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Abstract

We present WiC-TSV, a new multi-domain
evaluation benchmark for Word Sense Disam-
biguation. More specifically, we introduce
a framework for Target Sense Verification of
Words in Context which grounds its unique-
ness in the formulation as binary classification
task thus being independent of external sense
inventories, and the coverage of various do-
mains. This makes the dataset highly flexi-
ble for the evaluation of a diverse set of mod-
els and systems in and across domains. WiC-
TSV provides three different evaluation set-
tings, depending on the input signals provided
to the model. We set baseline performance
on the dataset using state-of-the-art language
models. Experimental results show that even
though these models can perform decently on
the task, there remains a gap between machine
and human performance, especially in out-
of-domain settings. WiC-TSV data is avail-
able at https://competitions.codalab.
org/competitions/23683

1 Introduction

Word Sense Disambiguation (WSD) is a long-
standing task in Natural Language Processing and
Artificial Intelligence. While progress has been
made in recent years, mainly thanks to the surge of
transformer-based language models such as BERT
(Loureiro and Jorge, 2019; Vial et al., 2019; Huang
et al., 2019), the evaluation of WSD models has
been limited to a set of (mostly SemEval-based)
standard WSD datasets (Raganato et al., 2017).
These datasets usually come in one of the two
forms: lexical sample, in which a target word
is placed in various contexts, triggering different
senses, and all-words, in which all the content
words in a given text are to be disambiguated. Both
settings, however, come with a major restriction:
word senses in the datasets are linked to exter-
nal sense inventories such as WordNet (Fellbaum,

1998). Therefore, existing benchmarks are limited
to only those WSD systems in which sense dis-
tinctions are defined according to an underlying
sense inventory. This not only gives restrictions
to the model’s flexibility, but also enforces the as-
sumption of the availability of complete data. How-
ever, as general sense inventories are complex to
maintain they often lag behind in being up-to-date1,
yielding to the absence of novel terms and term us-
ages. Furthermore, the coverage of domain-specific
terms and named entities in general sense invento-
ries is quite limited, while domain-specific sense
inventories are rare and in most cases incomplete.

As a motivating example, let us assume Tech-
nology as the target domain and the collection of
information on the current technology landscape as
a goal. Therefore, the following context needs to
be disambiguated in order to evaluate its relevance:

From 1970 to 2007, Apple’s chief exec-
utive was former Beatles road manager
Neil Aspinall.

Even when incorporating a general sense inven-
tory (which would include senses for the fruit and
the tree) and a technology-specific sense inventory
(which would include the sense for Apple Inc. the
technology company), the actual target sense of this
context (i.e., Apple Corps Limited, a multimedia
corporation founded by the Beatles) may still be
missing, which makes the annotation of the correct
sense impossible. For these reasons, the current
WSD task formulation and existing benchmarks
are not fully able to evaluate the suitability of dis-
ambiguation systems in realistic domain-specific
and/or enterprise settings.

In this paper, we try to fill this gap by proposing
a re-formulation of the existing WSD task as well
as a new benchmark for evaluating WSD systems
under this paradigm.

1The last update in WordNet dates back to June 2011.

https://competitions.codalab.org/competitions/23683
https://competitions.codalab.org/competitions/23683
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Target Sense Verification (TSV) formulates
the disambiguation of a word as a binary classi-
fication task where the equivalence of the intended
sense of a word in context and a single given sense
is evaluated. For instance, in the example above,
the system would need to decide whether the sen-
tence refers to Apple Inc. the technology company
or not, by being provided with a sense indicator for
solely Apple Inc. (e.g., the hypernym technology
company or the definition).

A system able to efficiently solve the TSV task
could be effectively used in the scenario of col-
lecting and tagging large amounts of textual data;
e.g., from social media, news agencies, blogs and
for downstream tasks such as information retrieval,
sentiment analysis or relation extraction. Further-
more, such a system could be a good candidate
for entity linking (EL) as the task statement of
TSV resembles the usage of enterprise knowledge
graphs (Galkin et al., 2017) for EL: typically, small
domain-specific enterprise knowledge graphs only
contain entities from the domain of interest, par-
tially or completely missing the general purpose
senses of the contained labels.

In order to train and evaluate models for TSV we
constructed WiC-TSV (Word in Context - Tar-
get Sense Verification) a multi-domain dataset and
evaluated standard unsupervised and supervised
approaches (including language models). While
WiC-TSV’s training and development set consist
of general purpose instances, the test set contains
domain-specific instances from three different do-
mains. Therefore, this dataset aims at evaluating
the ability of a model to (1) disambiguate the word
in context without an external sense inventory, (2)
deal with unseen instances and incomplete data,
and (3) transfer the intrinsic knowledge (gained on
general domain data) into a specific domain.

2 Related Work

Word Sense Disambiguation. The task of WSD
consists of associating a word in context with its
most appropriate entry in a given sense inventory
(Navigli, 2009), e.g., WordNet. For WSD there are
many associated datasets (Raganato et al., 2017;
Vial et al., 2018; Röder et al., 2018; Ling et al.,
2015), including domain-specific ones (Agirre
et al., 2009; Faralli and Navigli, 2012). The main
difference between WSD and its re-formulation
TSV is that for TSV the availability of a sense in-
ventory is not required. Instead of associating a

word in context with its most appropriate sense, the
usage of a single given sense in the provided con-
text is to be verified. Systems that aim to solve the
proposed task are therefore not required to model
all senses of the target word, but only a single sense
instead.

This facilitates the development of systems for
specific domains or settings, as no general-domain
knowledge resource is required to perform this task.
For instance, an Indonesian company may want to
retrieve all sentences referring to the Java island
and not other unrelated senses. This framing of the
task is frequent in business and data mining set-
tings where domain-specific knowledge resources
or inventories may be available, without the need
for modeling instances from other domains.

WiC. The task closest to the proposed WiC-
TSV is probably Word-in-Context (Pilehvar and
Camacho-Collados, 2019, WiC), which our dataset
is based on. WiC is a binary classification dataset
where a target word is presented within two differ-
ent contexts. The task consists of deciding whether
the word is associated with the same sense in the
two contexts or not. WiC is also one of the tasks
included in the general language understanding
framework SuperGLUE (Wang et al., 2019).

WiC-TSV inherits some of the desirable proper-
ties of WiC, such as independence from external
sense inventories and the binary classification na-
ture of the task. However, though our benchmark
draws ideas from the Word-in-Context benchmark,
it provides a different evaluation setting with ad-
ditional flavors. The main difference with respect
to our dataset lies in the presence of relevant infor-
mation such as hypernyms and definitions, which
makes our dataset more realistic and a direct proxy
for downstream evaluation: in WiC-TSV the am-
biguous target word in a single context is compared
against a specific target sense (indicated by pro-
vided hypernyms and definitions), in contrast to
the comparison of the intended senses of the target
word in two different contexts. Also, the task is
more targeted at word-level representation, as in
one of the tasks (i.e. hypernymy task) the model is
not provided with any contextual information and,
therefore, needs to have a clear understanding of
the word to be able to make correct judgements.
Moreover, WiC-TSV includes instances from three
domains (cocktails, medicine, and computer sci-
ence) in its test set, which makes the benchmark
more challenging and comparable to a real setting.
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3 WiC-TSV: The Benchmark

A goal of this benchmark is to evaluate the ability
of a model to verify the target sense of a word in
a context without the usage of an external sense
inventory, i.e., without knowing all possible senses
of the target word. Another model quality that is
aimed at with the presented benchmark is the abil-
ity to transfer the intrinsic knowledge into a spe-
cific domain. As for most areas, domain-specific
training data is hard to obtain, being able to learn
on general purpose data and still perform well on
domain-specific data is a huge advantage in a real
world setting.

To this end, we constructed a benchmark satisfy-
ing following requirements:

1. Knowledge of only a single sense of the target
word;

2. Knowledge of the definition and/or hyper-
nyms of the target sense;

3. Ability to test the models capability to disam-
biguate both general purpose and domain-
specific senses;

4. Ability to test the models capability to classify
usages of previously unseen words;

Formally, each instance in the dataset consists
of a target word w, a context c containing the tar-
get word w, and its corresponding target sense s
represented by either its definition (Task 1), its hy-
pernym/s (Task 2), or both definition and hypenyms
(Task 3). The task aims to determine whether the
intended sense of the word w used in the context c
matches the target sense s.

Table 1 contains examples of instances from the
WiC-TSV test set. Furthermore, a small sample
of 10 instances is available online in the form of a
survey2, where the achieved score is shown to the
user after the submission.

3.1 Dataset Construction

In this section we detail the construction of the
dataset. First, we describe the construction of the
training and development set (Section 3.1.1) and
then the test set (Section 3.1.2), with a special focus
on the creation of the domain-specific subsets.

2https://www.surveymonkey.com/r/
LHYWXPV

3.1.1 Training and Development Set
Instances in the training and development set do
not focus on a specific domain. As basis served
the Word-in-Context (WiC) dataset (Pilehvar and
Camacho-Collados, 2019), which contains a tar-
get word w and two contexts c1 and c2 for each
instance. The contexts from WiC for noun in-
stances come from two resources: WordNet and
Wiktionary. To maintain the desirable characteris-
tics of the WiC dataset (e.g., balanced data, not hav-
ing repeated contexts across instances), the splits
of the original training and development sets were
treated separately in the following way: starting
from a noun-only sub-sample, for each context ci,
the sense of the target word w was mapped to the
corresponding synset of WordNet, adding a sense
identifier. Each WiC instance was then split into
two instances, one for each context. For initial
negative instances (i.e. w has different intended
senses in c1 and c2), the sense identifiers of these
two instances were switched. To avoid information
leakage, only one of the two instances were kept
for the WiC-TSV dataset3. Finally, for each sense,
the definition and hypernyms were derived from
WordNet using the sense identifiers.4

3.1.2 Test Sets
To make the dataset more challenging and realistic,
the test set incorporates both general purpose and
domain-specific instances.

General Purpose (WNT/WKT). The general
purpose instances were generated analogously to
3.1.1. Hence, this test set is composed of both
WordNet and Wiktionary examples, with defini-
tions and hypernyms extracted from WordNet.

In the following we describe the construction
of the domain-specific subsets. The main differ-
ence between domain-specific and WNT/WKT test
sets is that in the former the target sense remains
the same. That means, that even though “fork”
might have different senses within the computer
science domain, we are only interested in one of
these senses.

Cocktails (CTL). For the cocktails instances the
target words were taken from the “All about cock-
tails” thesaurus5. The thesaurus contains 300 en-

3If both instances were kept, the label could have been
predicted with a high accuracy by counting the appearance of
the target sense (even=True, odd=False).

4WordNet sense identifiers are omitted in the final dataset.
5vocabulary.semantic-web.at/cocktails

https://www.surveymonkey.com/r/LHYWXPV
https://www.surveymonkey.com/r/LHYWXPV
vocabulary.semantic-web.at/cocktails
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Tag Context Definition Hypernyms
General Purpose (WNT/WKT)

T Smoking is permitted . the act of smoking tobacco or other
substances

breathing,
respiration,
ventilation

F all that work went down the sewer someone who sews needleworker

Cocktails (CTL)

T
We were 11 at table for this feast . We started the
evening with Bellini , made with fresh , Niagara
peaches . ( Thank you , Jack Lalanne Juicer ! )

A Bellini cocktail is a mixture of Prosecco
sparkling wine and peach purée. cocktail

F After a morning ’s work I went off to see the
Bellini retrospective at the Quirinale . Beautiful !

A Bellini cocktail is a mixture of Prosecco
sparkling wine and peach purée. cocktail

Medical Subjects (MSH)

T Italy now reports the second highest number of
corona cases wordlwide .

A viral disorder characterized by high
fever; cough; dyspnea; renal dysfunction
and other symptoms of a viral pneumonia.

viral pneumonia;
coronavirus
infection

F
Corona Labs is happy to announce the general
availability of the public beta of Android 64-bit
Corona builds .

A viral disorder characterized by high
fever; cough; dyspnea; renal dysfunction
and other symptoms of a viral pneumonia.

viral pneumonia;
coronavirus
infection

Computer Science (CPS)

T
pandas is a fast , powerful , flexible and easy to use
open source data analysis and manipulation tool ,
built on top of the Python programming language .

Python is an interpreted, high-level,
general-purpose programming language

object oriented
programming
language

F

The present paper compares the recently studied
pythons with those examined 20 years ago , and
uses the combined dataset to assess the ecological
sustainability .

Python is an interpreted, high-level,
general-purpose programming language

object oriented
programming
language

Table 1: Sample instances from WiC-TSV. Target words are marked in bold. Tags: T (True) and F (False).

tries describing not only cocktails, but also bever-
ages, garnishes and glassware, among others. For
instances obtained from this resource, the hyper-
nym “cocktail” is used in the WiC-TSV dataset,
while the definition is derived from the thesaurus.

Medical Subjects (MSH). For medical subject
instances we use terms, definitions and hypernyms
from the MeSH thesaurus6. This thesaurus is used
for indexing medical articles and therefore contains
a wide variety of terms in this domain. We consid-
ered various types, such as diseases, symptoms and
body parts as target words.

Computer Science (CPS). Target words in the
computer science domain were gathered manually,
without a readily available thesaurus. The defini-
tions were derived from the lead section of the cor-
responding Wikipedia page, while hypernyms were
created by the consensus of two domain experts.

In order to create the domain-specific instances,
first a list of ambiguous words and their domain-
specific target senses was fixed for each domain.

6www.nlm.nih.gov/mesh/

Then, we used the Wikilinks dataset (Singh et al.,
2012) as a basis for collecting different contexts
containing the target words. This dataset contains
documents – blog posts scraped from the web – and
the links from these documents to the Wikipedia
pages, which were used to assign the intended
sense (i.e., target sense or other sense) to the target
word. Where needed, additional contexts were col-
lected manually by incorporating a search engine
to find contexts for the target word. The intended
senses for these instances were assigned manually.

Postprocessing. After creating the initial
domain-specific instances, the subsets were
checked manually to remove non-suitable and
unsolvable instances. To maintain a rather realistic
evaluation setup, data was not completely cleaned,
meaning that contexts can contain noisy elements
such as headings or meta-info derived from the
websites (e.g., “posted by”).

3.2 Data Cleaning

While the quality of the domain-specific instances
is assured due to their manual creation process,

www.nlm.nih.gov/mesh/
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an additional data cleaning step was introduced in
which general purpose instances were manually
curated. The instances from the test set were split
into four sets with an overlap of 20%. Each set was
evaluated by an annotator regarding correctness
and solvability of the instances. For example, when
the hypernym of an instance was too generic to help
in the disambiguation process, or the context itself
was too ambiguous, the instance was marked as “to
filter out”. Each marked instance was reviewed by
a second annotator, who could either confirm, or
reject the request of removal. Instances marked by
both annotators were removed.

An example of such a removed instance would
be the context “The zero sign in American Sign
Language is considered rude in some cultures .” for
the target word “zero” with the target definition ’a
mathematical element that when added to another
number yields the same number’. In American Sign
Language (ASL), “zero sign” is a ring-shaped hand
sign using the thumb and pointing finger, similar to
the OK-gesture. The provided instance mixes two
senses of “zero sign”. On the one hand, it refers to
the hand gesture itself (synonymous to OK-gesture)
which does not fully match the target sense. On
the other hand, it also refers to the sign of the digit
zero in ASL, which does match the target sense.

Other examples of filtered instances involve sen-
tences where the target word may have been used
metaphorically.

This procedure resulted in 106 instances which
were removed. About 8% of these instances were
part of evaluation sets created to measure the
human performance (see 3.4)7: the annotators
achieved a mean accuracy of only 56% on these
instances. This shows that the data cleaning step
was necessary in order to ensure the data quality of
the test set.

3.3 Statistics

A statistical overview of the dataset and their splits
is shown in Table 2. The totality of 3832 available
instances were split into train, development and
test sets with a ratio of 56:10:34 which allows a
sophisticated analysis of the generalisation capa-
bilities of tested systems, while still providing an
appropriately sized training set.

The test set contains around 55% general pur-
pose instances and 45% from specific domains. For

7Annotations for these instances were removed before cal-
culating the metrics presented in 3.4

Total Nw R+

Train WNT/WKT 2137 864 0.56

Dev WNT/WKT 389 377 0.51

Test

General-domain
(WNT/WKT)

717 664 0.54

Domain-specific
(MSH+CTL+CPS) 589 25 0.47

MSH 205 8 0.52
CTL 216 9 0.43
CPS 168 8 0.46

All 1306 689 0.51

Table 2: Statistics of training, development and testing
splits of WiC-TSV, including total number of instances
(Total), unique number of target words (Nw) and per-
centage of positive instances (R+).

each domain, the number of unique target words is
relatively low compared to the general domain sub-
set, which results in a higher number of instances
per target word. However, for domain specific
words, a great variety of senses is used in the con-
texts, yielding a big diversity among the instances.
For all three splits, positive and negative instances
are approximately balanced.

3.4 Human Performance

To estimate the human performance upper bound, a
sub-sample of the test set was manually annotated.
The performance was evaluated on the setting of
Task 3, meaning that both the definition and the
hypernyms were provided to disambiguate. A ran-
dom selection of 250 instances were split into two
evaluation sets of the size of 150, resulting in a
20% overlap. Each evaluation set was assigned
to a non-expert annotator with English as native
language. No additional information - especially
not from the respective ontology or about other
senses of the target - was provided to the annota-
tors and they were instructed not to use external
knowledge sources (e.g. if they are not familiar
with the domain-specific sense of a word).

Results of the human performance evaluation
can be found in Table 3. The mean accuracy for the
evaluated datasets was 85%, with individual scores
of 81% and 89%. To estimate the inter-annotator
reliability, the agreement of the two annotators on
the overlapping instances was calculated: for 42
instances (84%) the annotators agreed on the label.

When evaluating the instances per domain, it
can be seen that the general purpose instances were
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Human Perf.

WNT/WKT 82.1
MSH 89.1
CTL 92.0
CPS 86.5

All 85.3

Table 3: Average human accuracy for native English
annotators, on different subsets of the dataset: general
purpose, i.e., WNT/WKT, and the domain specific, i.e.,
MSH, CTL, and CPS.

more difficult than the domain-specific ones, as
annotators achieved an average accuracy of 82%
(individual scores of 77% and 87%) on the general
purpose instances, while the mean accuracy on the
domains were 89% (83% and 96%), 92% (88%
and 96%), and 86.5% (89% and 84%) for MSH,
CTL, and CPS, respectively. This performance dif-
ference is even more evident when comparing to
the performance of non-native speakers: an addi-
tional experiment showed, that evaluators whose
mother language is not English only achieved an
average accuracy of about 77% on the WNT/WKT
instances, while performances on the domain spe-
cific subsets were comparable to native speakers.

4 Experimental Results

In this section we evaluate the performance of dif-
ferent baseline models on our WiC-TSV bench-
mark. For our experiments we considered two main
systems, namely BERT (Devlin et al., 2019) and
FastText (Joulin et al., 2017), as well as unsuper-
vised baselines adapted to the corresponding tasks
in WiC-TSV.

4.1 Evaluation Tasks

The benchmark provides three different tasks
depending on the input information available:
definition-based (Section 4.1.1), hypernym-based
(Section 4.1.2), and both (Section 4.1.3).

4.1.1 Task 1: Definition Information
In this task, the goal is to identify if the intended
sense of the target word in the context matches the
target sense described by the definition.

In other words, the model has to check if the
sense represented by the definition can fit within the
given context. For this task, the system is provided
with a context (in which the target word is marked)

along with a definition (which describes one of the
possible senses of the word).

Baselines. The first baseline is based on the pre-
trained transformer-based language model BERT8.
It consists of a simple classification layer on top
of the BERT model which is responsible for en-
coding the input. For this task, we concatenate
the context and the definition and feed the whole
sequence to BERT. Then, the classification layer
takes as input the concatenation of three different
vectors, all provided by BERT: the [CLS] token
representation, the representation of the target word
in the context and the average representation of the
words in the definition. This is similar to the base-
line BERT model employed in SuperGLUE (Wang
et al., 2019). It is worth mentioning that BERT
is originally trained using WordPiece tokenization
(Wu et al., 2016), which means that each word
can be broken down into more than one sub-word.
Therefore, in order to have a fixed length repre-
sentation for each word, we take the average of its
sub-word representations. Finally, the whole model
is fine-tuned on the training set.

For the FastText-based baseline, we first extract
the corresponding embeddings for each word in
the context and definition, respectively. Then, the
representation is simply computed as the average
of the corresponding embeddings it contains. Next,
these two representations are concatenated together
to form a fixed length vector which we then feed
to a fully connected layer. Finally, we put a simple
classification layer on top of this fully connected
layer and train the model on the training set.

We also evaluated GlossBERT (Huang et al.,
2019) on our dataset. The authors describe a weak
supervision algorithm that consists in surround-
ing the target word with special symbols – quota-
tion marks are used in the available implementa-
tion9. We provide results both with (GBERTws)
and without (GBERT) weak supervision. We chose
the hyper-parameters as suggested by the authors,
trained for 6 epochs and achieved the highest scores
on the 4th epoch.

Unsupervised baselines U-BERT and U-
dBERT, which do not make use of the training set,
are simple threshold-based classifier which take the
cosine distance of a target word representation and

8We used the implementation of BERT available at
https://github.com/CyberZHG/keras-bert for
the base (BERT-B) and large (BERT-L) pre-trained models.

9https://github.com/HSLCY/GlossBERT

https://github.com/CyberZHG/keras-bert
https://github.com/HSLCY/GlossBERT
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a definition representation into account. As source
for these vectors serve BERT and DistilBERT, re-
spectively.

Similar to before, we derive the target word vec-
tor by taking the embedding of the target word in
the context and the definition vector by averaging
over all embeddings of the definition. The thresh-
old is tuned on the development set with a step size
of 0.02.

4.1.2 Task 2: Hypernym Information
For this task, the system is provided with a target
word (in a context) and a set of hypernyms for the
target sense. The task is to identify if the intended
sense given through the context is the hyponym of
the provided hypernyms. Note that, unlike Task 1,
no definition is involved in this setting and the task
is directed only by hypernymy information.

Baselines. We used baseline models similar to
those used in the previous task. The only difference
lies in how we shape the inputs fed to these models.

For the supervised and unsupervised BERT-
based models, we put together the context with
the hypernyms to form the input. Similarly, for the
FastText-based model, the hypernyms’ embeddings
are concatenated with the context’s representation
and fed to the classifier.

4.1.3 Task 3: Both Sources of Information
In the third task systems are provided with both
definition and hypernymy information.

Baselines. For this task, we concatenate the defi-
nition and the hypernyms, and feed the generated
sequence together with the context to BERT. Then,
the concatenation of the [CLS] token representa-
tion, the representation of the target word in the
context and the average representation of the words
in the definition/hypernyms sequence is fed to the
classification layer.

For the unsupervised model we use the same
BERT input and take the representation of the tar-
get in context and the average over the definition
and hypernyms as input vectors. For the FastText-
based baseline, the hypernyms’ embeddings are
concatenated with both the context’s representation
and the definition representation and the combina-
tion is fed to the classifier.

4.2 Results

Table 4 shows the overall results for the three tasks.
As can be observed, GlossBERT performs best in

WiC-TSV

Acc Prec Rec F1

Task-1
(def)

BERT-B 75.3 71.7 84.9 77.7
BERT-L 75.3 70.4 88.5 78.4
FastText 53.7 54.1 57.6 55.7
GBERT 76.0 71.3 88.2 78.8
GBERTws 75.9 71.2 88.1 78.8

U-dBERT 56.9 76.0 22.0 34.2
U-BERT 54.4 73.1 16.0 26.2

Task-2
(hyp)

BERT-B 71.4 67.7 83.5 74.8
BERT-L 75.3 71.7 85.1 77.8
FastText 52.7 52.4 73.6 61.1

U-dBERT 62.3 64.8 56.3 60.2
U-BERT 62.8 65.9 55.2 60.1

Task-3
(both)

BERT-B 76.6 74.1 82.8 78.2
BERT-L 76.3 72.6 85.7 78.6
FastText 53.4 52.8 79.4 63.4

U-dBERT 61.2 70.6 40.3 51.3
U-BERT 60.5 68.0 41.9 51.9

BaselineTrue 50.8 50.8 100 67.3
Human 85.3 80.2 96.2 87.4

Table 4: Test set performance of the baseline models
on WiC-TSV, in terms of accuracy, precision, recall,
and F1, on the three different tasks. BaselineTrue is a
naive baseline that always returns True and the human
performance is computed as described in Section 3.4.

terms of accuracy and F1. BERT-L is a little worse,
but achieves the best recall. The worst supervised
baseline – FastText – does not perform better than
a naive baseline that retrieves all instances as true.
This also reinforces the challenging nature of the
benchmark, as even BERT-based models are far
from the human annotator performance (estimated
on 85.3% for accuracy). Clearly, the definition
information is more helpful than the hypernyms
for BERT, while the combination of both attains
the best overall results. Yet GlossBERT reaches a
better performance with definition only10.

The unsupervised models only perform well with
hypernyms. Though U-dBERT reaches the best
precision in Task 1, the recall remains very low and
therefore the overall performance.

Another point to highlight is the high recall of
BERT-based models, in contrast to its precision.
This is mainly attributed to the domain-specific sub-
sets as it will be analysed below. As for the com-
parison between BERT-based models, the larger
model (BERT-L) performs as expected better than

10We did not evaluate GlossBERT with hypernyms as such-
configuration was not considered by the authors in the original
system and its integration would not be straightforward.
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WNT/WKT CTL MSH CPS

Acc P R F1 Acc P R F1 Acc P R F1 Acc P R F1

T1
def

BERT-B 73.3 74.0 77.7 75.8 76.2 65.1 98.9 78.4 77.6 73.4 89.0 80.4 80.0 70.5 97.9 81.9
BERT-L 77.1 75.7 84.7 80.0 73.1 62.3 95.3 75.4 75.3 70.6 89.6 78.9 70.2 61.4 97.4 75.3
FastText 56.2 58.9 61.9 60.3 49.8 39.0 30.8 34.3 51.7 52.2 79.2 62.9 50.4 45.6 38.5 41.6
GBERT 75.7 74.9 82.6 78.6 75.5 64.9 93.5 76.7 74.1 67.5 96.2 79.4 79.8 70.0 98.7 81.9
GBERTws 75.2 74.6 81.6 78.0 70.4 59.7 95.7 73.6 78.5 71.5 97.2 82.4 82.7 73.3 98.7 84.2
U-BERT 49.2 64.1 13.0 21.6 57.4 100 1.1 2.1 62.0 78.0 36.8 50.0 63.1 100 20.5 34.0
U-dBERT 51.5 67.0 19.4 30.1 56.9 0.0 0.0 0.0 65.9 86.0 40.6 55.1 69.0 93.3 35.9 51.9

T2
hyp

BERT-B 68.6 70.0 72.9 71.4 77.9 66.6 97.8 79.3 71.9 65.1 98.4 78.3 74.4 64.7 98.7 78.2
BERT-L 71.4 71.7 77.4 74.4 82.7 72.7 96.4 82.8 77.2 71.2 94.0 81.0 80.6 71.3 97.4 82.3
FastText 56.8 58.9 66.3 62.1 43.1 43.0 99.3 60.0 49.1 50.4 84.0 62.9 52.0 48.8 65.0 55.3
U-BERT 57.6 61.3 57.8 59.5 57.4 52.0 14.0 22.0 74.6 79.3 68.9 73.7 77.4 77.0 73.1 75.0
U-dBERT 55.0 58.1 58.5 58.3 56.0 42.9 6.5 11.2 80.5 86.7 73.6 79.6 79.2 75.9 80.8 78.3

T3
both

BERT-B 73.5 76.1 74.2 75.1 79.2 67.8 98.2 80.2 79.8 75.8 89.6 82.1 82.1 73.0 97.9 83.6
BERT-L 77.3 77.2 82.1 79.6 76.4 67.0 90.0 76.6 75.4 71.6 87.4 78.7 72.8 63.8 96.2 76.7
FastText 57.1 58.0 74.0 65.0 43.1 43.1 100 60.2 51.1 51.5 90.3 65.6 54.0 50.5 67.1 57.3
U-BERT 54.4 61.3 41.5 49.5 58.8 62.5 10.8 18.3 71.2 78.3 61.3 68.8 75.6 87.8 55.1 67.7
U-dBERT 54.8 62.4 40.4 49.1 57.9 75.0 3.2 6.2 74.1 87.3 58.5 70.1 76.8 86.8 59.0 70.2

BaselineTrue 53.8 53.8 100 70.0 43.1 43.1 100 60.2 51.7 51.7 100 68.2 46.4 46.4 100 63.4

Table 5: Performance for the baseline models for the three tasks (i.e., T1: definition-based, T2: hypernymy-
based, and T3: both sources of information) split by domain: General (WNT/WKT), Cocktails (CTL), Medical
Subjects (MSH), and Computer Science (CPS). BaselineTrue is a naive baseline that always returns “True”. Human
performance in terms of accuracy is estimated to be 82.1% (WNT/WKT), 92.0% (CTL), 89.1% (MSH) and 86.5%
(CPS) as described in Section 3.4.

the base model (BERT-B) overall.

4.3 Analysis

In order to better understand the results, in this
section we perform a focused analysis on the per-
formance split by domain.

4.3.1 Domain-based Analysis
Table 5 presents the results split by domain. Fast-
Text faces a massive challenge in adapting to new
domains and generalising from WNT/WKT to the
other domains. However, BERT-based models
show to be much more robust to domain changes.
In fact, the results on the domain-specific instances
are in the same ballpark as the WNT/WKT test
set. This can be attributed to the fact that specific
domains highly constrain the set of possible senses
for a word, resulting in an easier WSD classifica-
tion task (Magnini et al., 2002). On the other hand,
WordNet is known to be quite fine-grained (e.g.,
the noun run has 16 different senses in WordNet).

Surprisingly, unsupervised DistilBERT achieves
the best accuracy over all tasks and classifiers on
MSH. However, both unsupervised models do not
perform well on WNT/WKT and CTL. We can ob-
serve that supervised models are significantly more
reliable and produce similar scores on different
tasks and datasets than unsupervised models.

In general, for BERT-based models, recall is
substantially higher than precision on the domain-
specific subsets. This is desirable in a retrieval
setting where a high-coverage retrieval of relevant
cases is of more importance. Interestingly, among
the two BERT alternatives, the smaller model per-
forms better on the domain-specific subsets, sug-
gesting that it is more robust to domain changes.
This is an important observation which needs fur-
ther careful investigation in future work, given that
most evaluation benchmarks (on which the larger
model consistently outperforms the smaller one)
comprise in-domain test sets, which cannot reveal
robustness across domains.

4.3.2 In-domain Few-shot Analysis

Although the availability of big annotated domain-
specific training sets is quite rare, the presence of
a small training set forms a realistic scenario. In-
corporating these domain-specific instances in the
model training could potentially increase its pre-
diction performance. To investigate this theory, we
performed an additional analysis focusing on the
usage of in-domain examples in the learning pro-
cess, where for each domain 100 instances from
the test sets were used as a training set. To enforce
the assumption that not all target senses would be
seen during the training process, we put aside all
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instances of 3 target words for each domain test
set.11 Two additional domain-based strategies were
considered: (1) few-shot learning: only using the
domain-specific instances, and (2) continued learn-
ing: extending the existing general-purpose train-
ing set with the domain-specific instances.

For this analysis we focused on Task-3 and
BERT-large, which performed better overall. Ta-
ble 6 shows the F1 results. In general, few-shot
learning works surprisingly well overall (achiev-
ing the best overall performance in the CTL and
MSH domains). On CTL pairs unseen during train-
ing, it even performs considerably better than the
same BERT model trained in the continued learn-
ing setting. In the CPS domain, for both few-shot
in-domain learning and continued learning the per-
formance on seen target words is quite high, while
the prediction of unseen target words produces rel-
atively low F1 scores, which indicates a low abil-
ity to generalise to new senses. As for the model
trained on the general-domain dataset, it performs
best in the CPS domain, but performs consider-
ably lower than the domain-tuned alternatives in
the CTL domain. Indeed, the domain-tuned BERT
systems clearly outperform the same model trained
on the general domain on seen pairs, proving the
importance of obtaining word-specific examples
to boost performance. However, this may not be
realistic in practice, and therefore further research
should be devoted in improving the generalization
capabilities of disambiguation systems, and lan-
guage models in particular. These findings are con-
sistent with the results of an experiment conducted
with GlossBERT in the few-shot learning setting
on Task-1: the overall accuracy increase ranged
from 0.1% (CPS) to 13.6% (CTL) compared to the
model trained solely on general domain instances.

5 Conclusions and Future Work

In this paper we have introduced the Target Sense
Verification task, a re-formulation of WSD where
the equivalence of the intended sense of a word
in context and a single given sense is evaluated.
Furthermore, we presented WiC-TSV, a multi-
domain benchmark which differs from existing
WSD datasets in three main ways: (1) it is based
on TSV and therefore framed as a binary classi-
fication task where only one target sense needs

11To add robustness to the results, three different random
samples were considered for this experiment, with the results
being averaged after the three different runs.

Train CTL MSH CPS

All See Uns All See Uns All See Uns

WNT 76.5 74.7 75.5 77.4 82.9 76.0 74.9 77.8 74.8
WNT+D 80.2 89.5 75.5 78.5 86.2 76.6 73.6 88.9 72.9
Dom 84.2 88.8 82.6 78.7 88.6 75.5 70.7 93.3 69.1

BaseTrue 58.5 54.8 59.1 68.2 70.9 67.5 62.6 58.3 62.8

Table 6: F1 score for the in-domain few-shot analy-
sis (Task-3) using BERT-L trained on general domain
(WNT), domain-specific (Dom) and general domain
fine-tuned on the target domain (WNT+D). In addition
to the full test set (All), results are split on seen (See)
and unseen (Uns), as per the presence or absence of the
target word in the domain-specific training set.

to be verified, (2) it is independent from external
sense inventories, and (3) its test set contains in-
stances from three specific and heterogeneous do-
mains are included: cocktails, medical subjects and
computer science. Our benchmark therefore opens
the floor for different disambiguation algorithms
that do not require modeling the entirety of a sense
inventory. This characteristic also provides a cru-
cial advantage in enterprise and domain-specific
settings as it facilitates the development of systems
which are only aimed at modelling the domain
at hand. Moreover, having these out-of-domain
test instances makes our benchmark more robust
and generalisable, preventing (or making it harder)
for statistical models to learn spurious correlations
from the training set, which has been proven to be
an issue in standard NLP tasks (Poliak et al., 2018;
Gururangan et al., 2018; Linzen, 2020).

In our initial experiments we found that current
state-of-the-art disambiguation techniques based
on pre-trained language models such as BERT are
very accurate at handling ambiguity, even in spe-
cialised domains. However, there is still room for
improvement as highlighted by the gap with the hu-
man performance. This benchmark therefore opens
up avenues for future research on domain-transfer
and on developing general-purpose solutions which
can perform well on a variety of domains without
the need for large amounts of training data.

As future work, we are planning to further inves-
tigate and analyse the robustness of pre-trained
models with respect to domain changes. Also,
it would be interesting to develop hybrid models
which take both definition and hypernymy informa-
tion into account – in this paper we combined both
sources in BERT in a simple manner, but more com-
plex models should lead to further improvements.
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