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Abstract

Pretrained transformer-based models, such as
BERT and its variants, have become a com-
mon choice to obtain state-of-the-art perfor-
mances in NLP tasks. In the identification
of Adverse Drug Events (ADE) from social
media texts, for example, BERT architectures
rank first in the leaderboard. However, a sys-
tematic comparison between these models has
not yet been done. In this paper, we aim at
shedding light on the differences between their
performance analyzing the results of 12 mod-
els, tested on two standard benchmarks.

SpanBERT and PubMedBERT emerged as
the best models in our evaluation: this re-
sult clearly shows that span-based pretraining
gives a decisive advantage in the precise recog-
nition of ADEs, and that in-domain language
pretraining is particularly useful when the
transformer model is trained just on biomedi-
cal text from scratch.

1 Introduction

The identification of Adverse Drug Events (ADEs)
from text recently attracted a lot of attention in the
NLP community. On the one hand, it represents a
challenge even for the most advanced NLP tech-
nologies, since mentions of ADEs can be found in
different varieties of online text and present uncon-
ventional linguistic features (they may involve spe-
cialized language, or consist of discontinuous spans
of tokens etc.) (Dai, 2018). On the other hand, the
task has an industrial application of primary im-
portance in the field of digital pharmacovigilance
(Sarker et al., 2015; Karimi et al., 2015b).

This raising interest is attested, for example, by
the ACL workshop series on Social Media Health
Mining (SMM4H), in which shared tasks on ADE
detection have been regularly organized since 2016
(Paul et al., 2016; Sarker and Gonzalez-Hernandez,

2017; Weissenbacher et al., 2018, 2019). With
the recent introduction of Transformers architec-
tures and their impressive achievements in NLP
(Vaswani et al., 2017; Devlin et al., 2019), it is not
surprising that these tools have become a common
choice for the researchers working in the area.

The contribution of this paper is a comparison
between different Transformers on ADE detection,
in order to understand which one is the most ap-
propriate for tackling the task. Shared tasks are not
the best scenario for addressing this question, since
the wide range of differences in the architectures
(which could include, for example, ensembles of
Transformers and other types of networks) does
not allow a comparison on the same grounds. In
our view, two key questions deserve a particular
attention in this evaluation. First, whether there
is an advantage in using a model with some form
of in-domain language pretraining, given the wide
availability of Transformers for the biomedical do-
main (Lee et al., 2020; Gu et al., 2020). Second,
whether a model trained to predict coherent spans
of text instead of single words can achieve a better
performance (Joshi et al., 2019), since our goal is
to identify the groups of tokens corresponding to
ADEs as precisely as possible.

Two models that we introduce for the first time in
this task, SpanBERT and PubMedBERT, achieved
the top performance. The former takes advantage
of a span-based pretraining objective, while the
latter shows that in-domain language data are better
used for training the model from scratch, without
any general-domain pretraining.

2 Related Work

2.1 ADE Detection

Automatic extraction of ADE in social media
started receiving more attention in the last few



1741

years, given the increasing number of users that
discuss their drug-related experiences on Twitter
and similar platforms. Studies like Sarker and Gon-
zalez (2015); Nikfarjam et al. (2015); Daniulaityte
et al. (2016) were among the first to propose ma-
chine learning systems for the detection of ADE in
social media texts, using traditional feature engi-
neering and word embeddings-based approaches.

With the introduction of the SMM4H shared
task, methods based on neural networks became
a more and more common choice for tackling the
task (Wu et al., 2018; Nikhil and Mundra, 2018),
and finally, it was the turn of Transformer-based
models such as BERT (Devlin et al., 2019) and
BioBERT (Lee et al., 2020), which are the building
blocks of most of the top performing systems in
the recent competitions (Chen et al., 2019; Mahata
et al., 2019; Miftahutdinov et al., 2019).

At the same time, the task has been indepen-
dently tackled also by researchers in Named Entity
Recognition, since ADE detection represents a clas-
sical case of a challenging task where the entities
can be composed by discontinuous spans of text
(Stanovsky et al., 2017; Dai et al., 2020; Wunnava
et al., 2020).

2.2 Transformers Architectures in NLP

There is little doubt that Transformers (Vaswani
et al., 2017) have been the dominant class of NLP
systems in the last few years. The “golden child” of
this revolution is BERT (Devlin et al., 2019), which
was the first system to apply the bidirectional train-
ing of a Transformer to a language modeling task.
More specifically, BERT is trained with a Masked
Language Modeling objective: random words in
the input sentences are replaced by a [MASK] to-
ken and the model attempts to predict the masked
token based on the surrounding context.

Following BERT’s success, several similar archi-
tectures have been introduced in biomedical NLP,
proposing different forms of in-domain training
or using different corpora (Beltagy et al., 2019;
Alsentzer et al., 2019; Lee et al., 2020; Gu et al.,
2020). Some of them already proved to be efficient
for ADE detection: for example, the top system of
the SMM4H shared task 2019 is based on an en-
semble of BioBERTs (Weissenbacher et al., 2019).

Another potentially interesting addition to the
library of BERTs for ADE detection is SpanBERT
(Joshi et al., 2019). During the training of Span-
BERT, random contiguous spans of tokens are

masked, rather than individual words, forcing the
model to predict the full span from the tokens at its
boundaries. We decided to introduce SpanBERT
in our experiments because longer spans and re-
lations between multiple spans of text are a key
factor in ADE detection, and thus encoding such
information is potentially an advantage.

3 Experimental Settings

3.1 Datasets

The datasets chosen for the experiments are two
widely used benchmarks. They are annotated for
the presence of ADEs at character level: each docu-
ment is accompanied by list of start and end indices
for the ADEs contained in it. We convert these an-
notations using the IOB annotation scheme for the
tokens: B marks the start of a mention, I and O the
tokens inside and outside a mention respectively.

CADEC (Karimi et al., 2015a) contains 1250
posts from the health-related forum “AskaPatient”,
annotated for the presence of ADEs. We use the
splits made publicly available by Dai et al. (2020).

SMM4H is the training dataset for Task 2 of the
SMM4H shared task 2019 (Weissenbacher et al.,
2019). It contains 2276 tweets which mention at
least one drug name, 1300 of which are positive
for the presence of ADEs while the other 976 are
negative samples. The competition includes a blind
test set, but in order to perform a deeper analysis on
the results, we use the training set only. As far as
we know there is no official split for the training set
alone, so we partitioned it into training, validation
and test sets (60:20:20), maintaining the propor-
tions of positive and negative samples. This split
and the code for all the experiments are available
at https://github.com/AilabUdineGit/ADE.

The datasets correspond to different text genres:
the tweets of SMM4H are mostly short messages,
containing informal language, while the texts of
CADEC are longer and structured descriptions. To
verify this point, we used the TEXTSTAT Python
package to extract some statistics from the texts of
the two datasets (see Appendix A).

3.2 Metrics

As evaluation metrics we use the Strict F1 score,
which is commonly adopted for this task (Segura-
Bedmar et al., 2013). It is computed at the entity
level, and assigns a hit only in case of perfect match
between the labels assigned by the model and the
labels in the gold annotation.

https://github.com/AilabUdineGit/ADE
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In CADEC around 10% of mentions are discon-
tinuous (Dai et al., 2020) and it is possible to have
overlaps and intersections of discontinuous spans.
We performed data tidying by merging overlapping
ADE mentions, keeping only the longer span (as it
is customary in the literature) and splitting discon-
tinuous spans in multiple continuous spans.

3.3 Overview of the Models
3.3.1 Pretrained BERT Variants
Apart from the original BERT, we experimented
with SpanBERT, for its peculiar pretraining pro-
cedure which focuses on predicting and encoding
spans instead of single words, and with four BERT
variants with in-domain knowledge, which differ
from each other both for the corpus they were
trained on and for the kind of pretraining.

BERT Standard model, pretrained on general
purpose texts (Wikipedia and BookCorpus).

SpanBERT This model is pretrained using the
same corpus as the original BERT, so it comes
with no in-domain knowledge. But the pretraining
procedure makes its embeddings more appropriate
for NER-like tasks. as it introduces an additional
loss called Span Boundary Objective (SBO), along-
side the traditional Masked Language Modelling
(MLM) used for BERT.
Let us consider a sentence S = [w1, w2, . . . , wk]
and its substring Sm:n = [wm, . . . , wn]. wm−1 and
wn+1 are the boundaries of Sm:n (the words imme-
diately preceding and following it). We mask S by
replacing all the words in Sm:n with the [MASK]
token. SpanBERT reads the masked version of
S and returns an embedding for each word. The
MLM loss measures if it is possible to reconstruct
each original word wi ∈ Sm:n from the correspond-
ing embedding. The SBO loss measures if it is pos-
sible to reconstruct each wi ∈ Sm:n using the em-
beddings of the boundary words wm−1 and wn+1.

BioBERT (Lee et al., 2020), pretrained from a
BERT checkpoint, on PubMed abstracts.
The authors of BioBERT provide different versions
of the model, pretrained on different corpora. We
selected the version which seemed to have the great-
est advantage on this task, according to the results
by Lee et al. (2020). We chose BioBERT v1.1
(+PubMed), which outperformed other BioBERT
v1.0 versions (including the ones trained on full
texts) in NER tasks involving Diseases and Drugs.
Preliminary experiments against BioBERT v.1.0

(+PubMed+PMC) confirmed this behaviour (see
Appendix D).

BioClinicalBERT (Alsentzer et al., 2019), pre-
trained from a BioBERT checkpoint, on clinical
texts from the MIMIC-III database.

SciBERT (Beltagy et al., 2019), pretrained from
scratch, on papers retrieved from Semantic Scholar
(82% of medical domain).

PubMedBERT (Gu et al., 2020), pretrained
from scratch, on PubMed abstracts and full text arti-
cles from PubMed Central. This model was created
to prove that pretraining from scratch on a single
domain produces substantial gains on in-domain
downstream tasks. Gu et al. (2020) compared
it with various other models pretrained on either
general texts, mixed-domain texts or in-domain
texts starting from a general-purpose checkpoint
(e.g. BioBERT), showing that PubMedBERT out-
performs them on several tasks based on medical
language. The vocabulary of PubMedBERT con-
tains more in-domain medical words than any other
model under consideration. However, it should be
kept in mind that ADE detection requires an un-
derstanding of both medical terms and colloquial
language, as both can occur in social media text.

Notice that two in-domain architectures were
pretrained from scratch (SciBERT and PubMed-
BERT), meaning that they have a unique vocab-
ulary tailored on their pretraining corpus, and in-
clude specific embeddings for in-domain words.
BioBERT and BioClinicalBERT were instead pre-
trained starting from a BERT and BioBERT check-
point, respectively. This means that the vocabular-
ies are built from general-domain texts (similarly to
BERT) and the embeddings are initialized likewise.

3.3.2 Simple and CRF Architecture
For all of the BERT variants, we take into account
two versions. The first one simply uses the model
to generate a sequence of embeddings (one for each
sub-word token), which are then passed to a Linear
Layer + Softmax to project them to the output space
(one value for each output label) and turn them into
a probability distribution over the labels.

The second version combines the Transformer-
based model with a Conditional Random Field
(CRF) classifier (Lafferty et al., 2001; Papay et al.,
2020). The outputs generated by the first version
become the input of a CRF module, producing an-
other sequence of subword-level IOB labels. This
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step aims at denoising the output labels produced
by the previous components.

The output labels are calculated for sub-word
tokens, then we aggregate each set of sub-word
labels {`i} into a word label L using the first rule
that applies: (i) if `i = O for all i, then L = O;
(ii) if `i = B for any i, then L = B; (iii) if `i = I
for any i, then L = I. The aggregated output is a
sequence of word-level IOB labels.

3.3.3 Baseline
As a strong baseline, we used the TMRLeiden ar-
chitecture (Dirkson and Verberne, 2019), which
achieved the 2nd best Strict F1-Score in the latest
SMM4H shared task (Weissenbacher et al., 2019)
and is composed of a BiLSTM taking as input a
concatenation of BERT and Flair embeddings (Ak-
bik et al., 2019). We chose this baseline since the
TMRLeiden code is publicly available.

3.4 Implementation details

TMRLeiden was re-implemented starting from its
the original code1 and trained according to the de-
tails in the paper. As for the Transformers, all exper-
iments were performed using the TRANSFORMERS

library (Wolf et al., 2019) (see Appendix C).
Parameter-tuning was done via grid-search, using
different learning rates ([5e−4, 5e−5, 5e−6]) and
dropout rates (from 0.15 to 0.30, increments of
0.05). All the architectures were trained for 50
epochs on the training set. Learning rate, dropout
rate and maximum epoch were chosen evaluating
the models on the validation set.

During evaluation all the models were then
trained using the best hyperparameters on the con-
catenation of the training set and the validation set,
and tested on the test set. This procedure was re-
peated five times with different random seeds, and
finally we averaged the results over the five runs.

4 Evaluation

The results for the two datasets are shown in Ta-
ble 1 (we focus on the F1-score, but Precision and
Recall are reported in Appendix D). For reference,
we reported the scores of the best architecture by
Dai et al. (2020), which is the state-of-the-art sys-
tem on CADEC. At a glance, all systems perform
better on CADEC, whose texts belong to a more
standardized variety of language. SpanBERT and

1https://github.com/AnneDirkson/
SharedTaskSMM4H2019

SMM4H CADEC
Architecture F1 std F1 std
Dai et al. (2020) – – 68.90 –
TMRLeiden 60.70 2.08 65.03 1.14
BERT 54.74 1.40 65.20 0.47
BERT+CRF 59.35 1.23 64.36 0.83
SpanBERT 62.15 2.17 67.18 0.78
SpanBERT+CRF 59.89 2.16 67.59 0.60
PubMedBERT 61.88 0.79 67.16 0.52
PubMedBERT+CRF 59.53 2.07 67.28 0.82
BioBERT 57.83 2.59 65.59 1.10
BioBERT+CRF 58.05 1.45 66.00 0.67
SciBERT 57.75 1.55 65.61 0.54
SciBERT+CRF 58.86 1.55 67.09 0.74
BioClinicalBert 58.03 0.89 64.64 0.53
BioClinicalBert+CRF 59.11 1.99 65.97 0.60

Table 1: F1 scores with standard deviations for all mod-
els (our best performing model is in bold).

PubMedBERT emerge as the top performing mod-
els, with close F1-scores, and in particular, the
SpanBERT models achieve the top score on both
datasets, proving that modeling spans gives an im-
portant advantage for the identification of ADEs.

For both models, the addition of CRF gener-
ally determines a slight improvement on CADEC,
while it is detrimental on SMM4H. On SMM4H,
the F1-scores of BioBERT, SciBERT and Bio-
ClinicalBERT consistently improve over the stan-
dard BERT, but they are outperformed by its CRF-
augmented version, while on CADEC they perform
closely to the standard model. The results suggest
that in-domain knowledge is consistently useful
only when training is done on in-domain text from
scratch, instead of using general domain text first.
SciBERT is also trained from scratch, but on a cor-
pus that is less specific for the biomedical domain
than the PubMedBERT one (Gu et al., 2020).

The models are also being compared with TM-
RLeiden: we can notice that both versions of
SpanBERT and PubMedBERT outperform it on
CADEC (the differences are also statistically sig-
nificant for the McNemar test at p < 0.001), while
only the basic versions of the same models retain
an advantage on it on SMM4H (also in this case,
the difference is significant at p < 0.001).

4.1 Error Analysis

We analyzed the differences between the ADE en-
tities correctly identified by the models and those
that were missed, using the text statistics that we
previously extracted with TEXTSTAT. As it was

https://github.com/AnneDirkson/SharedTaskSMM4H2019
https://github.com/AnneDirkson/SharedTaskSMM4H2019
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1 @hospitalpatient have been on humira 2years

now n get on off chest infections that

sometimes need 2diff pills 2sort out should i

b worried ?

4 i have had no side effects been taking arthrotec a little over a

year, have not noticed any side effects. it does help alot i noticed

that when there are times when i forget to take it i can’t stand or

walk for any lengths of time.

2 had a great few hours on my bike but exercise

drives my olanzapine #munchies . getting fed

up with not being able to fit into summer

wardrobe

5 works just fine. if there are any side effects, they are definitely

not noticeable. what’s with all these older people (70’s)

complaining about the lack of sex drive ? how much of what you

are complaining about is simply related to getting older?

3 this new baccy is just making my cough so

much worse but ahh well need my nicotine

6 what a great store @walmart is: i loss iq points , gained weight

& got addicted to nicotine - all in under 15 min from going in !!

Table 2: Examples of ADEs extracted by PubMedBERT (overlined in blue) and SpanBERT (underlined in red).
Actual ADEs in bold with gray background. The Samples belong to SMM4H (1–3, 6) and CADEC (4–5).

predictable, it turns out that longer ADE spans
are more difficult to identify: for all models, we
extracted the average word length of correct and
missed spans and we compared them with a two-
tailed Mann-Whitney U test, finding that the latter
are significantly longer (Z = -6.176, p < 0.001).
We also extracted the average number of difficult
words in the correct and in the missed spans, de-
fined as words with more than two syllables that
are not included in the TEXTSTAT list of words of
common usage in standard English. We took this
as an approximation of the number of ”technical”
terms in the dataset instances. However, the av-
erage values for correct and missed instances do
not differ (Z = 0.109, p > 0.1), suggesting that
the presence of difficult or technical words in a
given instance does not represent an inherent factor
of difficulty or facilitation. Still, for some of the
models – including SpanBERT, PubMedBERT and
TMRLeiden – this difference reaches a marginal
significance (p < 0.05) exclusively on the SMM4H
dataset, where correctly identified spans have more
difficult words. A possible interpretation is that, as
the tweets’ language is more informal, such words
represent a stronger ADE cue, compared to the
more technical language of the CADEC dataset.

Finally, we performed a qualitative analysis,
comparing the predictions of SpanBERT and Pub-
MedBERT. We selected the samples on which one
of the architectures performed significantly better
than the other one in terms of F1-Score, and ana-
lyzed them manually. Some significant samples can
be found in Table 2. We observed that most of the
samples in which PubMedBERT performed better
than SpanBERT contained medical terms, which
SpanBERT had completely ignored (e.g. Sample

1). The samples in which SpanBERT outperformed
the in-domain model contained instead long ADE
mentions, often associated with informal descrip-
tions (e.g. Samples 2, 3). As regards false positives,
both models make similar errors, which fit into two
broad categories: (1) extracting diseases or symp-
toms of a disease (e.g. Samples 4, 6); (2) not being
able to handle general mentions, hypothetical lan-
guage, negations and similar linguistic constructs
(e.g. Sample 5). While the second kind of error
requires a deeper reflection, the first one might be
addressed by training the model to extract multiple
kinds of entities (e.g. both ADEs and Diseases).

5 Conclusions

We presented a comparison between 12
transformers-based models, with the goal of
“prescribing” the best option to the researchers
working in the field. We also wanted to test
whether the span-based objective of SpanBERT
and in-domain language pretraining were useful
for the task. We can positively answer to the first
question, since SpanBERT turned out to be the
best performing model on both datasets. As for
the in-domain models, PubMedBERT came as
a close second after SpanBERT, suggesting that
pretraining from scratch with no general domain
data is the best strategy, at least for this task.

We have been the first, to our knowledge, to
test these two models in a systematic comparison
on ADE detection, and they delivered promising
results for future research. For the next step, a pos-
sible direction would be to combine the strengths
of their respective representations: the accurate
modeling of text spans on the one side, and deep
biomedical knowledge on the other one.
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A Text statistics for datasets

Some statistics for the texts of the two datasets
have been extracted with the TEXTSTAT Python

package and reported reported in Table A: we ex-
tracted the counts of syllables, lexicon (how many
different word types are being used), sentences and
characters. Difficult words refers to the number of
polysyllabic words with Syllable Count > 2 that
are not included in the list of words of common
usage in English.

Metric CADEC SMM4H
Syllable Count 116 ± 2.7 26 ± 0.2
Lexicon Count 83 ± 1.9 18 ± 0.1
Sentence Count 5 ± 0.1 1 ± 0.0
Character Count 461 ± 10.5 104 ± 0.7
Difficult Words 14 ± 0.3 4 ± 0.1

Table 3: Average metrics per dataset, computed by the
TEXTSTAT Python library.

B Best hyperparameters on the two
datasets

Table 4 reports the best hyperparameters for all ar-
chitectures on SMM4H and CADEC, respectively.

SMM4H CADEC
Architecture lr dropout epoch lr dropout epoch
BERT 5e−5 0.20 4 5e−5 0.25 11
BERT+CRF 5e−5 0.15 6 5e−5 0.15 7
SpanBERT 5e−5 0.25 43 5e−5 0.25 19
SpanBERT+CRF 5e−5 0.15 14 5e−5 0.15 11
PubMedBERT 5e−5 0.25 21 5e−5 0.15 7
PubMedBERT+CRF 5e−5 0.25 13 5e−5 0.25 16
BioBERT 5e−5 0.20 8 5e−5 0.25 12
BioBERT+CRF 5e−5 0.15 6 5e−5 0.20 9
SciBERT 5e−5 0.15 7 5e−5 0.15 6
SciBERT+CRF 5e−5 0.25 13 5e−5 0.25 12
BioClinicalBERT 5e−5 0.25 10 5e−5 0.25 6
BioClinicalBERT+CRF 5e−5 0.25 12 5e−5 0.25 10

Table 4: Best hyperparameters for all Transformer-
based architectures on SMM4H and CADEC.

C General information on the models

Table 5 is a summary of the information about the
version of all Transformer-based models used and
their pretraining methods.

D Detailed metrics of all the models

Table 6 and 7 report as Strict and Partial metrics the
F1-score, Precision and Recall calculated for all
architectures on SMM4H and CADEC respectively.
Results are the average over five runs.

The Partial scores are standard metrics for this
task (Weissenbacher et al., 2019) and take into ac-
count “partial”matches, in which it is sufficient for
a system prediction to partially overlap with the
gold annotation to be considered as a true match.
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Name Version Vocabulary Pretraining Pretraining Corpus
BERT base uncased Wikipedia+BookCorpus from scratch Wikipedia+BookCorpus
SpanBERT base cased Wikipedia+BookCorpus from scratch Wikipedia+BookCorpus
PubMedBERT base uncased abstract+fulltext PubMed from scratch PubMed+PMC
BioBERT base v1.1 (+PubMed) Wikipedia+BookCorpus from BERT PubMed
BioBERT(v1.0) base v1.0 (+PubMed+PMC) Wikipedia+BookCorpus from BERT PubMed+PMC
SciBERT scivocab cased Semantic Scholar from scratch Semantic Scholar
BioClinicalBERT bio+clinical Wikipedia+BookCorpus from BioBERT MIMIC-III

Table 5: Information about the version of all the Transformer-based models used and their pretraining.

Strict Partial
F1 P R Architecture F1 P R

60.70 ± 2.08 68.36 ± 2.41 54.59 ± 1.97 TMRLeiden 66.08 ± 1.79 74.42 ± 2.11 59.43 ± 1.76
54.74 ± 1.40 48.50 ± 1.67 62.84 ± 1.12 BERT 64.53 ± 1.09 57.17 ± 1.52 74.08 ± 0.78
59.35 ± 1.23 54.12 ± 1.19 65.69 ± 1.34 BERT+CRF 68.35 ± 0.64 62.33 ± 0.74 75.66 ± 0.68
62.15 ± 2.17 54.54 ± 3.06 72.31 ± 1.30 SpanBERT 69.38 ± 1.60 60.88 ± 2.74 80.74 ± 1.08
59.89 ± 2.16 54.86 ± 3.10 66.05 ± 1.93 SpanBERT+CRF 68.09 ± 1.51 62.35 ± 2.79 75.10 ± 1.72
61.88 ± 0.79 58.70 ± 0.83 65.45 ± 1.39 PubMedBERT 69.82 ± 0.60 66.23 ± 0.86 73.84 ± 1.26
59.53 ± 2.07 55.29 ± 2.19 64.49 ± 2.27 PubMedBERT+CRF 67.94 ± 1.48 63.10 ± 1.69 73.61 ± 1.84
55.22 ± 1.71 49.85 ± 1.76 61.89 ± 1.78 BioBERT v1.0 64.25 ± 1.09 58.00 ± 1.22 72.02 ± 1.30
57.83 ± 2.59 53.68 ± 3.20 62.72 ± 2.30 BioBERT 66.58 ± 1.34 61.79 ± 2.25 72.23 ± 1.42
58.05 ± 1.45 54.44 ± 2.18 62.22 ± 1.22 BioBERT+CRF 66.30 ± 0.85 62.17 ± 1.83 71.07 ± 1.15
57.75 ± 1.55 53.49 ± 0.97 62.75 ± 2.54 SciBERT 66.49 ± 0.83 61.61 ± 0.61 72.25 ± 1.89
58.86 ± 1.55 52.94 ± 2.27 66.35 ± 1.86 SciBERT+CRF 67.12 ± 0.97 60.36 ± 1.93 75.67 ± 1.99
58.03 ± 0.89 51.63 ± 1.51 66.26 ± 0.46 BioClinicalBERT 66.90 ± 0.57 59.52 ± 1.29 76.39 ± 0.99
59.11 ± 1.99 52.35 ± 2.55 67.92 ± 1.55 BioClinicalBERT+CRF 67.41 ± 1.19 59.69 ± 1.92 77.48 ± 1.40

Table 6: Results on SMM4H, F1-scores, Precision and Recall calculated as Strict and Partial metrics, with standard
deviations for all models.

Strict Partial
F1 P R Architecture F1 P R

65.03 ± 1.14 67.50 ± 1.01 62.75 ± 1.26 TMRLeiden 77.08 ± 0.78 79.99 ± 0.60 74.36 ± 0.97
65.20 ± 0.47 62.86 ± 0.52 67.72 ± 0.70 BERT 77.73 ± 0.28 74.95 ± 0.57 80.74 ± 0.47
64.36 ± 0.83 62.47 ± 0.97 66.36 ± 0.79 BERT+CRF 77.23 ± 0.45 74.97 ± 0.72 79.63 ± 0.41
67.18 ± 0.78 65.84 ± 0.94 68.57 ± 0.78 SpanBERT 79.18 ± 0.61 77.60 ± 0.79 80.82 ± 0.72
67.59 ± 0.60 67.09 ± 0.54 68.10 ± 0.78 SpanBERT+CRF 79.43 ± 0.27 78.84 ± 0.24 80.02 ± 0.60
67.16 ± 0.52 66.60 ± 0.67 67.73 ± 0.57 PubMedBERT 79.13 ± 0.23 78.47 ± 0.51 79.81 ± 0.42
67.28 ± 0.82 66.69 ± 0.99 67.88 ± 0.91 PubMedBERT+CRF 79.12 ± 0.43 78.43 ± 0.72 79.83 ± 0.71
65.54 ± 0.47 64.24 ± 0.48 66.90 ± 0.46 BioBERT v1.0 77.86 ± 0.34 76.32 ± 0.36 79.47 ± 0.33
65.59 ± 1.10 64.86 ± 1.39 66.34 ± 0.85 BioBERT 78.17 ± 0.75 77.30 ± 1.13 79.06 ± 0.48
66.00 ± 0.67 65.52 ± 0.97 66.48 ± 0.63 BioBERT+CRF 78.24 ± 0.43 77.68 ± 0.81 78.82 ± 0.58
65.61 ± 0.54 64.46 ± 0.70 66.80 ± 0.50 SciBERT 78.05 ± 0.19 76.69 ± 0.36 79.47 ± 0.46
67.09 ± 0.74 65.99 ± 0.74 68.23 ± 0.80 SciBERT+CRF 79.01 ± 0.35 77.72 ± 0.36 80.35 ± 0.50
64.64 ± 0.53 61.99 ± 0.51 67.53 ± 0.56 BioClinicalBERT 76.95 ± 0.35 73.80 ± 0.36 80.39 ± 0.37
65.97 ± 0.60 64.23 ± 1.16 67.82 ± 0.60 BioClinicalBERT+CRF 77.98 ± 0.49 75.92 ± 1.26 80.17 ± 0.53

Table 7: Results on CADEC, F1-scores, Precision and Recall calculated as Strict and Partial metrics, with standard
deviations for all models.


