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Abstract

Given the potential misuse of recent advances
in synthetic text generation by language mod-
els (LMs), it is important to have the capacity
to attribute authorship of synthetic text. While
stylometric organic (i.e., human written) au-
thorship attribution has been quite successful,
it is unclear whether similar approaches can be
used to attribute a synthetic text to its source
LM. We address this question with the key
insight that synthetic texts carry subtle distin-
guishing marks inherited from their source LM
and that these marks can be leveraged by ma-
chine learning (ML) algorithms for attribution.
We propose and test several ML-based attribu-
tion methods. Our best attributor built using a
fine-tuned version of XLNet (XLNet-FT) con-
sistently achieves excellent accuracy scores
(91% to near perfect 98%) in terms of attribut-
ing the parent pre-trained LM behind a syn-
thetic text. Our experiments show promising
results across a range of experiments where
the synthetic text may be generated using pre-
trained LMs, fine-tuned LMs, or by varying
text generation parameters.

1 Introduction

Recent advancements in natural language process-
ing have enabled synthetic text generation that is
often of comparable quality to the organic text (Ip-
polito et al., 2020; Radford et al., 2019; Zellers
et al., 2019; Gehrmann et al., 2019). This ca-
pability has the potential to be misused by mali-
cious actors to launch misinformation, spam, and
phishing campaigns (Solaiman et al., 2019; Brown
et al., 2020). To prevent potential misuse, prior
research has shown considerable success in build-
ing machine learning (ML) algorithms that detect
(Zellers et al., 2019) or assist humans in detecting
(Gehrmann et al., 2019) synthetic text.

While prior research has shown promise in distin-
guishing between synthetic and organic text, very

little has been done on attributing the authorship of
the language model (LM) generating the synthetic
text (Pan et al., 2020). It is important to be able to
track the provenance of synthetic text to the source
LM. This can be useful in identifying perpetrators
of potential misuse and the unauthorized use of an
LM (e.g., in case it is stolen through sophisticated
model inversion attacks (Fredrikson et al., 2015) or
outright security breaches).

It is particularly challenging to attribute the au-
thorship of the synthetic texts because of the variety
and number of available LMs and configurations.
While there are only a handful of public pre-trained
LMs, it is common to further fine-tune them before
using them to generate synthetic text (Devlin et al.,
2019; Sanh et al., 2020). Fine-tuning can signifi-
cantly impact the characteristics of the generated
text (Howard and Ruder, 2018; Cruz and Cheng,
2019). Moreover, variations in the sampling param-
eters used while generating synthetic text whether
from pre-trained or fine-tuned LMs can further im-
pact text characteristics (Zellers et al., 2019).

In this paper, we design and evaluate ML-based
techniques for attributing the LM and configuration
used to generate a synthetic text. We do this in the
context of four problem scenarios, each represent-
ing a variation of a threat posed by an adversary or
malicious user. The scenarios vary in terms of what
information the LM attribution system has about
the adversary’s strategy for generating fake text.

Methodologically, our key insight for attributing
the LM used by the adversary is that differences
between LM architecture (i.e., layers, parameters),
training (i.e., pre-training and fine-tuning), and gen-
eration techniques (i.e., sampling parameters) will
leave their subtle mark on the generated synthetic
texts. The success of our attributors at identifying
the LM and configuration used relies on the pres-
ence of these subtle distinguishing marks and on
the ability to exploit them effectively. As our re-
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sults indicate, this success holds especially in terms
of attributing pre-trained models used to generate
text even under varying conditions.

In summary, our key contributions are:

• We evaluate a variety of attribution techniques
on their ability to attribute the LM and config-
uration used to generate text. These include
attributors making use of stylometric features
as well as static and dynamic embeddings.

• We evaluate these attributors on a corpus of
350,000 synthetic texts that we generated in
a controlled manner using combinations of
LMs, sampling parameters, and fine-tuning.

• Our best attributor built on top of a fine-tuned
version of XLNet (XLNet-FT) performs ex-
cellently at identifying pre-trained LM used
to generate coherent synthetic texts. Accuracy
ranges between 91% and close to perfect 98%.
This performance holds for various experi-
ments where we use fine-tuning and different
sampling parameters. However, the perfor-
mance is mediocre when attributing the fine-
tuned LM used to generate the text.

Paper Organization: The rest of the paper is or-
ganized as follows. Section 2 presents the different
threat models based on the adversary’s strategy for
generating synthetic text and assumptions made by
the attributor. We then describe our data and attri-
bution methods in Section 3. Experimental results
are in Section 4. Section 5 contextualizes our work
with respect to prior literature. Section 6 concludes
the paper with an outlook on future work.

2 Threat Model

This section describes different threat models that
we consider in this paper. The adversary’s goal
is to generate synthetic text using language mod-
els (LMs). The attributor’s goal is to attribute the
synthetic text to the source LM used by the adver-
sary. All of the threat models operate under the
closed world scenario, where the attributor is as-
sumed to know the universe of LMs. The threat
models differ based on the adversary’s LM train-
ing (i.e., pre-training or fine-tuning) and sampling
strategies.

2.1 Attributing pre-trained LMs
In the first scenario, the adversary uses a pre-trained
LM to generate synthetic text. The attributor trains

a classifier to attribute the synthetic text to the
source pre-trained LM. We assume a closed-world
scenario where both the adversary and attributor
have access to the set of off-the-shelf pre-trained
LMs such as GPT-2.1

More formally, the scenario can be described as:
Given n pre-trained LMs PM1, PM2, ..., PMn,
the goal is to train a n-class attributor to attribute
test instances to the correct source pre-trained LM.
In this scenario, the adversary generates texts using
PMk where 1 ≤ k ≤ n and the attributor’s goal
is to predict label PMk for the generated texts.

2.2 Attributing fine-tuned LMs to parent
pre-trained LMs

In this scenario, the adversary fine-tunes a pre-
trained LM to generate synthetic text. The attribu-
tor trains a classifier to attribute the synthetic text
to the source pre-trained LM. The main difference
from the first scenario is that the attributor is un-
aware of the fine-tuning used by the adversary be-
fore generating text. Note that the goal of the attrib-
utor is to detect the source pre-trained LM rather
than the fine-tuned LM that is used to generate
synthetic text.

More formally, the scenario can be described as:
Given n pre-trained LMs PM1, PM2, ..., PMn,
and a LM FMk, generated by fine-tuning PMK

where 1 ≤ k ≤ n, the goal is to train a n-class
attributor to attribute test instances to the correct
source pre-trained LM. In this scenario, the adver-
sary generates text using fine-tuned LM FMk and
the attributor’s goal is to predict label PMk for
generated text.

2.3 Attributing pre-trained or fine-tuned
LMs with different sampling parameters

In this scenario, the attributor trains a classifier
to attribute the synthetic text generated by the ad-
versary using a pre-trained or fine-tuned LM. The
main difference from the first scenario is that the
adversary potentially uses different sampling pa-
rameters for text generation than those used by the
attributor to train the classifier.

More formally, the scenario can be described
as: Given n pre-trained or fine-tuned LMs
M1,M2, ...,Mn, the goal is to train a n-class at-
tributor to attribute test instances to the correct
source model. As per this scenario the adversary

1This assumption holds for the rest of the paper, unless
stated otherwise.
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generates texts using model Mk, 1 ≤ k ≤ n, with
sampling parameters Sk that are unknown to the
attributor, and the attributor’s goal is to predict
label Mk for the generated text.

2.4 Attributing fine-tuned variants of a
pre-trained LM

In this scenario, the adversary fine-tunes a pre-
trained LM to generate synthetic text. The attribu-
tor trains a classifier to attribute the synthetic text to
the source fine-tuned LM. The main difference as
compared to the second scenario is that the attribu-
tor is aware of the fine-tuning used by the adversary.
Note that there are multiple fine-tuned variants of
the same parent pre-trained LM.

More formally, the scenario can be described
as: Given n fine-tuned LMs FM1, FM2, ..., FMn,
the goal is to train a n-class attributor to attribute
test instances to the correct fine-tuned LM. As per
this scenario, the adversary generates text using a
fine-tuned LM FMk and the attributor’s goal is to
predict label FMk for the generated text.

3 Data & Methods

In this section, we present details about (1) the
text generating language models (LMs) and their
configurations, and (2) about the attributors studied.
To address our research goals, we need a dataset
of synthetic texts generated by various pre-trained
and fine-tuned LMs under different configurations.
Publicly available datasets are unsuitable because
there can be high variability in the conditions under
which text was generated 2. It is crucial for us to
be able to control the underlying conditions such
as: the architecture of LM, prompt used for text
generation, sampling parameters, and the data size
and topics used for fine-tuning. Details about this
generated dataset are also provided in this section.

3.1 Text Generation: LMs, parameters, and
configurations

We used four pre-trained LMs: OpenAI GPT (Rad-
ford et al., 2018), OpenAI GPT2 (Radford et al.,
2019), XLNet (Yang et al., 2019), and BART
(Lewis et al., 2020). BART and XLNet are both
based on the BERT architecture, which makes use
of the bidirectional context of input text to de-
velop a deep understanding of language. XLNet
improves on BERT with a form of generalized auto-
regressive pre-training using permutation model-

2https://www.kaggle.com/abhishek/gpt2-output-data

ing. It outperforms BERT on several classification
tasks (Yang et al., 2019). BART combines the
bidirectional encoder used by BERT with an auto-
regressive decoder used by GPT, which, through
a noising and text reconstruction pre-training task,
achieves good performance in both language un-
derstanding and language generation tasks. In
other words, both BART and XLNet augment their
training strategies to make up for the lack of lan-
guage generation capabilities in BERT. GPT and
GPT2 are architecturally identical LMs with GPT2
trained on 10 times the data used for training orig-
inal GPT LM. These use a more traditional gen-
erative pre-training approach, looking only at the
context coming before a part of the text and not
after (Radford et al., 2019). All four pre-trained
LMs are publicly available.

3.1.1 Text generation parameters
Three key parameters when generating texts are: p,
k, and temperature. The range of values tested are
given in Table 1, with default values emphasized
in boldface. Note that one chooses to use either p-
value or k-value sampling since they have the same
goal - controlling the number of words taken into
consideration while sampling text from an LM.

With top-k sampling, the LM randomly chooses
one from the top k words. With top-p sampling, it
chooses from the set of words whose cumulative
probability exceeds p. Both Zellers et al. (2019)
and Holtzman et al. (2020) conclude that synthetic
text matches organic text closely when the p-value
is kept in range [0.9, 1.0]. Higher values lead to
repetitions as the length of text increases. Thus,
we choose the lower limit of p from the range [0.9,
1.0].

For top-k sampling, we use a range of values
both higher and lower than 40, which is used as
the default for text generation by Radford et al.
(2019) in their breakthrough GPT2 paper. Between
a choice of top-p or top-k sampling, we chose top-p
(p = 0.9) as default due to its lower dependency
on vocabulary size and extensive use in previous
research on GPT2 (Radford et al., 2019; Zellers
et al., 2019; Ippolito et al., 2020).

Temperature controls the likelihood of low prob-
ability words appearing in the final pool of words
used for random selection (Holtzman et al., 2020).
Higher temperatures produce text containing highly
unusual words that are normally not favored by top-
k or top-p sampling. At the other end, Holtzman
et al. (2020) note that temperatures below 1 reduce
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(a) Scenario 1: Attributing pre-trained LM (b) Scenario 2: Attributing fine-tuned LMs to the parent
pre-trained LMs

(c) Scenario 3: Attributing LM with different sampling
parameters

(d) Scenario 4: Attributing fine-tuned variants of a pre-trained
LM

Figure 1: Illustration of different threat models studied in this work

word diversity but at the cost of increasing word
repetition. To avoid this we set temperature as 1
in experiments where evaluation of its effect on
synthetic text is not of concern.

# Parameter Values
1 Architecture GPT, GPT2, XLNet, BART
2 Text Length Short, Medium, Long
3 Fine-tuning

Topic
r/changemyview, r/technology,
r/relationships, r/conspiracy

4 p-value 0.9, 0.92, 0.94, 0.96, 0.98, 1.0
5 Temperature 0.1, 0.5, 1, 1.5, 2
6 k-value 1, 20, 40, 80, 160

Table 1: The parameters explored (defaults in bold)

3.1.2 Data for fine-tuning
For scenarios where we need synthetic text gen-
erated using fine-tuned LMs, we limit text gen-
eration to the GPT2 LM. GPT2 has been shown
to have state of the art performance in language
generation tasks (Radford et al., 2019; Klein and
Nabi, 2019). Data from four Reddit communi-
ties was used for fine-tuning LMs: r/relationships,
r/technology, r/changemyview, and r/conspiracy.

These subreddits were chosen based on qualitative
differences between their content. r/technology
contains technical jargon, while r/relationships fo-
cuses on personal pronouns and adopts a critical
approach towards writing. r/changemyview has
confrontational content with members attempting
to challenge and disprove each other’s views, while
r/conspiracy focuses on hyperbolic statements. In
essence, each subreddit is considered a different
topic area. Table 2 shows the number of posts and
comments scraped from each subreddit.

3.1.3 Dataset details

We generate text of three different lengths: short
(up to 40 words), medium (between 40 and 100
words), and long (above 100 words). In experi-
ments where length is not the focus, we use medium
as the default. Each synthetic text is generated us-
ing a randomly selected subreddit submission as a
prompt. We start by sampling words equal to the
length of the prompt from the LM. We trim the
generated text to follow standard sentence structure
such as start capitalization and end punctuation,
after which text is sorted into one of three length
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Figure 2: Attributor training on XLNet embeddings. The dashed lines are part of the fine-tuned pathway.

categories.
We generated 10,000 synthetic texts for each tar-

get class in our experiments. For example, when
evaluating the performance of attributors against
fine-tuned LMs, we generated 10,000 samples for
each of four GPT2 LMs fine-tuned on one of the
four Reddit topics mentioned previously. In total,
35 distinct sets of synthetic documents, each with
10,000 examples, were used for a total of 350,000
unique synthetic documents3. We build training
and test datasets that are balanced in classes for
each scenario because while there is growing evi-
dence that synthetic text is appearing in the wild,
there is little to no information about the relative
impact of the source LMs. Thus, any split beyond
an even split across classes has little justification.

Subreddit Posts Comments Total
r/changemyview 136,775 321,527 458,302
r/relationships 200,047 167,219 367,266
r/technology 174,431 143,199 317,630
r/conspiracy 99,302 161,993 261,295

Table 2: Data scraped per each subreddit.

3.2 Attributors
We test six attributors in their ability to identify
the source LMs. The first attributor is a decision
tree classifier with Writeprints (Abbasi and Chen,
2008) feature set, second is a CNN with GloVe
(Pennington et al., 2014) embeddings as the feature
set. The next four attributors are softmax classifiers,
with the first two built on top of pre-trained XLNet
and GPT2, and the other two on top of XLNet
and GPT2 fine-tuned on training data used in the
corresponding scenario.

3.2.1 Decision tree with Writeprints features
The Writeprints features have been used exten-
sively and successfully for authorship attribution.

3We will make this dataset available for research upon
publication of our paper

(Abbasi and Chen, 2008; Mahmood et al., 2020)
When combined with SVMs and decision trees
these have shown good performance in attribu-
tion tasks (Abbasi and Chen, 2008; Pearl and
Steyvers, 2012). Due to ease of interpretability
of features, we implement a decision tree classifier
with Writeprints features to test our intuition that
stylistic, rather than topical, differences contribute
towards the attribution of synthetic text.

3.2.2 CNN with GloVe embeddings
Pre-trained GloVe embeddings have been shown to
outperform word frequency and count-based em-
beddings for sentence and sequence classification
tasks (Pennington et al., 2014; Le-Hong and Le,
2018). Also, the use of GloVe with CNNs has
shown good results in classification tasks like news-
group identification (Gupta et al., 2018).

3.2.3 Attributors from LM embeddings
Embeddings generated through LMs like BERT,
XLNet, and GPT2 have been shown to capture lan-
guage semantics and context much better than static
embeddings generated through GloVe and other
word count or frequency-based embeddings gener-
ators (Sun et al., 2020; Howard and Ruder, 2018).
Because of their extensive pre-training, these LMs
can capture long-term dependencies and incorpo-
rate contextual and hierarchical relations between
words better than pre-computed static embeddings.

LMs such as XLNet make use of a special [CLS]
token to get pooled output representing a complete
text sequence. We use the final network layer em-
beddings of this token for attribution. Specifically,
we train a softmax output layer that takes as input
XLNet’s [CLS] token embeddings and generates
probabilities for each decision class in the experi-
ment setup. For GPT2 we use a parallel strategy
with pooled output from the complete final layer of
the model for a particular input text. Again this out-
put is connected to a softmax output layer which,
similar to our strategy with XLNet, is trained to
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generate class predictions based on the input em-
beddings.

In addition to using the pre-trained versions of
XLNet and GPT2, we also evaluate attributors built
from fine-tuned versions of these LMs. Note that
here fine-tuning is on training data used to train all
attributors in the corresponding experiment. Fig-
ure 2 illustrates these strategies with XLNet as an
example. The sequence with dashed lines repre-
sents the fine-tuned versions.

4 Results

We present attribution accuracy results in the same
order of scenarios described earlier in Section 2.4

4.1 Attributing pre-trained LMs

Table 3 presents the accuracy results for short (up
to 40 words), medium (between 40 and 100 words),
and long (more than 100 words) synthetic text gen-
erated using pre-trained GPT, GPT2, XLNet, and
BART language models (LMs). Decision tree and
the two XLNet versions achieve accuracy between
82 and, near perfect 98%, across the three types of
texts. In comparison, CNN and GPT2 attributors
lag behind.

While both XLNet attributors score higher than
decision tree, XLNet-FT has the best performance
which when compared with the next best XLNet-
PT ranges from 3% to 7%. Note that apart from
the pre-trained GPT2 attributor, all show marked
improvement in accuracy scores with an increase in
text length. Similar results showing direct propor-
tionality of classifier performance with text length
were also observed by Ippolito et al. (2020) in ex-
periments detecting synthetic text.

Prior work has shown that uni-directional LMs
are more suited for language generation due to gen-
erative pre-training (Lewis et al., 2020) where the
LM learns to predict the next word based on the
previous context. Bidirectional LMs like BERT
and XLNet excel at classification as they make use
of masked modeling and next sentence prediction
tasks to improve understanding of necessary lan-
guage attributes (Devlin et al., 2019; Yang et al.,
2019). Our results are consistent in that XLNet
performance is better than GPT2.

Interestingly, the decision tree with Writeprints
outperforms GPT2 based attributors in all three text

4We measured performance using F1 score as well. How-
ever, since there were no remarkable differences, we only
report accuracy results to be concise.

lengths. Our investigation into specific Writeprints
features emphasized by the decision tree (see ap-
pendix A.1) reveals a greater emphasis on stylistic
features. This gives further credence to our intu-
ition that variations between texts generated by dif-
ferent LMs are more stylistic than topical in nature.
Our results suggest that GPT2 based attributors are
not adept at capturing such stylistic differences.

4.2 Attributing fine-tuned LMs to the parent
pre-trained LMs

Our goal in this scenario is to attribute the synthetic
text generated using a fine-tuned variant (using an
unknown dataset) of a pre-trained LM. Note that
the attributor is unaware of fine-tuning. We limit
fine-tuned text generation in this experiment to just
GPT2 for reasons described in Section 3.

The first row in Table 4 reports the accuracy re-
sults. We note that XLNet-FT again performs the
best with XLNet-PT in the second place. CNN
has the weakest results. Interestingly, Writeprints
continues to do fairly well – once again empha-
sizing the role of style in identifying source LM.
Comparing these results with Table 3 (for medium
length texts), we see all accuracies drop slightly as
expected when the adversary chooses to fine-tune
the LM that is unknown to the attributor.

We run a second variation of the same experi-
ment – one where the attributor has partial knowl-
edge of the adversary’s strategy. Specifically, the
fact that the adversary is using a fine-tuned LM
to generate text is known but the dataset used for
fine-tuning remains unknown. In response, we
pick some dataset (here r/relationships) to add fine-
tuned LM generated texts to our training data. Note
that the adversary uses r/changemyview. The sec-
ond row in Table 4 reports similar results as the first
row. Thus, it seems that this additional knowledge
does not help improve attribution accuracy.

In sum, the accuracy for XLNet-FT across all
experiments thus far is above 90%. This indicates
that even when the adversary fine-tunes the LM for
text generation, the parent pre-trained LM is still
identifiable. This result confirms our intuition that
as fine-tuning is known to leave the majority of
layers unchanged, the text generated retains char-
acteristics of the parent pre-trained LM, making
accurate attribution possible.
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Synthetic Text Length DT
(Writeprints)

CNN
(GloVe)

XLNet-PT XLNet-FT GPT2-
PT

GPT2-
FT

Short (Upto 40 Words) 82 68 85 91 72 74
Medium (40 to 100 words) 86 73 90 96 71 72
Long (Above 100 words) 93 83 95 98 72 72

Table 3: Accuracy percentages for attributing source pre-trained LMs. Datasets contain synthetic texts of different
lengths generated using pre-trained BERT, GPT, GPT2 and XLNet.

Training data
includes

Test data includes DT
(Writeprints)

CNN
(GloVe)

XLNet-
PT

XLNet-
FT

GPT2-
PT

GPT2-
FT

GPT2 (PT) GPT2 (FT-
r/changemyview)

78 64 86 93 70 71

GPT2 (FT-
r/relationships)

GPT2 (FT-
r/changemyview)

77 67 86 91 70 70

Table 4: Accuracy percentages in attributing source pre-trained LM when adversary generates synthetic text using
a fine-tuned LM. In addition to GPT2 variants mentioned in columns 1 and 2, training and testing data also includes
classes representing XLNet, BART, and GPT.

4.3 Attributing LM with different sampling
parameters

Here we consider the scenario where both the at-
tributor and the adversary use the same LM but
they differ in parameter choices when generating
texts. We run this experiment assuming the ad-
versary uses GPT2 fine-tuned on r/changemyview.
The attributor is aware of this but not the sampling
parameters. Selecting parameter values that are
quite different from each other we see from Ta-
ble 5 that there is virtually no performance drop for
XLNet-FT. That is, our best performing attributor
is resilient to these differences. Temperature sam-
pling shows weaker results all around. This is not
a concern as discussed later in this section.

We next explore the parameter differences angle
further to get a sense of what would happen if the
adversary chose a parameter value other than the
ones explored in Table 5. The different values
for k, p, and temperature are as listed in Table 1.
We remind the reader that one uses either top −
k or top − p sampling to control the number of
words under consideration during text generation.
We use top − p sampling as the default strategy.
When varying k or p, the temperature is fixed at
the default value. When varying temperature, p is
kept at the default value.

The results in Table 6 show that it is challenging
to tell apart synthetic texts generated by different
values of k and p. Given their strong similarities
we expect to see results as in Table 5 when the
adversary picks other parameter values. With tem-
perature variations we get accuracy above 80%,

indicating marked differences between texts gen-
erated at different temperatures. However, taking
a closer look at the text reveals a serious problem:
temperature > 1 produces erratic and confusing
text. This problem becomes more acute as the tem-
perature approaches its upper limit. This is consis-
tent with the observation by Holtzman et al. (2020)
showing that temperatures above 1 produce inco-
herent and confusing text. This reduces viability in
a setting where the synthetic text is to be used as a
suitable replacement for organic text.

We conclude from Tables 5 and 6 that our attrib-
utors should be resilient even when the adversary
chooses parameter values for text generation be-
yond the ones explicitly tested here.

4.4 Attributing fine-tuned variants of a
pre-trained LM

Finally, we explore the scenario where the ad-
versary is using different fine-tuned LMs with
the same parent pre-trained LM. The attributor
is aware of this fine-tuning and is attempting to
tell apart these fine-tuned LMs. Table 7 presents
the accuracy results when synthetic text is gener-
ated by fine-tuning GPT2 on 4 different subred-
dits (r/changemyview, r/technology, r/relationships,
r/conspiracy). XLNet-FT again achieved the best
accuracy, however, this time it is less than 60%.
Curiously, CNN which was the least successful in
earlier experiments performed almost identically
to XLNet-FT. GPT2 performed just slightly better
than a random attributor (1/4, i.e., 25%). Overall,
variations between texts generated by different fine-
tuned variants of the same pre-trained LM are not
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Training data
includes

Test data
includes

DT
(Writeprints)

CNN
(GloVe)

XLNet-
PT

XLNet-
FT

GPT2-
PT

GPT2-
FT

GPT2 (k=20) GPT2 (k=160) 76 71 88 95 71 71
GPT2 (p=0.9) GPT2 (p=1.0) 80 70 88 96 70 70
GPT2 (t=0.1) GPT2 (t=1.0) 60 67 70 77 71 72

Table 5: Accuracy percentages for attributing source LM when adversary generates synthetic text using different
sampling parameters. In addition to GPT2 variants mentioned in columns 1 and 2, training and testing data also
includes classes representing XLNet, BART, and GPT.

Attributor k-value p-value Temperature
DT (Writeprints) 53 43 82
CNN (GloVe) 47 26 79
XLNet-PT 42 22 81
XLNet-FT 45 25 86
GPT2-PT 28 17 44
GPT2-FT 28 18 44

Table 6: Accuracy percentages for identifying texts
generated by GPT2 LM fine-tuned on r/changemyview
with varying sampling parameters. Parameter values
tested are as reported in Table 1.

Attributor Accuracy
DT (Writeprints) 52
CNN (GloVe) 56
XLNet-PT 53
XLNet-FT 57
GPT2-PT 29
GPT2-FT 29

Table 7: Accuracy percentage in attributing fine-tuned
GPT2 LMs. Dataset contains texts generated by four
GPT2 LMs fine-tuned on each subreddit in Table 2.

pronounced enough to be leveraged by the attri-
bution techniques we consider. Our preliminary
analysis shows that there is some correlation be-
tween the attributor’s mistakes and the vocabulary
similarity of the corresponding subreddits. How-
ever, further research is needed to probe the causes
of this lackluster performance and devise ways to
improve the attribution of text produced by fine-
tuned LMs.

5 Related Work

We contextualize our work with respect to prior
literature on detection and attribution of organic
and synthetic text.

5.1 Synthetic text detection

There has been a lot of recent interest in develop-
ing ML approaches to distinguish between organic
and synthetic text. GLTR (Giant Language Model

Test Room) leveraged the statistical tendency of
LMs to produce words with higher probability of
occurrence to help users differentiate between syn-
thetic and organic text (Gehrmann et al., 2019).
Grover used a purpose-built LM to train a classi-
fier for synthetic and organic text (Zellers et al.,
2019). Bakhtin et al. (2019) proposed energy based
models for differentiating between synthetic and
organic text. Our work takes this line of work a
step further by trying to attribute synthetic text to
the source LM.

5.2 Synthetic text attribution

Pan et al. (2020) proposed a dynamic embedding
based approach to attribute synthetic text gener-
ated by a pre-trained LM as part of their broader
investigation of sensitive information exposed by
LMs. We significantly build on this work from
both the methodological and application perspec-
tives. Differently from this work, we use stylomet-
ric as well as static and dynamic embeddings. We
also consider more realistic threat models where
the synthetic text is generated by either pre-trained
or fine-tuned LMs and using different sampling
parameters.

5.3 Organic text attribution

There is a rich body of literature on authorship at-
tribution of organic text using stylometric features.
We discuss a few classic papers here. Mosteller
and Wallace (1964) used word frequency analy-
sis for authorship attribution. Abbasi and Chen
(2008) proposed a ML-based approach for author-
ship attribution using an exhaustive stylometric fea-
ture set called Writeprints. While there is impres-
sive progress in stylometric organic text attribution
(e.g., Narayanan et al., 2012; Ruder et al., 2016),
these approaches do not work as effectively for syn-
thetic text attribution. As our evaluation showed,
Writeprints were significantly outperformed by
other approaches for synthetic text attribution. This
is because LMs are trained on large text corpora
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from different authors thus there are no clear-cut
stylometric differences in synthetic text generated
by different LMs.

5.4 Synthetic image attribution

Recent advances in Generative Adversarial Net-
works (GANs) have led to impressive results in
synthetic image generation (Bao et al., 2017; Taig-
man et al., 2017; Ma et al., 2017). For example,
Chen et al. (2020) proposed image models simi-
lar to pre-trained LMs to learn an unsupervised
representation of images for various downstream
tasks. Most related to our work, Yu et al. (2019)
proposed an ML approach to attribute synthetic
images generated by GANs with different archi-
tectures and parameters. At the most basic level,
the problem of synthetic image attribution differs
from synthetic text attribution because images are
smooth and local where words in a text document
may be correlated even if they are far apart (Sharir
et al., 2020). For instance, Yu et al. (2019) showed
that their ML classifier could use only part of the
synthetic image for attribution. In contrast, we ob-
served a large drop in accuracy when we make use
of only part of input synthetic text.

6 Conclusion

In this paper, we presented an ML approach to
attribute authorship of synthetic text to its source
LM. Our results showed that an attributor based on
fine-tuned XLNet embeddings outperformed other
approaches based on stylometric features as well
as static and dynamic embeddings. Our results also
showed there is significant room for improvement
in distinguishing between synthetic text generated
by different fine-tuned variants of an LM. Further
research is also needed for effective attribution of
synthetic text generated by more diverse fine-tuned
LMs in both closed-world and-open world settings.
Finally, future research on synthetic text attribution
should also consider more sophisticated LMs (e.g.,
GPT-3 with 175 billion parameters (Brown et al.,
2020) and Google’s trillion parameter LM (Fedus
et al., 2021)) when they are publicly released.
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A Appendix

A.1 Analysis of importance given by Decision
Tree to Writeprints

Synthetic texts generated by pre-trained LMs are
distinguishable to a high degree. This holds even
when the adversary decides to use a fine-tuned LM
or varies text generation parameters like p-value,
k-value, or temperature. Thus, these texts carry
exploitable model fingerprints.

Most challenging is the ability to tell apart texts
generated by different fine-tuned versions of the
same pre-trained model. XLNet fine-tuned on
the training data yields excellent results; except
for attributing fine-tuned models accuracies are al-
most entirely above 90%. Interestingly, decision
trees fare quite well offering the advantage of inter-
pretability of decisions. Decision Tree based classi-
fier focusing only on stylistic differences achieves
an accuracy of higher than 80% in all three configu-
rations. Investigating the importance given by clas-
sifier to different Writeprints show stylistic features
like spaces, percentage of characters, and special
characters being given the highest importance.

Figure 3 shows a comparison of importance
given by a decision tree based attributor to features
before and after eliminating whitespace as a feature.
Running the experiment again after eliminating the
highest rated feature (frequency of white space)
results in minimal drop in performance (within
a range of 1%- 2%) and shows continued focus
on more stylistic language features as key indi-
cators of differences between these texts. This
confirms our intuition that different pre-trained ver-
sions of language models have different writing

styles which are discernible through text classi-
fication techniques. Moreover, our experiments
showed that fine-tuned LMs retained characteris-
tics from their parent pre-trained LM, allowing an
attributor trained entirely on pre-trained text to suc-
cessfully attribute fine-tuned LM text with above
90% accuracy even in a worst case scenario.

Comparing importance maps from a decision
tree attributor trained on Writeprints from pre-
trained and fine-tuned GPT2 LMs shows interest-
ing results. From figure 4, it is apparent that top
two most important features are common among
pre-trained and fine-tuned variants, with a num-
ber of other similarities in features given relatively
less importance. It shows that there are certain
stylistic characteristics that are passed down from
a pre-trained LM to its fine-tuned variant.

A.2 Details of pre-trained language models
used

In our experiments we have made use of four pub-
licly available pre-trained language models: XL-
Net, BART, GPT, GPT2. Details about those are
given in Table 8. Comparing sizes, XLNet is
trained on largest dataset with over 142 GB of doc-
uments. Although no explicit size is mentioned for
GPT2, it is said to be trained on 10 times more data
than GPT.

https://doi.org/10.1109/ICCV.2019.00765
https://doi.org/10.1109/ICCV.2019.00765
https://doi.org/10.1109/ICCV.2019.00765
https://proceedings.neurips.cc/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11


1822

(a) Before removing whitespace (b) After removing whitespace

Figure 3: Comparison of feature importance with and without whitespace

(a) Importance given by attributor trained on pre-trained text
data to different Writeprints features

(b) Importance given by attributor trained on fine-tuned text
data to different Writeprints features

Figure 4: Comparison of feature importance for pre-trained and fine-tuned variants of GPT2 LM

Language
Model

Dataset Words Size Number of
Documents

OpenAI
GPT

BooksCorpus (Zhu et al., 2015) ∼985M Not
Available

Not Available

OpenAI
GPT2

WebText (Radford et al., 2018) Not Available 40GB ∼8 million
documents

BART WikiText-103 (Merity et al., 2017) ∼103M Words 181MB 28,475 articles
XLNet BookCorpus + English Wikipedia + CommonCrawl +

Giga5 + ClueWeb 2012-B
∼32.8B
subword pieces

142GB Not Available

Table 8: Breakdown of pre-trained LMs used


