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Abstract

We propose a novel solution for assigning la-
bels to topic models by using multiple weak la-
belers. The method leverages generative trans-
formers to learn accurate representations of
the most important topic terms and candidate
labels. This is achieved by fine-tuning pre-
trained BART models on a large number of po-
tential labels generated by state of the art non-
neural models for topic labeling, enriched with
different techniques. The proposed BART-TL
model is able to generate valuable and novel
labels in a weakly-supervised manner and can
be improved by adding other weak labelers or
distant supervision on similar tasks.

1 Introduction

As topic modeling has been used for unsupervised
exploration of large text corpora, several topic label-
ing approaches have been proposed. These range
from heuristic-based methods (Mei et al., 2007;
Gourru et al., 2018) that focus on the underlying
topic distributions to newer methods that use word
embeddings (Bhatia et al., 2016). Supervised topic
labeling methods (Lau et al., 2011; Bhatia et al.,
2016) typically use annotator data with the qual-
ity of the labels to train a more accurate ranker
than the unsupervised counterpart. Deep learn-
ing approaches, which gained quick popularity in
NLP, are starting to be used for solving this task as
well (Sorodoc et al., 2017; Alokaili et al., 2020).

Recently, transformer models pre-trained on very
large amounts of data achieved impressive results
on a lot of downstream NLP tasks using fewer
resources than previously necessary. We intro-
duce a method of performing a weakly-supervised
fine-tuning on these models pre-trained on English
data in order to obtain human-comprehensible and
meaningful topic labels. We also provide a qual-
ity evaluation of the model-generated labels, in
addition to an analysis of the contribution gained

from using this approach that we ultimately refer
to as BART-TL, inspired by the name of the original
transformer architecture.

2 Related Work

Topic modeling is a popular unsupervised method
for exploring large corpora of documents. Top-
ics are represented as distributions over words,
while documents as mixtures of topics. Histori-
cally, these methods used dimensionality reduction
techniques (Deerwester et al., 1990), then migrated
to probabilistic-based methods (Hofmann, 1999),
with Latent Dirichlet Allocation (Blei et al., 2003)
gaining popularity. LDA makes use of variational
inference to obtain the distribution matrices. Fur-
ther developments include hierarchical (Wang et al.,
2011) and online (Hoffman et al., 2010) versions
of LDA.

While the resulting distributions of topic mod-
els are useful for computational purposes, such as
measuring the similarity of two documents, these
may prove difficult to interpret by humans. Topic
labeling aims to solve this issue by computing la-
bels for each topic. Historically, this was achieved
by establishing a pool of labels and ranking them
using certain scoring functions. First attempts were
fully unsupervised, extracting labels from the orig-
inal corpus (Mei et al., 2007). Later approaches
started using external corpora, such as Wikipedia,
as candidates for labels and trained supervised
rankers (Lau et al., 2011), as well as employed
word embeddings (Bhatia et al., 2016) such as
word2vec (Mikolov et al., 2013) and doc2vec (Le
and Mikolov, 2014) for computing the similarity
between a topic and a candidate label.

Huge progress was made in the NLP field with
the introduction of attention models (Bahdanau
et al., 2014) and, later on, transformers (Vaswani
et al., 2017), which are deep neural networks that
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Figure 1: End-to-end training of BART-TL for topic la-
beling using weak supervision.

use an encoder-decoder architecture. A multitude
of transformer-based models (Devlin et al., 2018;
Radford et al., 2019; Liu et al., 2019; Lewis et al.,
2019) emerged that achieved state of the art per-
formance on a large number of NLP tasks through
transfer learning. These models are pre-trained
on large amounts of data in order to encompass
general knowledge of the language to be later fine-
tuned on downstream tasks. This allows for better
results on small datasets, where deep learning was
not a viable option beforehand.

However, research on using deep learning meth-
ods for topic labeling is scarce. A very recent study
proposes an RNN-based encoder-decoder architec-
ture (Alokaili et al., 2020) trained with distant su-
pervision using Wikipedia page titles and employ-
ing BERTScore (Zhang et al., 2019) for evaluation.

3 Method

Our method utilizes a pre-trained BART (Lewis
et al., 2019) transformer model, with a denoising
autoencoder architecture, as we adopt a sequence-
to-sequence approach for the task of topic labeling.

3.1 Building a Weakly Supervised Dataset

Topic labeling is generally performed in two steps:
establishing a pool of candidate labels and then
ranking them appropriately. This workflow is also
adopted by a state of the art labeler that we will re-

fer to as NETL (Bhatia et al., 2016).1 This method
uses names of Wikipedia articles as candidate la-
bels and trains word2vec and doc2vec models on
Wikipedia dumps. Preliminary filtering is done by
selecting the labels with the highest embedding sim-
ilarity scores to the topic terms, while the remain-
ing labels are ranked in an unsupervised manner
using letter trigrams. The authors also explore train-
ing a supervised ranker after obtaining feedback
from annotators, incorporating PageRank (Page
et al., 1999) and lexical features.

We build a dataset for fine-tuning BART starting
from the NETL labeler. We extract the initial can-
didate labels for each topic after the embeddings
similarity filtering but modify this process by as-
signing a greater weight in the scoring based on
the importance of the word in the topic distribution.
To avoid overfitting the most important word, we
equalize the weights of the top-5 terms. The labels
that consist only of stopwords are removed. We
make these changes to be able to use a larger num-
ber of highest-rated topic terms in extracting labels
than the standard 10 employed by NETL, expecting
a better performance given a more ample context.
Finally, we construct a one-to-many sequence map-
ping from topics, represented as a concatenation
of the top-20 terms separated by spaces, to the
corresponding labels. This represents the baseline
dataset.

We also propose adding several enrichment ap-
proaches for this dataset, using other weak labelers
as follows. The first additions are entries consist-
ing of space-separated n-grams sampled from the
most important words in the topic. The sampling is
weighted by the underlying probability distribution
and these do not have to be consecutive. Inspired
by the work of Gourru et al. (2018), groups of sen-
tences are added as targets using a variant of the
COS10 technique for sentence extraction. The best
sentences are joined one-by-one into a short para-
graph until a minimum character threshold is met.
One last idea for improving the baseline dataset is
including popular noun phrases from the corpus.
They are ranked based on the relevance to the topic
and must appear at least a certain number of times
in the corpus.

1The code is open-source: https://github.com/
sb1992/NETL-Automatic-Topic-Labelling-.

https://github.com/sb1992/NETL-Automatic-Topic-Labelling-
https://github.com/sb1992/NETL-Automatic-Topic-Labelling-
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3.2 Fine-tuning BART-TL

Pre-trained BART models are fine-tuned on the
resulting datasets. The final BART-TL models are
able to make predictions on sequences of topic
terms. Output labels are generated as sequences
and beam search is used to extract multiple ranked
labels for a single topic. This strategy joins the
extensive knowledge about language encompassed
in the original transformer layers with traditional
topic labeling techniques. The final models are
fine-tuned based on unsupervised labelers and are,
thus, weakly-supervised. A detailed representation
of the end-to-end process can be seen in Figure 1.

4 Experiments

4.1 Baseline Dataset

We conduct experiments on corpora crawled from
Stack Exchange2 on 5 different subjects: English,
Biology, Economics, Law, and Photography. These
are preprocessed by removing XML artifacts, stop-
words, and individual numbers. Documents with
fewer than 20 words are removed from the cor-
pus, along with words that occur less than 10 and
more than 50,000 times. A total of 419,189 docu-
ments remain in the corpus. We apply LDA (Blei
et al., 2003) on each corpus and obtain 100 topics
for each subject. This choice for the number of
topics is based on the prior work of Bhatia et al.
(2016) where the authors generate 100 topics for
each domain. These are filtered based on coher-
ence (Röder et al., 2015), removing topics with a
CV score under 0.30, leaving a total of 303 topics.
With the probability distributions of topics over the
top-100 words, we generate 100 candidate labels
for each topic using the NETL approach described
in Section 3.

For the weak labelers, we choose to extract 5 n-
grams with a n varying between 2 and 4, 5 groups
of sentences with a character threshold of 120 and
10 noun phrases with a length of 2 to 4 words that
have at least 25 occurrences. We experimented with
each strategy individually but provided results for
a model employing only the n-grams enrichment,
BART-TL-ng, and one using all of them, BART-TL-
all.

2The corpus can be found at https://archive.org/
download/stackexchange.

4.2 Fine-tuning Details
We fine-tune the large BART model3 for 2 epochs
using an Adam optimizer (Kingma and Ba, 2014)
with β1 = 0.9, β2 = 0.999, ε = 10−8, 0.1 weight
decay, 0.1 dropout, 0.1 attention dropout, 0.1 la-
bel smoothing, 6% warmup steps and a learning
rate of 3e-5. The final labels are generated us-
ing beam search with a beam size of 25. These
values follow the fine-tuning approach suggested
for RoBERTa (Liu et al., 2019) and, by extension,
BERT (Devlin et al., 2018), since the BART fine-
tuning experiments do not explicitly specify differ-
ent values for the hyper-parameters.

5 Results

We gather annotations in the form of surveys with
7 questions, one per topic, on the quality of topic
labels on a scale from 0 to 3. The annotators have
varying backgrounds, including computer science,
medicine, law, and economics. For each of the 5
subjects in the corpus, we select 6 coherent topics
for evaluation. The labels are taken from the un-
supervised and supervised versions of the original
NETL method, along with BART-TL-ngram, and
BART-TL-all. For each method, only top-10 labels
are considered for evaluation. An extra stopword la-
bel is introduced as a distractor, removing answers
from annotators with over 25% of these scores ≥ 1.
A topic is presented using its top-10 terms, along
with 2 relevant short paragraphs, to offer additional
context when the topic is unclear. Each survey has
balanced topics based on the 5 subjects and each
question contains 9 balanced labels based on the
models. We gathered a total of 35 survey responses
and filtered out the labels that had only a single an-
notation. This annotation was performed pro-bono
and we estimate that the average time per anno-
tated survey was 10 minutes. There is no bias in
the annotations for certain models, as the average
standard deviation for rating of individual labels is
between 0.42 and 0.44 for all of them.

The results of this study are presented in Ta-
ble 1. We focus on both the overall quality of the
labels through top-k average rating, as well as how
well the labels are ordered through normalized dis-
counted cumulative gain (Järvelin and Kekäläinen,
2002). The two BART-TL models additionally fea-
ture statistics of the same labels reordered by the
supervised and unsupervised ranking methods of

3https://github.com/pytorch/fairseq/
tree/master/examples/bart.

https://archive.org/download/stackexchange
https://archive.org/download/stackexchange
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/tree/master/examples/bart


1421

Table 1: Qualitative comparison of labels between NETL and BART-TL models.

Models All English
Top-k Avg. nDCG-k Top-k Avg. nDCG-k

k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5

NETL (U) 2.66 2.59 2.50 0.83 0.85 0.87 2.19 2.46 2.38 0.57 0.78 0.84

NETL (S) 2.74 2.57 2.49 0.88 0.85 0.88 2.63 2.47 2.28 0.84 0.86 0.86

BART-TL-all (U) 2.64 2.52 2.43 0.83 0.84 0.87 2.58 2.33 2.20 0.81 0.83 0.89

BART-TL-all (S) 2.64 2.55 2.42 0.81 0.84 0.87 2.58 2.36 2.15 0.81 0.86 0.89

BART-TL-ng (U) 2.62 2.50 2.33 0.82 0.84 0.85 2.58 2.49 2.26 0.81 0.91 0.93

BART-TL-ng (S) 2.73 2.46 2.25 0.87 0.83 0.83 2.75 2.40 2.21 0.91 0.88 0.91

Table 2: Samples of good and bad quality new labels generated by BART-TL models.

Top-10 topic terms Good new labels Bad new labels
crime center institution chain prison

facility prisoner transformation jail custody
criminal justice system

administrative court
guarantee
principle

plate vehicle state license motor
shall registration law apostille issued

driver’s license
license plate law

no matter what
vehiclelicense (no space)

rate interest price inflation bond
increase real money supply nominal

investment rate
discount rate

rate interest rate
principle

Figure 2: Evolution of average rating considering top-k
labels.

NETL, as these usually perform better than the
raw beam search results. The supervised variant of
NETL uses the pre-trained ranker from the original
paper. An extended version of this table is available
in Appendix A.

To further investigate the results, we plot the
evolution of the average rating in relation to the
number of top labels considered. This can be seen

Figure 3: Average proportion of new labels in top-k.

in Figure 2. We study the capacity for novelty of the
models in Figure 3, which outlines the proportion
of new labels never encountered in the fine-tuning
dataset or NETL top-10 predicted labels, as well
as Figure 4, which illustrates the average rating
of these labels. We observe a significant loss of
up to 0.20 in rating, but even larger variations in
rating are frequent in Table 1. That said, the novel
labels would still be considered relevant with a
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Figure 4: Average rating of new labels in top-k.

rating between 2.0 and 2.5. Table 2 showcases a
few samples of original labels.

The results highlight that generative BART-TL
models produce similar quality labels as the NETL
methods when considering the top 1-2 labels. How-
ever, the quality of the generated labels degrades
as their number increases. There is also no clear
winner between the supervised and unsupervised
versions of the proposed models, as they have sim-
ilar trends. At the same time, the novelty tends
to improve slightly with the number of considered
labels. On average, 40% of the labels were never
provided when fine-tuning the models. While nov-
elty is an important feature for BART-TL, it can
further be conditioned to generate labels with spe-
cific characteristics (Keskar et al., 2019).

The BART-TL models outperform the NETL
methods on the English corpus, the largest of the
five. At the same time, they achieve similar results
on the Law and Biology corpora, that have the least
amount of topics and are outperformed on the rest.
Therefore, there was no correlation found between
corpus size and the quality of the generated labels.

6 Conclusion

We introduced the BART-TL model that builds upon
previous topic labeling solutions by adopting a gen-
erative deep learning strategy. Large pre-trained
transformer models are fine-tuned in a weakly-
supervised manner using unsupervised labelers to
obtain meaningful labels. While current results
have varying quality compared NETL, BART-TL
is able to generate novel labels of similar quality.
Although BART-TL experiments have been carried
out for English, our generative methodology can

be applied to any language if a pre-trained BART
model is available.
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Appendix A. Extended Results

We present an extended version of the results show-
cased previously in Table 1. While the target met-
rics remain the same, the additions are the raw
BART models, with the labels retaining the order
that they were generated in using beam search, as
well as all of the 5 different subjects. These were
added in Table 3.
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Table 3: Extended quality comparison of labels between NETL and BART-TL models.

Models All English
Top-k Avg. nDCG-k Top-k Avg. nDCG-k

k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5

NETL (U) 2.66 2.59 2.50 0.83 0.85 0.87 2.19 2.46 2.38 0.57 0.78 0.84

NETL (S) 2.74 2.57 2.49 0.88 0.85 0.88 2.63 2.47 2.28 0.84 0.86 0.86

BART-TL-all 2.41 2.38 2.28 0.73 0.75 0.79 1.89 1.94 2.00 0.52 0.60 0.74

BART-TL-all (U) 2.64 2.52 2.43 0.83 0.84 0.87 2.58 2.33 2.20 0.81 0.83 0.89

BART-TL-all (S) 2.64 2.55 2.42 0.81 0.84 0.87 2.58 2.36 2.15 0.81 0.86 0.89

BART-TL-ng 2.31 2.28 2.16 0.67 0.72 0.75 1.71 2.05 1.98 0.39 0.60 0.68

BART-TL-ng (U) 2.62 2.50 2.33 0.82 0.84 0.85 2.58 2.49 2.26 0.81 0.91 0.93

BART-TL-ng (S) 2.73 2.46 2.25 0.87 0.83 0.83 2.75 2.40 2.21 0.91 0.88 0.91
Biology Economics

Top-k Avg. nDCG-k Top-k Avg. nDCG-k
k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5

NETL (U) 2.57 2.26 2.18 0.86 0.80 0.83 2.83 2.73 2.71 0.88 0.85 0.89

NETL (S) 2.57 2.27 2.16 0.87 0.77 0.82 2.89 2.68 2.72 0.92 0.83 0.89

BART-TL-all 2.63 2.51 2.23 0.87 0.89 0.84 2.59 2.52 2.41 0.75 0.76 0.76

BART-TL-all (U) 2.42 2.43 2.37 0.75 0.82 0.85 2.66 2.62 2.55 0.83 0.82 0.83

BART-TL-all (S) 2.38 2.34 2.41 0.73 0.77 0.85 2.74 2.60 2.56 0.85 0.81 0.82

BART-TL-ng 2.66 2.42 2.09 0.87 0.84 0.80 2.53 2.64 2.62 0.72 0.78 0.82

BART-TL-ng (U) 2.42 2.47 2.27 0.72 0.81 0.83 2.66 2.63 2.65 0.83 0.83 0.86

BART-TL-ng (S) 2.48 2.18 2.14 0.76 0.68 0.74 2.77 2.68 2.57 0.87 0.85 0.83
Law Photography

Top-k Avg. nDCG-k Top-k Avg. nDCG-k
k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5

NETL (U) 2.81 2.78 2.52 0.88 0.91 0.87 2.88 2.61 2.61 0.97 0.89 0.92

NETL (S) 2.79 2.71 2.59 0.87 0.89 0.89 2.81 2.66 2.61 0.92 0.91 0.93

BART-TL-all 2.29 2.48 2.44 0.67 0.73 0.79 2.71 2.49 2.30 0.85 0.80 0.82

BART-TL-all (U) 2.86 2.67 2.57 0.91 0.86 0.88 2.67 2.59 2.46 0.82 0.85 0.88

BART-TL-all (S) 2.70 2.77 2.61 0.80 0.89 0.91 2.73 2.64 2.38 0.85 0.87 0.86

BART-TL-ng 2.17 2.16 1.98 0.60 0.65 0.67 2.53 2.12 2.09 0.81 0.76 0.77

BART-TL-ng (U) 2.97 2.39 2.29 0.98 0.82 0.86 2.42 2.52 2.11 0.72 0.84 0.79

BART-TL-ng (S) 2.86 2.54 2.14 0.91 0.87 0.82 2.74 2.46 2.15 0.91 0.85 0.83


