic 0.091 0.062 0.109
Adversarial 0.060 0.040 0.080
New Sample 0.067 0.069 0.091

Table 3: Error reduction as compared with an identity
baseline (output as input) for three ROUGE metrics.
Random is a five-fold cross-validation result.

Figure 2: Proportions of US vs. U.S. spellings in the
headlines for two training sets and the test set (2004) as
well as in the two models’ predictions on the test set.

A Appendices

We present supplementary details about two of our
tasks in §A.1 and §A.2 and discuss variations over
heuristic splits in §A.3. In §A.4, we present the
pseudo-algorithm for how we compute adversarial
splits, and finally, in §A.5, we present our results
documenting temporal drift.

A.1 Headlines
Table 3 reports the error reduction in ROUGE-1,
ROUGE-2 and ROUGE-L over the identity base-
line (see §2) for the different data splits. The re-
sults are consistent with Table 2. Figure 2 gives
more details on an interesting drift phenomenon,
which contributed to the superior performance of
the model trained on the most recent five years
(1999-2003). Apparently, the dotless spelling of
U.S./US (’United States’) became more common
over time. Consequently, the model trained on the
1999-2003 part generated US more frequently than
the model trained on 1994-1998.

A.2 Quality Estimation
In the results above, we train and test our qual-
ity estimation regressor on Spanish-English from
WMT QE 2014. We also ran a similar experiment
where we used the German-English test data as our

New Sample. Here, we see a similar pattern to the
one above: The RMSE on the Standard split was
0.630, which is slightly higher than for Spanish-
English; with our Heuristic split, RMSE is 0.652;
for Adversarial, it is 0.626 (which is slightly better
than with standard splits), and on our New Sample,
RMSE is 0.813.

A.3 Alternative Heuristic Splits
For both SentEval tasks we experimented with the
following alternatives for heuristic splits.

Bootstrap Resampling Instead of cross-
validation, a random split can be generated by
bootstrap resampling. For this we randomly select
10% of the data as test set and then randomly
sample (with replacement) a new training and dev
set from the remaining examples.

Random Length As alternative to the length
threshold heuristic in earlier experiments we ran-
domly sample a length and select all examples hav-
ing this length to be part of the test set. We repeat
this procedure until approximately 10% of the data
ends up in the test set. With this procedure we cre-
ate 5 different test sets. We included this heuristic
in order to see how fragile the probing setup is.

Rare Words Another alternative for heuristic
splits is to use word frequency information. Here
we assign those sentences containing at least one of
the rarest words of the dataset to the test set. This
way we end up again with approximately 10% of
the data in the test set. Note that this way we create
only 1 dataset, because it’s not a random process.

Results Table 4 lists the results. While bootstrap
resampling leads to slightly lower error reduction
than cross-validation we decided to report the lat-
ter in the main part of this paper, because it is a
more wide-spread way to randomly split datasets.
Random Length results are comparable to standard
splits results. The split based on word frequency
(Rare Words) leads to considerable drop in both
tasks. However, it is not as strong as the drop of the
heuristic split (length threshold) in the main part of
the paper.

A.4 Computing adversarial splits
We present the pseudo-algorithm of our implemen-
tation of approximate Wasserstein splitting in Al-
gorithm 1. We also make the corresponding code
available as part of our code repository for this
paper.



Splits

Task Model Standard Bootstrap Random Length Rare Words

PROBING-WC
BERT

0.520 0.504 0.554 0.339
PROBING-BSHIFT 0.800 0.807 0.798 0.731

Table 4: Error reductions over random baselines on Standard (original) splits, if available, Bootstrap splits,
Random Length splits resulting from a sentence length-based separation, Rare Words splits based on word
frequency.
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Figure 3: Temporal drift in emoji prediction. The cor-
relation between temporal gap and performance is sig-
nificant (p < 0.05).

Data: Dataset Gtrain

Result: Adversarial split: Gtrain and Gtest

T ←WassersteinBallTree(Gtrain);
Gtest ← {〈x, y〉 ∼ Gtrain};
Gtrain ← Gtrain/{〈x, y〉};
while i ≤ k do
〈xi, yi〉 = min〈x′,y′〉 T (x, x

′);
Gtrain ← Gtrain/{〈xi, yi〉};
Gtest ← Gtest ∪ {〈xi, yi〉};
i+ = 1;

end
Algorithm 1: Computing adversarial splits

ROUGE-1 ROUGE-2 ROUGE-L

Identity baseline 0.302 0.110 0.260

50% of 1994-2003 0.409 0.205 0.386
1994-1998 0.346 0.161 0.329
1999-2003 0.413 0.208 0.388

Table 5: Performance of three seq2seq models trained
on different samples, evaluated on 2004 data.

A.5 The significance of drift

Some of our splits in the main experiments were
based on slicing data into different time periods
(HEADLINES, EMOJIS). Since temporal drift is a
potential explanation for sampling bias, we analyze
this in more detail here. We show that temporal
drift is pervasive and leads to surprising drops in
performance. We note, however, that temporal drift
is not the only cause of sampling bias, of course.
Since we have time stamps for two of our datasets
we study these in greater detail. For similar studies
of temporal drift, see Lukes and Søgaard (2018);
Rijhwani and Preotiuc-Pietro (2020).

Headline generation Our headline generation
data covers the years 1994 to 2004. Having re-
served 20,000 sentence-headline pairs from the first
half of 2004 for validation and the same amount
from the second half for testing, we use 50% of
the years 1994-2003 for training three models. The
models’ architectures and parameters are identical
(same as in Sec. 3). The only difference is in what
the models are trained on: (a) a random half, (b)
the first, or (c) the second half of 1994-2003. The
training data sizes are comparable (1.63-1.76M),
the publisher distributions (AFP, APW, CNA, NYT
or XIN) are also similar. Hence, the models are
expected to perform similarly on the same test set.

As Table 5 indicates, shifting the training data
by five years to the past results in a big perfor-
mance drop. Sampling training data randomly or
taking the most recent period produces models with



similar ROUGE scores, both much better than the
identity baseline. However, about half of the gap to
the identity baseline disappears when older training
data is taken. In the §A.1, we give an example of
temporal drift in the HEADLINES data: US largely
replaces U.S. in the newer training set and the test
set.

Emoji prediction For emoji prediction, Go et al.
(2009) provide data for a temporal span of 62 days.
We split the data into single days and keep the splits
with more than 25,000 datapoints in which both
classes are represented. We use the last of these,
June 16, as our test sample and vary the training
data from the first day to the day before June 16.
Figure 3 (left) visualizes the results.


