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Abstract

Public datasets are often used to evaluate the
efficacy and generalizability of state-of-the-art
methods for many tasks in natural language
processing (NLP). However, the presence of
overlap between the train and test datasets can
lead to inflated results, inadvertently evaluat-
ing the model’s ability to memorize and inter-
preting it as the ability to generalize. In ad-
dition, such data sets may not provide an ef-
fective indicator of the performance of these
methods in real world scenarios. We identify
leakage of training data into test data on sev-
eral publicly available datasets used to evalu-
ate NLP tasks, including named entity recog-
nition and relation extraction, and study them
to assess the impact of that leakage on the
model’s ability to memorize versus generalize.

1 Introduction

Shared tasks that provide publicly available
datasets in order to evaluate and compare the per-
formance of different methods on the same task
and data are common in NLP. Held-out test sets
are typically provided, enabling assessment of the
generalizability of different methods to previously
unseen data. These datasets have played a key
role in driving progress in NLP, by defining focus
tasks and by making annotated data available to
the broader community, in particular in specialized
domains such as biomedicine where data can be dif-
ficult to obtain, and quality data annotations require
the detailed work of domain experts. Examples of
tasks where benchmark data sets exist include open
domain question answering (QA) (Berant et al.,
2013; Joshi et al., 2017) and biomedical named
entity recognition (Smith et al., 2008) .

In the context of machine learning models, ef-
fectiveness is typically determined by the model’s
ability to both memorize and generalize (Chatterjee,
2018). A model that has huge capacity to memo-

rize will often work well in real world applications,
particularly where large amounts of training data
are available (Daelemans et al., 2005). The ability
of a model to generalize relates to how well the
model performs when it is applied on data that may
be different from the data used to train the model,
in terms of e.g. the distribution of vocabulary or
other relevant vocabulary. The ability to memorize,
taken to the extreme, can be considered equivalent
to an exact match lookup table (Chatterjee, 2018)
and the ability to generalize captures how well it
can deal with degrees of variations from the lookup
table. An effective combination of memorization
and generalization can be achieved where a model
selectively memorizes only those aspects or fea-
tures that matter in solving a target objective given
an input, allowing it to generalize better and to be
less susceptible to noise.

When there is considerable overlap in the train-
ing and test data for a task, models that memorize
more effectively than they generalize may bene-
fit from the structure of the evaluation data, with
their performance inflated relative to models that
are more robust in generalization. However, such
models may make poor quality predictions outside
of the shared task setting. The external validity
of these evaluations can therefore be questioned
(Ferro et al., 2018).

In this paper, we assess the overlap between the
train and test data in publicly available datasets
for Named Entity Recognition (NER), Relation Ex-
traction (REL) and Text Classification (CLS) tasks,
including SST2 (Socher et al., 2013), BioCreative
(Smith et al., 2008; Arighi et al., 2011) and AIMed
(Bunescu et al., 2005) datasets, and examine the
significant impact of not taking into account this
overlap on performance evaluation.

We argue that robustness in generalization to un-
seen data is a key consideration of the performance
of a model, and propose a framework to examine
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inadvertent leakage of data between data set splits,
in order to enable more controlled assessment of
the memorization vs. generalization characteristics
of different methods.

2 Related work

The issue of memorization vs. generalization has
been previously discussed in the context of ques-
tion answering datasets, where, given only a ques-
tion, a system must output the best answer it can
find in available texts.

Lewis et al. (2020) identify 3 distinct issues for
open domain QA evaluation: a) question memoriza-
tion – recall the answer to a question that the model
has seen at training time; b) answer memorization
– answer novel questions at test time, where the
model has seen the answer during training; and
c) generalization – question and answer not seen
during training time. They find that 58-71% of test
answers occur in the training data in 3 examined
data sets, concluding that the majority of the test
data does not assess answer generalization. They
also find that 28-34% have paraphrased questions
in training data, and a majority of questions are
duplicates differing only by a few words.

Similarly, Min (2020) identified repeating forms
in QA test sets as a problem. The work proposed
a novel template-based approach to splitting ques-
tions into paraphrase groups referred to as “Tem-
plates” and then controlling train/test data splits
to ensure that all questions conforming to a given
template appear in one segment of the data only.
This was tested on the EMR Clinical Question
Answering dataset emrQA (Pampari et al., 2018)
and the Overnight dataset (Wang et al., 2015);
it was demonstrated that models perform signif-
icantly worse on test sets where strict division is
enforced. This paraphrase-based splitting method-
ology was also employed in their recent work on
emrQA (Rawat et al., 2020).

3 Approach

A common practice to create a train and test set is
to shuffle data instances in a dataset and generate
random splits, without taking into account broader
context. However, this can inadvertently lead to
data leakage from the train set to test set due to the
overlaps between similar train and test instances.

The type of overlap between train and test
dataset depends on the type of the NLP task. Gen-
erally speaking, the leakage can occur either in the

Algorithm 1 Compute overlap
1: procedure COMPARE(testset, trainset)
2: totalscore← 0
3: n← |testset|
4: for testi in testset do
5: s← BESTMATCH(testi, trainset)
6: totalscore← totalscore+ s
7: end for
8: return totalscore/n . Average score
9: end procedure

10: procedure BESTMATCH(testi, trainset)
11: bestscore← 0
12: for trainj in trainset do
13: s← SIMILARITY(testi, trainj)
14: if score > bestscore then
15: bestscore← s
16: end if
17: end for
18: return bestscore
19: end procedure

input texts or the annotated outputs. We define the
types of overlaps which may occur in several NLP
tasks as follows.
• In text classification (CLS) tasks such as sen-

timent analysis, overall (document-level) sim-
ilarity in input texts can result in train/test
leakage.
• In named entity recognition (NER) tasks, leak-

age from train to test data may occur when
a) input sentences or passages are similar
b) target entities are similar

• In relation extraction (REL) tasks, leakage
may occur when

a) input sentences or passages are similar
b) participating entities are similar

We propose a framework for quantifying train-
test overlaps, and conduct experiments to show
the impact of train-test overlap on model perfor-
mances. Next, we discuss the proposed frame-
work in Sec. 4.2 and the experimental settings in
Sec. 4.3. We present our findings including the
train-test overlaps in several benchmark datasets in
Sec. 5.1 and the impact of data leakage in Sec. 5.2.

4 Method

4.1 Datasets

We examine overlap in the following datasets:
• AIMed - AIMed dataset (Bunescu et al.,

2005) for protein relation extraction (REL)
• BC2GM - BioCreative II gene mention

dataset (Smith et al., 2008) for NER task
• ChEMU - Chemical Reactions from Patents

(He et al., 2020) for recognising names of
chemicals, an NER task
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Task Dataset Score Split Example
REL AIMed (R) 100.0 Train Thus, during PROTEIN1 -mediated suppression of cell proliferation, PROTEIN

and PROTEIN2 may be important for coordinating cell-cycle progression, DNA
replication and repair of damaged DNA.

Test Thus, during PROTEIN -mediated suppression of cell proliferation, PROTEIN1
and PROTEIN2 may be important for coordinating cell-cycle progression, DNA
replication and repair of damaged DNA.

NER BC2GM 100.0 Train E2F family members
Test E2F family members (1-5)

CLS SST2 100.0 Train good movie .
Test it ’s still not a good movie.

CLS SST2 21.8 Train herzog is obviously looking for a moral to his fable , but the notion that a strong ,
unified showing among germany and eastern european jews might have changed
20th-century history is undermined by ahola ’s inadequate performance .

Test of the unsung heroes of 20th century

Table 1: Examples of train-test matches and the corresponding unigram similarity score.

• BC3ACT - Biocreative III protein interaction
classification (CLS) (Arighi et al., 2011)
• SST2 - Stanford Sentiment Analysis Treebank

(Socher et al., 2013) used to classify senti-
ments (CLS) in Glue (Wang et al., 2018)

The AIMed dataset does not explicitly provide
a test set and 10-fold cross validation is used for
evaluation in previous works (Hsieh et al., 2017;
Zhang et al., 2019). In this paper, we use two types
of splits of AIMed to evaluate the impact of data
leakage: AIMed (R) which Randomly splits the
dataset into 10 folds; and AIMed (U) which splits
the dataset into 10 folds such that the documents
within each resultant split are Unique (according to
the document ID) to other splits across each split.
The document ID refers to the source document of
a data instance, and data instances from the same
source document have the same document ID, see
example in Appendix A

4.2 Similarity measurement
The pseudo code for measuring similarity is shown
in Algorithm 1. Given a test instance testi, we
compute its similarity with the training set using
the training instance that is most similar with testi.
We then use the average similarity over all the test
instances as an indicator to measure the extent of
train/test overlap. The function similarity(·) can
be any function for text similarity. In this paper, we
use a simple bag-of-words approach to compute
text similarity. We represent each train/test instance
with a count vector of unigrams/bigrams/trigrams,
ignoring stopwords, and compute the similarity
using the cosine similarity.

4.3 Evaluate model performance
We assess the impact of data leakage on a machine
learning model’s performance. We split the test
sets of BC2GM, ChEMU, BC2ACT and SST2 into

four intervals considering four similarity thresh-
old ranges (in terms of unigrams): [0-0.25),[0.25-
0.50), [0.50-0.75), and [0.75-1.0]. For example, the
test instances in the first interval are most different
from the training set with a similarity less than 0.25.
This method allows full control of the similarity of
instances within each interval, but results in a dif-
ferent number of instances in each interval. Thus,
we consider another scenario where we split the
test set into 4 quartiles based on similarity ranking,
so that the number of samples remain the same in
each quartile but the threshold varies as a result.

We finetune a BERT (base and cased) model
(Devlin et al., 2019) for each dataset using their
own training set and compare the performance of
the finetuned BERT model on the four different test
intervals and test quartiles.

We compare the performances of AIMed (R)
with AIMed (U) using 3 different models—Zhang
et al. (2019) convolutional residual network, Hsieh
et al. (2017) Bi-LSTM, and BioBERT (Lee et al.,
2019). Following previous works, we preprocess
the dataset and replace all non-participating pro-
teins with neutral name PROTEIN, the participating
entity pairs with PROTEIN1 and PROTEIN2, so the
model only ever sees the pseudo protein names.

5 Results

5.1 Similarity in datasets

Examples of similar train and test instances are
shown in Table 1. The overall results of train-test
similarities of all datasets are shown in Table 2.

In the BC2GM dataset, we find that there is 70%
overlap between gene names in the train and test
set. On further analysis, we find that 2,308 out of
6,331 genes in the test set have exact matches in
the train set. In the AIMed (R) dataset, we can see
that there is over 73% overlap, even measured in



1328

Dataset Task uni bi tri
AIMED (R) REL 96.95 82.29 73.15
AIMED (U) REL 67.14 36.07 20.77
BC2GM ann NER 70.77 19.55 5.41
BC2GM text NER 33.19 13.12 4.20
BC3ACT CLS 26.76 6.91 1.81
ChEMU ann NER 84.29 30.67 6.83
ChEMU text NER 68.45 42.39 31.63
SST2 CLS 46.06 17.38 1.39

Table 2: Train-test similarity using unigrams (uni), bi-
grams (bi), trigrams (tri). BC2GM and ChEMU are in
BRAT standoff format and their similarities are shown
for their text files (“text”) and annotation files (“ann”).
Similarities beyond 60.0 are highlighed in bold.

Split type Method P R F1
O BiLSTM 78.8 75.2 76.9
O ConvRes 79.0 76.8 77.6

Replicated experiments
R BiLSTM 74.5 69.7 71.7
U BiLSTM 57.4 61.7 58.7
R ConvRes 71.1 69.2 69.9
U ConvRes 56.7 56.4 56.1
R BioBERT 79.8 76.7 77.9
U BioBERT 65.8 63.7 64.4

Table 3: Performances on AIMed (R) and AIMed (U).
The split type (O) indicates the original results from the
authors.

the trigrams, between train and test sets.

5.2 Model performance and similarity

We observe drops in F-scores of more than 10
points between AIMed (R) and AIMed (U) across
all three models as shown in Table 3. This is in
line with the similarity measurement in Table 2:
the train-test similarity drops significantly from
AIMed (R) to AIMed (U) since in AIMed (U) we
only allow unique document IDs in different folds.

On the ChEMU NER dataset we observe nearly
10-point drop in F-score (96.7→85.6) from 4I to 2I
as shown in Table 4.

On the BC2GM dataset, we also find that the
model performance degrades from 82.4% to 74.5%
in 2I compared to that in 1I. Surprisingly, F-
score for 4I is substantially lower than that of 3I
(78.5→87.1), despite 41 out of the total 47 in-
stances in 4I having 100% similarity with the train
set (full detailed samples shown in Appendix Ta-
ble 10). A further investigation on this shows
that (a) the interval 4I only has 0.9% (47/5000)
of test instances; (b) a significant drop in recall

D SR % P R F1 A
BC2 F 100.0 77.5 86.4 81.7
BC2 1I 19.8 68.8 81.1 74.5
BC2 2I 74.1 78.3 86.9 82.4
BC2 3I 5.1 83.8 90.6 87.1
BC2 4I 0.9 79.5 77.5 78.5
ChE F 100.0 93.8 94.4 94.1
ChE 1I 0.0 - - -
ChE 2I 10.0 84.6 86.6 85.6
ChE 3I 60.0 93.4 94.0 93.7
ChE 4I 30.0 96.7 96.7 96.7
BC3 F 100.0 45.1 84.1 58.7 82.1
BC3 1I 47.0 43.0 82.0 56.4 85.8
BC3 2I 51.0 46.0 85.6 59.9 78.8
BC3 3I 2.0 53.5 76.7 63.0 77.5
BC3 4I 0.0 0.0 0.0 0.0 0.0
SST F 100.0 90.4 96.7 93.4 93.2
SST 1I 1.1 60.0 75.0 66.7 85.0
SST 2I 66.8 91.6 96.0 93.8 93.4
SST 3I 28.7 87.1 98.7 92.5 92.7
SST 4I 3.5 96.9 96.9 96.9 96.8

Table 4: Performances on various similarity thresh-
olds and the corresponding percentage of test instances
within the intervals. Datasets (D): BC2→BC2GM,
ChE→ChEMU, BC3→BC3ACT, SST→SST2. The
similarity threshold range (SR) [0, 0.25) = 1I,
[0.25, 0.5) = 2I, [0.5, 0.75) = 3I, [0.75, 1] = 4I,
[0, 1] = F. Accuracy (A) is the official metric for the
SST2 dataset according to GLUE benchmark, all oth-
ers use F1-score (F1) as primary metric.

(90.6→77.5) from 3I to 4I is caused by six in-
stances whose input texts have exact matches in the
train set (full samples shown in Appendix Table 11).
This implies that the model doesn’t perform well
even on the training data for these samples. Since
BC2GM has over 70% overlap in the target gene
mentions (Table 2), we also analysed the recall on
the annotations that overlap between train and test.
We find that the recall increases (84.5→87.8), see
Appendix Table 8, compared to recall (81.1→90.6)
as a result of input text similarity. Since BERT
uses a word sequence-based prediction approach,
the relatively high similarity in target annotations
does not seem to make much difference compared
to similarity in input text. However, if we used
a dictionary-based approach, similarity in annota-
tions could result in much higher recall compared
to similarity in input text.

The BC3ACT dataset also exhibits the same
trend where the F1-score improves (56.4→63.0)
as the similarity increases. However, the accuracy
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D Q Min Max P R F1 A
BC2 1 0.0 26.3 69.8 82.0 75.4
BC2 2 26.3 31.6 74.5 85.9 79.8
BC2 3 31.6 38.3 78.3 86.4 82.1
BC2 4 38.3 100.0 83.0 88.9 85.9
ChE 1 37.9 56.7 90.8 91.8 91.3
ChE 2 56.8 68.2 93.3 94.4 93.8
ChE 3 68.2 78.5 95.1 96.1 95.6
ChE 4 78.6 99.8 97.1 97.4 97.3
BC3 1 6.3 20.1 44.5 81.4 57.6 88.8
BC3 2 20.1 25.7 42.3 82.5 55.9 82.7
BC3 3 25.7 31.9 46.5 85.3 60.2 79.5
BC3 4 31.9 75.0 46.1 85.2 59.8 77.3
SST 1 0.0 36.5 90.8 95.2 92.9 92.8
SST 2 36.5 43.6 91.3 96.2 93.7 93.2
SST 3 43.6 53.5 91.2 97.3 94.2 94.1
SST 4 53.5 100.0 88.0 98.1 92.8 92.9

Table 5: Performances on four different test quartiles,
where the number of samples in each quartile (Q) is
kept same. The minimum (Min) and the maximum
(Max) similarity within each quartile are also reported.

drops from 85.8→77.5. This is could be because
while the train set has 50% positive classes, the test
set has just 17% with 3 points higher mean similar-
ity in positive samples (details in Appendix B).

On SST2, an increase in accuracy (85.0→ 96.8)
from 1I to 4I is observed apart from a marginal
0.7-point drop (93.4→ 92.7) from 2I to 3I.

We also split the test sets into four equal-sized
quartiles based on the similarity ranking of test
instances, shown in Table 5. We observe similar
phenomena as in the previous set of experiments
for the dataset BC2GM, ChEMU, and BC3ACT.
The only exception is for SST2 where the F-score
has a relatively small but consistent increase from
Q1 to Q3 (92.9→94.1) but drops to 92.8 in Q4.

6 Discussion

6.1 Quantifying similarity

The bag-of-words based approach to compute co-
sine similarity has been able to detect simple forms
of overlap effectively as shown in Table 2. A trend
that can be seen is that overlap is more common
in tasks that are manual labour intensive, such as
named entity recognition and relation extraction
compared to text classification.

However, this approach may detect similarity
even when the meanings are different, especially in
the case of classification tasks as shown for SST2
in Table 1. Semantic Text Similarity (STS) mea-

surement is a challenging task in its own right, with
a large body of literature and a number of shared
tasks organized to address it (Cer et al., 2017; Wang
et al., 2020; Karimi et al., 2015). More sophisti-
cated methods for similarity measurement devel-
oped in these contexts could be incorporated into
the framework for measuring similarity of data set
splits; for simple leakage detection it is arguably
adequate. However, sophisticated methods can also
potentially lead to a chicken and egg problem, if we
use a machine learning model to compute semantic
similarity.

The question of what level of similarity is accept-
able is highly data and task-dependent. If the train-
ing data has good volume and variety, the training-
test similarity will naturally be higher and so will
the acceptable similarity.

6.2 Memorization vs. Generalization

We find that the F-scores tend to be higher when
the test set input text is similar to the training set
as shown in Table 3 and 4. While this might be
apparent, quantifying similarity in the test set helps
understand that high scores in the test set could be
a result of similarity to the train set, and therefore
measuring memorization and not a model’s ability
to generalize. If a model is trained on sufficient
volume and variety of data then it may now mat-
ter if it memorizes or generalizes in a real world
context, and a model’s ability to memorize is not
necessarily a disadvantage. However, in the set-
ting of a shared task, we often do not have access
to sufficiently large training data sets and hence
it is important to consider the test/train similarity
when evaluating the models. This implies that in
real world scenarios the model may perform poorly
when it encounters data not seen during training.

7 Conclusion

We conclude that quantifying train/test overlap is
crucial to assessing real world applicability of ma-
chine learning in NLP tasks, given our reliance on
annotated data for training and testing in the NLP
community. A single metric over a held-out test set
is not sufficient to infer generalizablity of a model.
Stratification of test sets by similarity enables more
robust assessment of memorization vs. generaliza-
tion capabilities of models. Further development
of approaches to structured consideration of model
performance under different assumptions will im-
prove our understanding of these tradeoffs.
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A AIMed document examples

The following example shows how multiple data instances are extracted from a single document in AIMed
dataset. The document with ID “AIMed.d0” has several instances including “AIMed.d0.s0” and
“AIMed.d0.s1”. These instances thus have the same document id.

<corpus source="AIMed">
<document id="AIMed.d0">
<sentence id="AIMed.d0.s0" text="Th1/Th2 type cytokines in hepatitis B patients treated with interferon-alpha." seqId="s0"

>
<entity id="AIMed.d0.s0.e0" charOffset="60-75" type="protein" text="interferon-alpha" seqId="e0"/>

</sentence>
<sentence id="AIMed.d0.s1" text="OBJECTIVE: To investigate the relationship between the expression of Th1/Th2 type

cytokines and the effect of interferon-alpha therapy." seqId="s1">
<entity id="AIMed.d0.s1.e0" charOffset="110-125" type="protein" text="interferon-alpha" seqId="e1"/>

</sentence>
</document>
<document id="AIMed.d1">
<sentence id="AIMed.d1.s11" text="Involvement of BMP-2 signaling in a cartilage cap in osteochondroma." seqId="s11">

<entity id="AIMed.d1.s11.e0" charOffset="15-19" type="protein" text="BMP-2" seqId="e15"/>
</sentence>

</document>
</corpus>

B Classwise similarity for BC3AST

The test set has 5090 negative samples compared to 910 positive samples, with 2.96 points higher mean
similarity in positive samples.

Test label Unigram Bigram Trigram
0 count 5090.00 5090.00 5090.00

mean 26.31 6.70 1.73
std 9.25 5.35 1.72
min 6.28 0.00 0.00
25% 19.70 3.29 0.79
50% 25.16 5.07 1.39
75% 31.53 8.29 2.27
max 75.01 41.75 18.71

1 count 910.00 910.00 910.00
mean 29.27 8.09 2.26
std 9.36 6.00 1.73
min 11.14 1.52 0.00
25% 22.69 4.51 1.17
50% 28.31 6.25 1.88
75% 34.32 9.38 2.84
max 74.01 51.20 18.97

Table 6: Class-wise similarity for BC3ACT dataset

C BERT and similarity thresholds

Table 7 shows the impact on precision, recall and F-score using different similarity thresholds on the
BC2GM test set, which has approximately 6,300 annotations.

We also compare the recall when the target annotations are similar as shown in Table 8. We only
compare unigrams, as the number of tokens in a gene name tends to be small (on average less than 3).

Table 9 shows BERT’s performance using bi-grams and trigrams on SST2 and BC3AST datasets.
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Dataset N SR % P R F
BC2GM - - 100 77.5 86.4 81.7
BC2GM 1 1I 19.8 68.8 81.1 74.5
BC2GM 1 2I 74.1 78.2 86.9 82.3
BC2GM l 3I 5.1 83.8 90.6 87.1
BC2GM l 4I 1.0 79.5 77.5 78.5
BC2GM 2 1I 91.7 76.9 86.3 81.4
BC2GM 2 2I 7.5 82.5 88.1 85.2
BC2GM 2 3I 0.3 1.0 1.0 1.0
BC2GM 2 4I 0.5 78.9 76.9 77.9
BC2GM 3 1I 98.5 77.4 86.4 81.7
BC2GM 3 2I 0.9 85.2 88.5 86.8
BC2GM 3 3I 0.1 50.0 100.0 66.7
BC2GM 3 4I 0.5 80.6 76.3 78.4

Table 7: NER performances of BERT on various similarity threshold range (SR) and the corresponding percentage
of instances when the similarity is computed using N-grams (N = 1, 2 and 3) in the input text. The range [0, 0.25) =
1I, [0.25, 0.5) = 2I, [0.5, 0.75) = 3I, [0.75, 1] = 4I, [0, 1] = F.

Dataset N SR % Recall
BC2GM (anno) - F 100.0 86.4
BC2GM (anno) 1 1I 16.7 84.5
BC2GM (anno) 1 2I 5.6 81.8
BC2GM (anno) 1 3I 24.7 85.6
BC2GM (anno) 1 4I 53.0 87.8

Table 8: NER score on BERT at various similarity threshold range (SR) and the corresponding % of samples using
ngram N = 1 in the output annotated gene mentions.

Dataset N SR % P R F1 A
BC3ACT - F 100.0 45.1 84.1 58.7 82.1
BC3ACT 1 1I 47.0 43.0 82.0 56.4 85.8
BC3ACT 1 2I 51.0 46.0 85.6 59.9 78.8
BC3ACT 1 3I 2.0 53.5 76.7 63.0 77.5
BC3ACT 1 4I 0.0 0.0 0.0 0.0 0.0
BC3ACT 2 1I 98.2 45.0 84.1 58.6 82.2
BC3ACT 2 2I 1.8 48.8 83.3 61.5 76.6
BC3ACT 2 3I 0.0 100.0 100.0 100.0 100.0
BC3ACT 2 4I 0.0 0.0 0.0 0.0 -
BC3ACT 3 1I 100.0 45.1 84.1 58.7 82.1
BC3ACT 3 2I 0.0 0.0 0.0 0.0 -
BC3ACT 3 3I 0.0 0.0 0.0 0.0 -
BC3ACT 3 4I 0.0 0.0 0.0 0.0 -
SST2 - F 100.0 90.4 96.7 93.4 93.2
SST2 1 1I 1.1 60.0 75.0 66.7 85.0
SST2 1 2I 66.8 91.6 96.0 93.8 93.4
SST2 1 3I 28.7 87.1 98.7 92.5 92.7
SST2 1 4I 3.5 96.9 96.9 96.9 96.8
SST2 2 1I 64.0 88.6 96.0 92.2 92.3
SST2 2 2I 30.8 93.1 97.3 95.1 94.8
SST2 2 3I 4.8 93.1 100.0 96.4 95.4
SST2 2 4I 0.4 100.0 100.0 100.0 100.0
SST2 3 1I 97.6 90.5 96.6 93.4 93.3
SST2 3 2I 1.9 82.6 100.0 90.5 88.2
SST2 3 3I 0.5 100.0 100.0 100.0 100.0
SST2 3 4I 0.0 0.0 0.0 0.0 -

Table 9: SST2 and BC3ACT similarity thresholds using ngram N = 1,2 and 3. The range [0, 0.25) = 1I ,
[0.25, 0.5) = 2I , [0.5, 0.75) = 3I , [0.75, 1] = 4I , [0, 1] = F
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D High similarity BC2GM samples

Table 10 shows the 75% similarity samples in the BC2GM dataset. The samples that caused the drop in
recall are shown in Table 11.

Score Test Train
76.45 Histological and immunophenotypic studies revealed 12 large cell lymphomas (11 B

cell and one T cell), two small noncleaved cell lymphomas (B-cell phenotype), and
five low grade B-cell lymphomas (two small lymphocytic and three follicular mixed
lymphomas).

The cases included 35 de novo diffuse aggressive lymphomas (DAL; 19 large-cell, 4
mixed-cell, and 12 large-cell immunoblastic), 52 transformed aggressive lymphomas
derived from follicular lymphomas (TFL), 42 indolent follicular lymphomas (FL), 14
mantle cell lymphomas (MCL), and 27 small noncleaved cell lymphomas (SNCL).

77.46 98, 93-98). 356, 93-98].
81.65 Free protein S deficiency in acute ischemic stroke. Ischemic stroke due to protein C deficiency.
83.41 In stage I, histochemistry for copper was positive in 11 out of 21 cases: 6 cases were

T+; 1 case R+ and 2 cases O+; 2 cases were T+, R+, O+.
3 cases

86.60 STUDY DESIGN: Retrospective review. DESIGN: Retrospective study.
86.60 Non-dialyzable transfer factor Dialyzable transfer factor.
100.00 Recently we have performed a detailed analysis of specific neuronal populations af-

fected by the mutation which shed new light on the role of Krox-20 in the segmentation
and on the physiological consequences of its inactivation.

Recently we have performed a detailed analysis of specific neuronal populations af-
fected by the mutation which shed new light on the role of Krox-20 in the segmentation
and on the physiological consequences of its inactivation.

100.00 Slowly adapting type I mechanoreceptor discharge as a function of dynamic force
versus dynamic displacement of glabrous skin of raccoon and squirrel monkey hand.

Slowly adapting type I mechanoreceptor discharge as a function of dynamic force
versus dynamic displacement of glabrous skin of raccoon and squirrel monkey hand.

100.00 The recruitment of constitutively phosphorylated p185(neu) and the activated mito-
genic pathway proteins to this membrane-microfilament interaction site provides a
physical model for integrating the assembly of the mitogenic pathway with the trans-
mission of growth factor signal to the cytoskeleton.

The recruitment of constitutively phosphorylated p185(neu) and the activated mito-
genic pathway proteins to this membrane-microfilament interaction site provides a
physical model for integrating the assembly of the mitogenic pathway with the trans-
mission of growth factor signal to the cytoskeleton.

100.00 A heterologous promoter construct containing three repeats of a consensus Sp1 site,
cloned upstream of a single copy of the ZII (CREB/ AP1) element from the BZLF1
promoter linked to the beta-globin TATA box, exhibited phorbol ester inducibility.

A heterologous promoter construct containing three repeats of a consensus Sp1 site,
cloned upstream of a single copy of the ZII (CREB/ AP1) element from the BZLF1
promoter linked to the beta-globin TATA box, exhibited phorbol ester inducibility.

100.00 The reconstituted RNA polymerases containing the mutant alpha subunits were exam-
ined for their response to transcription activation by cAMP-CRP and the rrnBP1 UP
element.

The reconstituted RNA polymerases containing the mutant alpha subunits were exam-
ined for their response to transcription activation by cAMP-CRP and the rrnBP1 UP
element.

100.00 Analysis of 1 Mb of published sequence from the region of conserved synteny on
human chromosome 5q31-q33 identified 45 gene candidates, including 35 expressed
genes in the human IL-4 cytokine gene cluster.

Analysis of 1 Mb of published sequence from the region of conserved synteny on
human chromosome 5q31-q33 identified 45 gene candidates, including 35 expressed
genes in the human IL-4 cytokine gene cluster.

100.00 Although RAD17, RAD24 and MEC3 are not required for cell cycle arrest when S
phase is inhibited by hydroxyurea (HU), they do contribute to the viability of yeast
cells grown in the presence of HU, possibly because they are required for the repair of
HU-induced DNA damage.

Although RAD17, RAD24 and MEC3 are not required for cell cycle arrest when S
phase is inhibited by hydroxyurea (HU), they do contribute to the viability of yeast
cells grown in the presence of HU, possibly because they are required for the repair of
HU-induced DNA damage.

100.00 The promoter for HMG-CoA synthase contains two binding sites for the sterol regula-
tory element-binding proteins (SREBPs).

The promoter for HMG-CoA synthase contains two binding sites for the sterol regula-
tory element-binding proteins (SREBPs).

100.00 Coronary vasoconstriction caused by endothelin-1 is enhanced by ischemia-
reperfusion and by norepinephrine present in concentrations typically observed after
neonatal cardiopulmonary bypass.

Coronary vasoconstriction caused by endothelin-1 is enhanced by ischemia-
reperfusion and by norepinephrine present in concentrations typically observed after
neonatal cardiopulmonary bypass.

100.00 (LH P ¡ 0.05, LH/FSH P ¡ 0.01). (LH P ¡ 0.05, LH/FSH P ¡ 0.01).
100.00 Determinants of recurrent ischaemia and revascularisation procedures after thrombol-

ysis with recombinant tissue plasminogen activator in primary coronary occlusion.
Determinants of recurrent ischaemia and revascularisation procedures after thrombol-
ysis with recombinant tissue plasminogen activator in primary coronary occlusion.

100.00 The human SHBG proximal promoter was analyzed by DNase I footprinting, and
the functional significance of 6 footprinted regions (FP1-FP6) within the proximal
promoter was studied in human HepG2 hepatoblastoma cells.

The human SHBG proximal promoter was analyzed by DNase I footprinting, and
the functional significance of 6 footprinted regions (FP1-FP6) within the proximal
promoter was studied in human HepG2 hepatoblastoma cells.

100.00 Biol. Biol.
100.00 Copyright 1999 Academic Press. Copyright 1999 Academic Press.
100.00 These results demonstrate a specific association of SIV and HIV-2 nef, but not HIV-1

nef, with TCRzeta.
These results demonstrate a specific association of SIV and HIV-2 nef, but not HIV-1
nef, with TCRzeta.

100.00 Urease activity, judged as the amount of ammonia production from urea, could be
measured at 25 ng per tube (S/N = 1.5) with Jack bean meal urease.

Urease activity, judged as the amount of ammonia production from urea, could be
measured at 25 ng per tube (S/N = 1.5) with Jack bean meal urease.

100.00 Copyright 1999 Academic Press. Copyright 1999 Academic Press.
100.00 IV. IV.
100.00 Copyright 1998 Academic Press. Copyright 1998 Academic Press.
100.00 IV. IV.
100.00 Biol. Biol.
100.00 Copyright 1999 Academic Press. Copyright 1999 Academic Press.
100.00 Copyright 1998 Academic Press. Copyright 1998 Academic Press.
100.00 Copyright 2000 Academic Press. Copyright 2000 Academic Press.
100.00 1988). (1988) J.
100.00 Biol. Biol.
100.00 Acad. Acad.
100.00 Virol. Virol.
100.00 1995. (1995) J.
100.00 Natl. Natl.
100.00 Copyright 1999 Academic Press. Copyright 1999 Academic Press.
100.00 The activated glucocorticoid receptor forms a complex with Stat5 and enhances Stat5-

mediated transcriptional induction.
The activated glucocorticoid receptor forms a complex with Stat5 and enhances Stat5-
mediated transcriptional induction.

100.00 Copyright 1999 Academic Press. Copyright 1999 Academic Press.
100.00 Chem. Chem.
100.00 Appl. Appl.
100.00 Copyright 1998 Academic Press. Copyright 1998 Academic Press.
100.00 Sci. Sci.
100.00 (1992) J. (1992) J.
100.00 Acad. Acad.
100.00 Mutational analysis of yeast CEG1 demonstrated that four of the five conserved motifs

are essential for capping enzyme function in vivo.
Mutational analysis of yeast CEG1 demonstrated that four of the five conserved motifs
are essential for capping enzyme function in vivo.

100.00 We also show that in fusions with the DNA binding domain of GAL4, full activity
requires the entire BHV-alpha TIF, although both amino and carboxyl termini display
some activity on their own.

We also show that in fusions with the DNA binding domain of GAL4, full activity
requires the entire BHV-alpha TIF, although both amino and carboxyl termini display
some activity on their own.

Table 10: Samples with over 75% similarity in the BC2GM dataset
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Gene Position Input
capping enzyme 88 100 Mutational analysis of yeast CEG1 demonstrated that four of the five conserved motifs are essential for capping

enzyme function in vivo.
human IL-4 cytokine gene 145 165 Analysis of 1 Mb of published sequence from the region of conserved synteny on human chromosome 5q31-q33

identified 45 gene candidates, including 35 expressed genes in the human IL-4 cytokine gene cluster.
LH 1 2 (LH P ¡ 0.05, LH/FSH P ¡ 0.01).
LH 10 11 (LH P ¡ 0.05, LH/FSH P ¡ 0.01).
FSH 13 15 (LH P ¡ 0.05, LH/FSH P ¡ 0.01).
Urease 0 5 Urease activity, judged as the amount of ammonia production from urea, could be measured at 25 ng per tube (S/N

= 1.5) with Jack bean meal urease.
Jack bean meal urease 101 118 Urease activity, judged as the amount of ammonia production from urea, could be measured at 25 ng per tube (S/N

= 1.5) with Jack bean meal urease.
cAMP-CRP 117 124 The reconstituted RNA polymerases containing the mutant alpha subunits were examined for their response to

transcription activation by cAMP-CRP and the rrnBP1 UP element.
HIV-2 nef 51 58 These results demonstrate a specific association of SIV and HIV-2 nef, but not HIV-1 nef, with TCRzeta.
HIV-1 nef 66 73 These results demonstrate a specific association of SIV and HIV-2 nef, but not HIV-1 nef, with TCRzeta.

Table 11: Test samples where the model failed to detect genes, lowering recall, despite the input raw text being an
exact match to the training sample


