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Abstract

Annotating training data for sequence tagging
of texts is usually very time-consuming. Re-
cent advances in transfer learning for natural
language processing in conjunction with active
learning open the possibility to significantly re-
duce the necessary annotation budget. We are
the first to thoroughly investigate this powerful
combination for the sequence tagging task. We
conduct an extensive empirical study of vari-
ous Bayesian uncertainty estimation methods
and Monte Carlo dropout options for deep pre-
trained models in the active learning frame-
work and find the best combinations for differ-
ent types of models. Besides, we also demon-
strate that to acquire instances during active
learning, a full-size Transformer can be sub-
stituted with a distilled version, which yields
better computational performance and reduces
obstacles for applying deep active learning in
practice.

1 Introduction

In many natural language processing (NLP) tasks,
such as named entity recognition (NER), obtaining
gold standard labels for constructing the training
dataset can be very time and labor-consuming. It
makes the annotation process expensive and lim-
its the application of supervised machine learning
models. This is especially the case in such domains
as biomedical or scientific text processing, where
crowdsourcing is either difficult or prohibitively
expensive. In these domains, highly-qualified ex-
perts are needed to annotate data correctly, which
dramatically increases the annotation cost.

Active Learning (AL) is a technique that can
help to reduce the amount of annotation required

to train a good model by multiple times (Settles
and Craven, 2008; Settles, 2009). Opposite to ex-
haustive and redundant manual annotation of the
entire corpus, AL drives the annotation process to
focus the expensive human expert time only on the
most informative objects, which contributes to a
substantial increase in the model quality.

AL is an iterative process that starts from a small
number of labeled seeding instances. In each iter-
ation, an acquisition model is trained on the cur-
rently annotated dataset and is applied to the large
pool of unannotated objects. The model predic-
tions are used by the AL query strategy to sam-
ple the informative objects, which are then further
demonstrated to the expert annotators. When the
annotators provide labels for these objects, the next
iteration begins. The collected data can be used for
training a final successor model that is used in a
target application.

During AL, acquisition models have to be
trained on very small amounts of the labeled data,
especially during the early iterations. Recently,
this problem has been tackled by transfer learn-
ing with deep pre-trained models: ELMo (Peters
et al., 2018), BERT (Devlin et al., 2019), ELEC-
TRA (Clark et al., 2020), and others. Pre-trained
on a large amount of unlabeled data, they are ca-
pable of demonstrating remarkable performance
when only hundreds or even dozens of labeled train-
ing instances are available. This trait suits the AL
framework but poses the question about the use-
fulness of the biased sampling provided by the AL
query strategies.

In this work, we investigate AL with the afore-
mentioned deep pre-trained models and compare
the results of this combination to the outcome of
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the models that do not take advantage of deep pre-
training. The main contributions of this paper are
the following:

• We are the first to thoroughly investigate deep
pre-trained models in the AL setting for se-
quence tagging of natural language texts on
the widely-used benchmarks in this area.

• We conduct an extensive empirical study
of various AL query strategies, including
Bayesian uncertainty estimation methods with
multiple Monte Carlo (MC) dropout variants
(Gal and Ghahramani, 2016a; Gal et al., 2017).
We find the best combinations of uncertainty
estimates and dropout options for different
types of deep pre-trained models.

• We show that to acquire instances during AL,
a full-size Transformer can be substituted with
a distilled version, which yields better com-
putational performance and reduces obstacles
for applying deep AL in practice.

The remainder paper is structured as follows.
Section 2 covers relevant works on AL for sequence
tagging. In Section 3, we describe the sequence tag-
ging models. Section 4 describes the AL strategies
used in the experiments. In Section 5, we discuss
the experimental setup and present the evaluation
results. Finally, Section 6 concludes the paper.

2 Related Work

AL for sequence tagging with classical machine
learning algorithms and a feature-engineering ap-
proach has a long research history, e.g. (Settles
and Craven, 2008; Settles, 2009; Marcheggiani and
Artières, 2014). More recently, AL in conjunction
with deep learning has received much attention.

In one of the first works on this topic, Shen et al.
(2018) note that practical deep learning models that
can be used in AL should be computational efficient
both for training and inference to reduce the delays
in the annotators’ work. They propose a CNN-
CNN-LSTM architecture with convolutional char-
acter and word encoders and an LSTM tag decoder,
which is a faster alternative to the widely adopted
LSTM-CRF architecture (Lample et al., 2016) with
comparable quality. They also reveal disadvantages
of the standard query strategy – least confident
(LC), and propose a modification, namely Maxi-
mum Normalized Log-Probability (MNLP). Sid-
dhant and Lipton (2018) experiment with Bayesian

uncertainty estimates. They use CNN-CNN-LSTM
and CNN-BiLSTM-CRF (Ma and Hovy, 2016)
networks and two methods for calculating the un-
certainty estimates: Bayes-by-Backprop (Blundell
et al., 2015) and the MC dropout (Gal and Ghahra-
mani, 2016a). The experiments show that the varia-
tion ratio (Freeman, 1965) has substantial improve-
ments over MNLP. In contrast to them, we addition-
ally experiment with the Bayesian active learning
by disagreement (BALD) query strategy proposed
by Houlsby et al. (2011) and perform a comparison
with variation ratio.

There is a series of works that tackle AL with a
trainable policy model that serves as a query strat-
egy. For this purpose, imitation learning is used in
Liu et al. (2018); Vu et al. (2019); Brantley et al.
(2020), while in (Fang et al., 2017), the authors
use deep reinforcement learning. Although the
proposed solutions are shown to outperform other
heuristic algorithms with comparably weak models
(basic CRF or BERT without fine-tuning) in exper-
iments with a small number of AL iterations, they
can be not very practical due to the high compu-
tational costs of collecting training data for policy
models. Other notable works on deep active learn-
ing include (Erdmann et al., 2019), which proposes
an AL algorithm based on a bootstrapping approach
(Jones et al., 1999) and (Lowell et al., 2019), which
concerns the problem of the mismatch between a
model used to construct a training dataset via AL
(acquisition model) and a final model that is trained
on it (successor model).

Deep pre-trained models are evaluated in the
AL setting for NER by Shelmanov et al. (2019).
However, they perform the evaluation only on the
specific biomedical datasets and do not consider
the Bayesian query strategies. Ein-Dor et al. (2020)
conduct an empirical study of AL with pre-trained
BERT but only on the text classification task. Brant-
ley et al. (2020) use pre-trained BERT in experi-
ments with NER, but they do not fine-tune it, which
results in suboptimal performance. In this work,
we try to fill the gap by evaluating deep pre-trained
models: ELMo and various Transformers, in the
AL setting with practical query strategies, includ-
ing Bayesian, and on the widely-used benchmarks
in this area.

3 Sequence Tagging Models

We use a tagger based on the Conditional Random
Field model (Lafferty et al., 2001), two BiLSTM-
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CRF taggers (Lample et al., 2016) with different
word representation models, and taggers based on
state-of-the-art Transformer models.

3.1 Conditional Random Field

As a baseline for comparison, we use a feature-
based linear-chain Conditional Random Field
(CRF) model (Lafferty et al., 2001). It is trained to
maximize the conditional log-likelihood of entire
tag sequences. The inference is performed using
the Viterbi decoding algorithm, which maximizes
the joint probability of tags of all tokens in a se-
quence. The features used for the CRF model are
presented in Appendix B.

3.2 BiLSTM-CRF

This model encodes embedded input tokens via a
bidirectional long short term memory neural net-
work (LSTM) (Hochreiter and Schmidhuber, 1997).
BiLSTM processes sequences in two passes: from
left-to-right and from right-to-left producing a con-
textualized token vector in each pass. These vectors
are concatenated and are used as features in a CRF
layer that performs the final scoring of tags.

We experiment with two versions of the
BiLSTM-CRF model. The first one uses GloVe
(Pennington et al., 2014) word embeddings pre-
trained on English Wikipedia and the 5-th edition
of the Gigaword corpus, and a convolutional char-
acter encoder (Ma and Hovy, 2016), which helps
to deal with out-of-vocabulary words. As in (Chiu
and Nichols, 2016), the model additionally lever-
ages the basic capitalization features, which has
been shown to be useful for achieving good per-
formance with this model. We will refer to it as
CNN-BiLSTM-CRF. We consider this model as
another baseline that does not exploit deep pre-
training. The second version of the BiLSTM-CRF
model uses pre-trained medium-size ELMo (Peters
et al., 2018) to produce contextualized word rep-
resentations. ELMo is a BiLSTM language model
enhanced with a CNN character encoder. This
model does not rely on feature-engineering at all.
We will refer to it as ELMo-BiLSTM-CRF.

3.3 Transformer-based Taggers

We perform AL experiments with state-of-the-art
pre-trained Transformers: BERT (Devlin et al.,
2019), DistilBERT (Sanh et al., 2019), and ELEC-
TRA (Clark et al., 2020). The sequence tagger, in
this case, consists of a Transformer “body” and

a decoding classifier with one linear layer. Un-
like BiLSTM that encodes text sequentially, these
Transformers are designed to process the whole
token sequence in parallel with the help of the
self-attention mechanism (Vaswani et al., 2017).
This mechanism is bi-directional since it encodes
each token on multiple neural network layers tak-
ing into account all other token representations in
a sequence. These models are usually faster than
the recurrent counterparts and show remarkable
performance on many downstream tasks (Li et al.,
2020).

BERT is a masked language model (MLM).
Its main learning objective is to restore randomly
masked tokens, so it can be considered as a variant
of a denoising autoencoder. Although this objec-
tive makes the model to learn many aspects of nat-
ural languages (Tenney et al., 2019; Rogers et al.,
2020), it has multiple drawbacks, including the fact
that training is performed only using a small sub-
set of masked tokens. ELECTRA has almost the
same architecture as BERT but utilizes a novel pre-
training objective, called replaced token detection
(RTD), which is inspired by generative adversarial
networks. In this task, the model has to determine
what tokens in the input are corrupted by a separate
generative model, in particular, a smaller version
of BERT. Therefore, the model has to classify all
tokens in the sequence, which increases training
efficiency compared to BERT, and the RTD task is
usually harder than MLM, which makes the model
learn a better understanding of a language (Clark
et al., 2020).

DistilBERT is a widely-used compact version of
BERT obtained via a distillation procedure (Hinton
et al., 2015). The main advantages of this model are
the smaller memory consumption and the higher
fine-tuning and inference speed achieved by sacri-
ficing the quality. We note that good computational
performance is a must for the practical applicabil-
ity of AL. Delays in the interactions between a
human annotator and an AL system can be expen-
sive. Therefore, although DistilBERT is inferior
compared to other Transformers in terms of qual-
ity, it is a computationally cheaper alternative for
acquiring training instances during AL that could
be used for fine-tuning bigger counterparts. Lowell
et al. (2019) showed that a mismatch between an ac-
quisition model and a successor model (the model
that is trained on the annotated data for the final ap-
plication) could eliminate the benefits of AL. The
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similarity in the architectures and the shared knowl-
edge between the smaller distilled Transformer and
its ancestor potentially can help to alleviate this
problem and deliver an AL solution that is both
effective and practical.

4 Active Learning Query Strategies

We experiment with four query strategies for the
selection of training instances during AL.

Random sampling is the simplest query strategy
possible: we just randomly select instances from
the unlabeled pool for annotation. In this case,
there is no active learning at all.

Uncertainty sampling (Lewis and Gale, 1994)
methods select instances according to some proba-
bilistic criteria, which indicates how uncertain the
model is about the label that was given to the in-
stance. The baseline method is Least Confident
(LC): the instances are sorted in the ascending or-
der of probabilities of the most likely tag sequence.
Let yi be a tag of a token i that can take one class
c out of C values, let xj be a representation of a
token j in an input sequence of length n. Then the
LC score can be formulated as follows:

LC = 1− max
y1,...,yn

P [y1, . . . , yn| {xj}]

This score favors longer sentences since long
sentences usually have a lower probability. Maxi-
mization of probability is equivalent to maximizing
the sum of log-probabilities:

max
y1,...,yn

P [y1, . . . , yn|{xj}]⇔

⇔ max
y1,...,yn

n∑
i

logP [yi|{yj} \ yi, {xj}]

To make LC less biased towards longer sen-
tences, Shen et al. (2018) propose a normalization
of the log-probability sum. They call the method
Maximum Normalized Log-Probability (MNLP).
The MNLP score can be expressed as follows:

MNLP = − max
y1,...,yn

1

n

n∑
i

logP [yi|{yj} \ yi, {xj}]

In our experiments, we use this normalized ver-
sion of the uncertainty estimate since it has been
shown to be slightly better than the classical LC
(Shen et al., 2018), and it is commonly applied in
other works on active learning for NER.

Following Siddhant and Lipton (2018), we
implement extensions for the Transformer-based

and BiLSTM-based sequence taggers applying
the MC dropout technique. Gal and Ghahra-
mani (2016a) showed that applying a dropout
at the prediction time allows us to consider the
model as a Bayesian neural network and calculate
theoretically-grounded approximations of uncer-
tainty estimates by analyzing its multiple stochastic
predictions. Like Shen et al. (2018) and Siddhant
and Lipton (2018) we experiment with variation
ratio (VR) (Freeman, 1965): a fraction of models,
which predictions differ from the majority:

V Ri = 1−
count

(
mode

(
{ymi }Mm

)
, {ymi }Mm

)
M

VR =
1

n

n∑
i

V Ri,

where M is a number of stochastic predictions.
Siddhant and Lipton (2018) and Shen et al.

(2018) refer to this method as BALD. However,
the Bayesian active learning by disagreement
(BALD) proposed by Houlsby et al. (2011) lever-
age mutual information between outputs yi and
model parameters θ trained on a dataset D:

BALDi = H(yi|xi,D)−Eθ∼p(θ|D) [H(yi|xi, θ)]

Let pcmi be a probability of a tag c for a token i
that is predicted by a m-th stochastic pass of a
model with the MC dropout. Then the BALD score
can be approximated according to the following
expression (Gal et al., 2017):

BALDi ≈

−
C∑
c

(
1

M

M∑
m

pcmi

)
log

(
1

M

M∑
m

pcmi

)

+
1

M

C,M∑
c,m

pcmi log pcmi

BALD ≈ 1

n

n∑
i

BALDi

Although BALD can be considered similar to
VR, it potentially can give better uncertainty esti-
mates than VR since it leverages the whole prob-
ability distributions produced by the model. How-
ever, this method has not been tested in the previous
works on active learning for sequence tagging.

For Transformer models, we have two variants
of the Monte Carlo dropout: the MC dropout on the
last layer before the classification layer (MC last),
and on all layers (MC all). We note that calculating
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uncertainty estimates in the case of MC all requires
multiple stochastic passes, and in each of them, we
have to perform inference of the whole Transformer
model. However, if we replace the dropout only
in the classifier, multiple recalculations are needed
only for the classifier, while it is enough to perform
the inference of the massive Transformer “body”
only once. Therefore, in this case, the overhead
of calculating the Bayesian uncertainty estimates
can be less than 1% (in the case of 10 stochastic
passes for ELECTRA according to the number of
parameters) compared to deterministic strategies
like MNLP.

The BiLSTM-CRF model has two types of
dropout: the word dropout that randomly drops
entire words after the embedding layer and the
locked dropout (Gal and Ghahramani, 2016b) that
drops the same neurons in the embedding space of
a recurrent layer for a whole sequence. Therefore,
for the BiLSTM-CRF taggers, we have three op-
tions: replacing the locked dropout (MC locked),
replacing the word dropout (MC word), and replac-
ing both of them (MC all). We should note that
obtaining Bayesian uncertainty estimates does not
require the recalculation of word embeddings (in
our case, ELMo).

5 Experiments and Results

5.1 Experimental Setup

We experiment with two widely-used datasets for
evaluation of sequence tagging models and AL
query strategies: English CoNLL-2003 (Sang and
Meulder, 2003) and English OntoNotes 5.0 (Prad-
han et al., 2013). The corpora statistics are pre-
sented in Appendix A. In the experiments, we use
the “native” tag schemes: IOB1 for CoNLL-2003
and IOB2 for OntoNotes 5.0.

Each experiment is an emulation of the AL cy-
cle: selected instances are not presented to experts
for annotation but are labeled automatically accord-
ing to the gold standard. Each experiment is per-
formed for each AL query strategy and is repeated
five times for CoNLL-2003 and three times for
OntoNotes to report the standard deviation. A ran-
dom 2% subset in tokens of the whole training set
is chosen for seeding, and instances with 2% of
tokens in total are selected for annotation on each
iteration. Overall, 24 AL iterations are made, so
in the final iteration, half of the training dataset
(in tokens) is labeled. We do not use validation
sets provided in the corpora but keep 25% of the

MODEL CONLL-2003 ONTONOTES

CRF 78.2 ± NA 79.8 ± NA
CNN-BILSTM-CRF 88.3 ± 0.2 82.9 ± 0.3
ELMO-BILSTM-CRF 91.2 ± 0.2 87.2 ± 0.2
DISTILBERT 89.8 ± 0.2 87.3 ± 0.1
BERT 91.1 ± 0.2 88.2 ± 0.2
ELECTRA 91.5 ± 0.2 87.6 ± 0.2

Table 1: Performance of models built on the entire train-
ing datasets without active learning

labeled corpus as the development set and train
models from scratch on the rest. For OntoNotes,
the AL query strategy is applied to only the 50%
subsample of the unlabeled dataset. This helps
to reduce the duration of the inference phase. In
preliminary experiments, we note that it does not
seriously affect the AL performance, but the further
reduction of the subsample size has a significant
negative impact.

Details of models and training procedures are
presented in Appendix C. We conduct AL exper-
iments with the pre-selected model and training
hyperparameters. Tuning hyperparameters of ac-
quisition models during AL would drastically in-
crease the duration of an AL iteration, which makes
AL impractical. The hyperparameter optimization
is reasonable for successor models. However, in
preliminary AL experiments, tuning hyperparam-
eters of successor models on the development set
appeared to demonstrate an insignificant difference
in the performance compared to using pre-selected
hyperparameters that are fixed for all AL iterations.
Therefore, since tuning hyperparameters for train-
ing a successor model on each AL iteration dras-
tically increases the amount of computation, we
fix them to the values pre-selected for experiments
without AL.

The evaluation is performed using the span-
based F1-score (Sang and Meulder, 2003). For
query strategies based on the MC dropout, we make
ten stochastic predictions.

5.2 Results and Discussion

5.2.1 Training on Entire Datasets
We evaluate the performance of models trained on
75% of the available training corpus while keeping
the rest 25% as the development set similarly to
the experiments with AL. From Table 1, we can
find that for both OntoNotes and CoNLL-2003,
the model performance pattern is almost the same.
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The comparison of MNLP and random sampling query strategies for Transformers.

Figure 1: The comparison of MNLP and random query strategies

CRF, as the baseline model, has the lowest F1 score.
Sequence taggers based on deep pre-trained mod-
els achieve substantially higher results compared
to the classical CNN-BiLSTM-CRF model and
CRF. BERT and ELECTRA significantly outper-
form ELMo-BiLSTM-CRF on OntoNotes, while
on CoNLL-2003, all models have comparable
scores. DistilBERT is behind larger Transform-
ers. It also has a lower performance than ELMo-
BiLSTM-CRF on CoNLL-2003 but similar scores
on the OntoNotes dataset. We should note that our
goal was not to show the state-of-the-art perfor-
mance on each dataset but to determine reasonable
hyperparameters and reference scores for experi-
ments with AL.

5.2.2 Active Learning
The main results of experiments with AL are pre-
sented in Figures 1–3. AL shows significant im-
provements over the random sampling baseline

for all models and on both datasets. Performance
gains are bigger for simpler models like CRF or
CNN-BiLSTM-CRF without deep pre-training and
for the more complex OntoNotes dataset. How-
ever, we see that both ELMo-BiLSTM-CRF and
Transformers benefit from a biased sampling of AL
query strategies, which magnifies their ability to be
trained on extremely small amount of labeled data.
For example, to get 99% of the score achieved with
training on the entire CoNLL-2003 dataset, only
20% of the annotated data is required for the ELEC-
TRA tagger accompanied with the best AL strategy.
For OntoNotes and BERT, only 16% of the corpus
is required. Random sampling requires more than
44% and 46% of annotated data for CoNLL-2003
and OntoNotes correspondingly.

MNLP strategy. For the CoNLL-2003 corpus,
the best performance in AL with the MNLP query
strategy is achieved by the ELECTRA model. It
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Figure 2: The comparison of the best query strategies and models overall

shows significantly better results in the beginning
compared to BERT (see Figure 1c). ELECTRA
also slightly outperforms the ELMo-BiLSTM-CRF
tagger in the beginning and is on par with it on
the rest of the AL curve (see Figure 2a). The
CNN-BilSTM-CRF model is always better than
the baseline CRF but worse than the models that
take advantage of deep pre-training (see Figure 1a).
DistilBERT appeared to be the weakest model in
the experiments on the CoNLL-2003 dataset. With
random sampling, it is on par with the baseline
CNN-BiLSTM-CRF model on most iterations, but
with the MNLP strategy, DistilBERT significantly
falls behind CNN-BiLSTM-CRF.

Although BERT is slightly worse than the
ELECTRA and ELMo-BiLSTM-CRF taggers in
the experiments on the CoNLL-2003 corpus, for
OntoNotes, BERT has a significant advantage over
them up to 2.3 % of the F1 score in the AL set-
ting on early iterations. The ELMo-BiLSTM-CRF
tagger falls behind the main Transformers on the
OntoNotes corpus. This might be because the
BiLSTM-based tagger is underfitted to the bigger
corpus with only 30 training epochs. Likewise,
the baseline CNN-BiLSTM-CRF model without
deep pre-training significantly falls behind Distil-
BERT on this corpus for MNLP and random query
strategies.

Bayesian active learning. Bayesian uncertainty
estimates based on the MC dropout perform com-
parably with the deterministic MNLP strategy for
Transformer-based and BiLSTM-CRF-based tag-
gers (see Figure 2 and Tables 5, 6 in Appendix D).
We consider that Bayesian uncertainty estimates do
not outperform the deterministic uncertainty esti-

mates because the performance of the latter is very
close to the maximum that can be achieved with
the given amount of data.

We compare the performance of Bayesian AL
strategies, when different dropout layers are re-
placed with the MC dropout. For ELMo-BiLSTM-
CRF, we compare three options: replacing the
dropout that follows word embeddings (embed-
dings acquired from ELMo), locked dropout in the
recurrent layer, and both. Replacing the dropout
that follows the embedding layer degrades the per-
formance of AL significantly, especially for BALD.
Replacing both yields the same performance as re-
placing only the locked dropout. We consider that
the latter option is the best for AL since it requires
fewer changes to the architecture. Overall, for both
datasets, variation ratio has a slight advantage over
the BALD strategy for the ELMo-BiLSTM-CRF
model for all MC dropout options.

For Transformers, we compare two options: re-
placing the dropout only on the last classification
layer and all dropouts in the model. When the vari-
ation ratio strategy is used, replacing only the last
dropout layer with the MC dropout degrades the
performance compared to MNLP, while replacing
all dropout layers shows comparable results with
it. However, for the BALD strategy, we see the
inverse situation: replacing the last dropout layer
leads to the significantly better performance than
replacing all layers. This pattern can be noted for
both ELECTRA and DistilBERT on the CoNLL-
2003 corpus and for both BERT and DistilBERT
on the OntoNontes corpus. Therefore, for Trans-
formers, BALD with the MC dropout on the last
layer is the best Bayesian query strategy since it
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Figure 3: AL experiments on the CoNLL-2003 dataset, in which a successor model does not match an acquisition
model.

Table 2: Duration of active learning iteration phases
(seconds). The presented values correspond to the 5-th
iteration of AL on the CoNLL-2003 dataset with the
MNLP query strategy. The duration is averaged over
three runs.

MODEL
ACQ. MODEL

TRAINING
QUERYING

INST. TOTAL

CNN-BILSTM-CRF 1052 68 1120
ELMO-BILSTM-CRF 339 100 439
ELECTRA 100 50 150
DISTILBERT 61 27 88

provides both good quality and low computational
overhead.

Duration of AL iterations. The valuable ben-
efit of deep pre-trained models is also their high
inference and training speed, which helps to sig-
nificantly reduce the duration of an AL iteration

and makes it feasible to implement text annotation
tools empowered with interactive deep active learn-
ing. We measure the duration of the acquisition
model training phase and the duration of the in-
stance querying phase, which includes model infer-
ence on the whole unlabeled dataset (see Table 2).
The experiments were conducted using the Nvidia
V100 GPU and Xeon E5-2698 CPU.

According to obtained results, the large ELEC-
TRA model can be trained more than ten times
faster than the basic CNN-BiLSTM-CRF model
because of a hardware-optimized architecture, a
smaller number of the necessary training epochs,
and the absence of the validation on the develop-
ment set. ELECTRA also helps to reduce the dura-
tion of the query selection by more than 26%. The
lightweight DistilBERT model is expectedly even
faster. We also should note that using BiLSTM-
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CRF with the pre-trained contextualized word rep-
resentation model ELMo also helps to make the
duration of AL iterations shorter compared to CNN-
BiLSTM-CRF due to no need for training of the
CNN word representation subnetwork (ELMo usu-
ally is not fine-tuned) and caching of the forward
passes of ELMo during training across different
epochs.

Mismatch between a successor model and an
acquisition model. Since AL creates substantial
computational overhead caused by training and in-
ference of an acquisition model, for practical us-
age, it is reasonable to keep an acquisition model
as lightweight as possible, while retaining the suc-
cessor model complex and full-fledged. However,
Lowell et al. (2019) demonstrate that the mismatch
between an acquisition model and a successor
model can diminish the benefits of applying the AL.
They show that using AL can even harm the perfor-
mance of the successor model compared to random
sampling. We investigate the situation when an ac-
quisition model does not match a successor model.
Figure 3 shows the results of BERT, DistilBERT,
and ELECTRA in this setting.

From Figures 3a and 3b, we can find that, when
DistilBERT is used as an acquisition model for
ELECTRA and vice versa, improvements achieved
due to AL over the random sampling baseline are
substantially lower compared to the “native” acqui-
sition model. The same negative effect can be seen
due to a mismatch between ELECTRA and BERT
models in Figure 4 in Appendix E. These results
support the findings presented in (Lowell et al.,
2019). However, in our case, AL still gives notable
improvements over the random sampling baseline.
From Figure 3d, we can see that using BERT as
an acquisition model for DistilBERT results only
in a slight reduction of performance compared to
using the “native” acquisition model. Moreover, in
a reversed experiment, when DistilBERT is used
as an acquisition model (see Figure 3c), there is
no performance drop in AL at all. Such results for
BERT-DistilBERT can be explained by the relation-
ship between the distilled model and its ancestor
resulting in similar uncertainty estimates for unla-
beled instances in the annotation pool. This finding
reveals the possibility of replacing a big acquisition
model such as BERT with a distilled version that
is faster and requires much less amount of mem-
ory. This can help to alleviate practical obstacles
of deploying AL in real-world scenarios.

6 Conclusion

In this work, we investigated the combination of
AL with sequence taggers that take advantage of
deep pre-trained models. In the AL setting, these
sequence taggers substantially outperform the mod-
els that do not use deep pre-training. We show
that AL and transfer learning is a very powerful
combination that can help to produce remarkably
performing models with just a small fraction of
the annotated data. For the CoNLL-2003 corpus,
the combination of the best performing pre-trained
model and AL strategy achieves 99% of the score
that can be obtained with training on the full cor-
pus, while using only 20% of the annotated data.
For the OntoNotes corpus, one needs just 16%.

We performed a large empirical study of AL
query strategies based on the Monte Carlo dropout
in conjunction with deep pre-trained models and
are the first to apply Bayesian active learning by
disagreement to sequence tagging tasks. Bayesian
active learning by disagreement achieves better
results than the variation ratio for Transformers.
However, we find that the variation ratio is slightly
better for the ELMo-BiLSTM-CRF model. It is
reasonable to use both MC dropout-based query
strategies when only the last dropout layer works in
a stochastic mode during the inference. This makes
this type of query strategies suitable for practical
usage due to little computational overhead. Finally,
we demonstrate that it is possible to reduce the com-
putational overhead of AL with deep pre-trained
models by using a smaller distilled version of a
Transformer model for acquiring instances.

In the future work, we are seeking to extend the
empirical investigation of deep pre-trained models
in active learning to query strategies that aim at
better handling the batch selection of instances for
annotation.
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2020. Active imitation learning with noisy guid-
ance. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 2093–2105, Online. Association for Com-
putational Linguistics.

Jason PC Chiu and Eric Nichols. 2016. Named en-
tity recognition with bidirectional LSTM-CNNs.
Transactions of the Association for Computa-
tional Linguistics, 4:357–370.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather
than generators. In 8th International Conference
on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota. Association for Computational
Linguistics.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal
Shnarch, Lena Dankin, Leshem Choshen, Ma-
rina Danilevsky, Ranit Aharonov, Yoav Katz,
and Noam Slonim. 2020. Active Learning for
BERT: An Empirical Study. In Proceedings of
the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages
7949–7962, Online. Association for Computa-
tional Linguistics.

Alexander Erdmann, David Joseph Wrisley, Ben-
jamin Allen, Christopher Brown, Sophie Cohen-
Bodénès, Micha Elsner, Yukun Feng, Brian
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A Dataset Characteristics

Tables 3 and 4 present the characteristics of the
datasets used in experiments.

Table 3: Characteristics of the OntoNotes 5.0 corpus
(without the PT section)

ENG.TRAIN ENG.TEST

# OF TOKENS 1,088,503 152,728
# OF SENTENCES 59,924 8,262

ENTITY TYPES:

PERSON 15,429 1,988
GPE 15,405 2,240
ORG 12,820 1,795
DATE 10,922 1,602
CARDINAL 7,367 935
NORP 6,870 841
MONEY 2,434 314
PERCENT 1,763 349
ORDINAL 1,640 195
LOC 1,514 179
TIME 1,233 212
WORK OF ART 974 166
FAC 860 135
EVENT 748 63
QUANTITY 657 105
PRODUCT 606 76
LANGUAGE 304 22
LAW 282 40

TOTAL ENTITIES: 81,828 11,257

Table 4: Characteristics of the CoNLL-2003 corpus

ENG.TRAIN ENG.TESTB

# OF TOKENS 203,621 46,435
# OF SENTENCES 14,041 3,453

ENTITY TYPES:

LOC 7,140 1,668
PER 6,600 1,617
ORG 6,321 1,661
MISC 3,438 702

TOTAL ENTITIES: 23,499 5,648

B Features Used by the CRF Model

1. A lowercased word form.
2. Trigram and bigram suffixes of words.
3. Capitalization features.
4. An indicator that shows whether a word is a

digit.
5. A part-of-speech tag of a word with specific

info (plurality, verb tense, etc.)
6. A generalized part-of-speech.

7. An indicator whether a word is at the begin-
ning or ending of a sentence.

8. The aforementioned characteristics for the
next word and previous word except suffixes.

C Model and Training Details

C.1 CRF
We set CRF L1 and L2 regularization terms equal
to 0.1, and limit the number of iterations by 100.

C.2 BiLSTM-CRF Taggers
We implement the BiLSTM-CRF sequence tagger
on the basis of the Flair package1 (Akbik et al.,
2018). We use the same parameters for both types
of BiLSTM-CRF models. The recurrent network
has one layer with 128 neurons. During training,
we anneal the learning rate by half, when the per-
formance of the model stops improving on the de-
velopment set for 3 epochs. After annealing, we
restore the model from the epoch with the best val-
idation score. The starting learning rate is 0.1. The
maximal number of epochs is 30, and the batch
size is 32. For optimization, we use the standard
SGD algorithm.

C.3 Transformer-based Taggers
The implementation of Trasnformer-based
taggers is based on the Hugging Face
Transformers (Wolf et al., 2019)2 library. We
use the following pre-trained versions of BERT,
ELECTRA, and DistilBERT accordingly: ‘bert-
base-cased’, ‘google/electra-base-discriminator’,
and ‘distilbert-base-cased’. The corrected version
of Adam (AdamW from the Transformers
library) is used for optimization with the base
learning rate of 5e-5. The linear decay of the
learning rate is applied following the (Devlin et al.,
2019). The number of epochs is 4 and the batch
size is 16. As in (Shen et al., 2018), we see that
it is critical to adjust the batch size on early AL
iterations, when only small amount of labeled data
is available. We reduce the batch size to keep the
number of iterations per epoch over 50, but limit
the minimal batch size to 4.

1https://github.com/flairNLP/flair
2https://huggingface.co/transformers/

https://github.com/flairNLP/flair
https://huggingface.co/transformers/
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D Comparison of Various MC Dropout Options

Table 5: Results of AL with various MC dropout options on the CoNLL-2003 dataset

1 5 10 15 20 24

ELMo-BiLSTM-CRF MNLP 84.1 ± 1.0 89.5 ± 0.2 90.7 ± 0.2 91.1 ± 0.1 91.1 ± 0.1 91.2 ± 0.1
Random 82.5 ± 0.5 86.8 ± 0.4 88.7 ± 0.4 89.4 ± 0.2 90.1 ± 0.2 90.3 ± 0.2
VR(MC word) 83.3 ± 1.0 89.4 ± 0.1 90.5 ± 0.1 90.8 ± 0.3 91.0 ± 0.2 91.1 ± 0.1
VR(MC all) 84.7 ± 0.7 89.7 ± 0.2 90.7 ± 0.1 90.9 ± 0.1 90.9 ± 0.1 91.2 ± 0.2
VR(MC locked) 84.4 ± 1.0 89.8 ± 0.2 90.6 ± 0.2 91.0 ± 0.3 91.1 ± 0.2 91.2 ± 0.2
BALD(MC word) 83.5 ± 1.0 88.8 ± 0.5 90.3 ± 0.2 90.5 ± 0.2 90.9 ± 0.2 91.1 ± 0.2
BALD(MC locked) 84.3 ± 0.4 89.5 ± 0.4 90.5 ± 0.0 90.8 ± 0.1 91.1 ± 0.1 91.3 ± 0.1
BALD(MC all) 84.2 ± 0.7 89.6 ± 0.2 90.5 ± 0.2 90.7 ± 0.1 91.1 ± 0.1 91.1 ± 0.1

DistilBERT MNLP 76.2 ± 2.0 85.9 ± 0.6 88.0 ± 0.2 88.3 ± 0.2 88.9 ± 0.3 89.2 ± 0.1
Random 76.3 ± 0.6 82.8 ± 1.1 86.0 ± 0.3 87.0 ± 0.2 87.7 ± 0.2 88.2 ± 0.5
VR (MC last) 78.0 ± 0.2 85.3 ± 0.2 87.7 ± 0.5 88.1 ± 0.4 88.6 ± 0.5 89.0 ± 0.3
VR (MC all) 78.3 ± 1.4 86.3 ± 0.6 88.3 ± 0.1 88.8 ± 0.3 88.8 ± 0.3 89.0 ± 0.2
BALD (MC last) 78.0 ± 0.9 86.0 ± 0.2 87.7 ± 0.3 88.3 ± 0.3 89.1 ± 0.0 89.1 ± 0.1
BALD (MC all) 77.3 ± 1.0 85.6 ± 0.4 87.9 ± 0.1 88.6 ± 0.3 89.0 ± 0.1 89.0 ± 0.1

ELECTRA MNLP 85.0 ± 0.8 89.6 ± 0.1 90.6 ± 0.1 90.7 ± 0.2 91.0 ± 0.2 91.0 ± 0.2
Random 83.7 ± 0.8 87.6 ± 0.6 89.4 ± 0.4 89.9 ± 0.3 90.4 ± 0.2 90.5 ± 0.2
VR (MC last) 85.9 ± 0.7 88.7 ± 0.2 90.3 ± 0.2 90.6 ± 0.5 91.0 ± 0.3 91.0 ± 0.1
VR (MC all) 84.3 ± 1.0 89.8 ± 0.2 90.4 ± 0.3 90.9 ± 0.2 91.0 ± 0.1 91.2 ± 0.3
BALD (MC last) 85.6 ± 0.5 90.4 ± 0.2 90.5 ± 0.2 90.6 ± 0.4 90.9 ± 0.2 91.4 ± 0.2
BALD (MC all) 84.0 ± 0.9 89.5 ± 0.4 90.6 ± 0.2 90.7 ± 0.3 91.1 ± 0.2 90.8 ± 0.3

Table 6: Results of AL with various MC dropout options on the OntoNotes 5.0 dataset

Model Query strat. 1 5 10 15 20 24

ELMo-BiLSTM-CRF MNLP 79.5 ± 0.1 85.6 ± 0.2 87.4 ± 0.2 88.1 ± 0.1 88.4 ± 0.1 88.5 ± 0.1
Random 75.1 ± 1.2 81.5 ± 0.2 84.6 ± 0.2 86.0 ± 0.2 86.9 ± 0.2 87.3 ± 0.2
VR(MC word) 79.4 ± 0.6 85.1 ± 0.3 87.0 ± 0.1 87.7 ± 0.1 88.0 ± 0.2 88.2 ± 0.2
VR(MC all) 79.6 ± 1.0 85.6 ± 0.1 87.4 ± 0.2 88.0 ± 0.3 88.3 ± 0.1 88.4 ± 0.1
VR(MC locked) 79.8 ± 0.5 85.6 ± 0.1 87.4 ± 0.1 88.1 ± 0.2 88.4 ± 0.1 88.5 ± 0.2
BALD(MC word) 78.6 ± 0.8 84.4 ± 0.3 86.3 ± 0.4 87.4 ± 0.3 87.9 ± 0.2 88.2 ± 0.0
BALD(MC locked) 78.8 ± 1.5 85.1 ± 0.5 87.0 ± 0.3 87.9 ± 0.2 88.2 ± 0.2 88.4 ± 0.1
BALD(MC all) 78.9 ± 1.3 85.0 ± 0.5 87.0 ± 0.6 87.9 ± 0.3 88.1 ± 0.2 88.3 ± 0.2

DistilBERT MNLP 78.3 ± 0.5 84.8 ± 0.4 86.2 ± 0.2 86.9 ± 0.2 87.0 ± 0.2 87.2 ± 0.1
Random 75.1 ± 0.9 82.5 ± 0.2 84.2 ± 0.3 85.4 ± 0.2 86.0 ± 0.2 86.1 ± 0.2
VR (MC last) 77.8 ± 0.3 84.4 ± 0.3 85.8 ± 0.0 86.6 ± 0.3 87.0 ± 0.3 87.0 ± 0.3
VR (MC all) 78.5 ± 0.2 84.6 ± 0.3 86.1 ± 0.0 86.7 ± 0.2 87.2 ± 0.1 87.2 ± 0.1
BALD (MC last) 78.3 ± 0.3 84.9 ± 0.1 86.3 ± 0.0 86.9 ± 0.0 87.1 ± 0.2 87.0 ± 0.1
BALD (MC all) 78.3 ± 0.1 84.8 ± 0.1 86.4 ± 0.2 87.2 ± 0.1 87.1 ± 0.1 87.2 ± 0.2

BERT MNLP 81.8 ± 0.2 86.7 ± 0.1 87.7 ± 0.1 88.1 ± 0.2 88.3 ± 0.2 88.3 ± 0.2
Random 78.7 ± 0.8 84.6 ± 0.1 86.3 ± 0.3 86.6 ± 0.3 87.2 ± 0.2 87.4 ± 0.1
VR (MC last) 81.6 ± 0.8 86.4 ± 0.3 87.4 ± 0.2 87.7 ± 0.2 88.0 ± 0.4 88.1 ± 0.1
VR (MC all) 82.2 ± 0.5 86.8 ± 0.3 87.7 ± 0.2 88.0 ± 0.2 88.5 ± 0.2 88.5 ± 0.2
BALD (MC last) 81.7 ± 0.5 86.6 ± 0.3 87.7 ± 0.2 88.3 ± 0.2 88.4 ± 0.1 88.4 ± 0.2
BALD (MC all) 82.3 ± 0.7 86.7 ± 0.0 87.8 ± 0.2 88.3 ± 0.2 88.4 ± 0.1 88.6 ± 0.3
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E Experiments with a Mismatch between a Successor Model and an Acquisition Model
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Figure 4: AL experiments on the CoNLL-2003 dataset, in which a successor model does not match an acquisition
model (for BERT and ELECTRA).


