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Abstract

This paper presents CovRelex, a scientific
paper retrieval system targeting entities and
relations via relation extraction on COVID-19
scientific papers. This work aims at building
a system supporting users efficiently in
acquiring knowledge across a huge number
of COVID-19 scientific papers published
rapidly. Our system can be accessed via
https://www.jaist.ac.jp/is/labs/

nguyen-lab/systems/covrelex/.

Keywords: COVID-19, biomedical domain,
scientific paper analysis, relation extraction,
entity recognition, document retrieval.

1 Introduction

This work aims at facilitating knowledge acqui-
sition from a huge number of COVID-19 scien-
tific papers. Due to the COVID-19 outbreak, re-
searchers have been focusing on studying the virus
and publishing a huge number of papers rapidly.
According to the estimation of Silva et al. (2020),
23,634 unique documents were published in just 6
months between January 1st and June 30th, 2020.
In the records of the COVID-19 Open Research
Dataset (CORD-19) Challenge1, the number of col-
lected papers about COVID-19, SARS-Cov-2 and
related coronaviruses is more than 400K by January
9th, 2021. The rapid speed of new publication and
the huge number of related papers challenges spe-
cialists to seek knowledge by connecting findings
across papers efficiently and timely.

1https://www.kaggle.com/
allen-institute-for-ai/
CORD-19-research-challenge

When focusing on knowledge acquisition of
biomedical entities, several questions can be asked
regarding the entities and their relations:

• Which papers mention entity E1?

• Which papers mention the relation R between
entity E1 and entity E2?

• Which papers mention the relation R1 be-
tween entity E1 and entity E2, and the relation
R2 between entity E2 and entity E3?

• What relations Rx exist between entity E1

and entity E2 and in which papers?

• What entity Ex has relation R with entity E1

and in which papers?

Such questions can be answered by our system.

2 Related Work

FACTA+ (Tsuruoka et al., 2011, 2008) was pre-
sented as a text search engine that helps users dis-
cover and visualize indirect associations between
biomedical concepts from MEDLINE abstracts.
Liu et al. (2015) introduced an online text-mining
system (PolySearch2) for identifying relationships
between biomedical entities over 43 million arti-
cles covering MEDLINE abstracts, PubMed Cen-
tral full-text articles, Wikipedia full-text articles,
US Patent abstracts, open access textbooks from
NCBI and MedlinePlus articles. More recently,
LitVar (Allot et al., 2018), a semantic search en-
gine, utilized advanced text mining techniques to
compute and extract relationships between genome

https://www.jaist.ac.jp/is/labs/nguyen-lab/systems/covrelex/
https://www.jaist.ac.jp/is/labs/nguyen-lab/systems/covrelex/
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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Figure 1: System Overview.

arg1 rel arg2

[MERS-CoV]GGP include [fever]DISEASE , [chills/rigors]DISEASE ,
[headache]DISEASE , non-productive [cough]DISEASE

[MERS-CoV]GGP is responsible
for causing

lower [respiratory infections]DISEASE with
[fever]DISEASE and [cough]DISEASE

Figure 2: An example of relations extracted from COVID-19 papers.

variants and other associated entities such as dis-
eases and chemicals/drugs. Wei et al. (2019) pre-
sented a web service PubTator Central (PTC) that
provides automated bioconcept annotations in full
text biomedical articles, in which bioconcepts are
extracted from state-of-the-art text mining systems.

Due to the COVID-19 outbreak, it is essential
to grasp valuable knowledge from a huge number
of COVID-19-related papers for dealing with the
pandemic effectively. Sohrab et al. (2020) intro-
duced the BENNERD system that detects named
entities in biomedical text and links them to the
unified medical language system (UMLS) to facil-
itate the COVID-19 research. Hope et al. (2020)
created a dataset annotated for mechanism rela-
tions and trained an information extraction model
on this data. Then, they used the model to ex-
tract a Knowledge Base (KB) of mechanism and
effect relations from papers relating to COVID-19.
Zhang et al. (2020) built Covidex, a search infras-
tructure that provides information access to the
COVID-19 Open Research Dataset such as answer-
ing questions. Esteva et al. (2020) also presented
Co-Search, a retriever-ranker semantic search en-
gine designed to handle complex queries over the
COVID-19 literature. Wang et al. (2020) created
the EvidenceMiner web-based system. Given a
query as a natural language statement, EvidenceM-
iner automatically retrieves sentence-level textual
evidence from the CORD-19 corpus.

Clearly, previous works made a great effort to

acquire useful knowledge from the COVID-19 lit-
erature, such as recognizing biomedical entities
(Sohrab et al., 2020), extracting mechanism rela-
tions between entities (Hope et al., 2020), or retriev-
ing relevant text segments based on the user query
(Zhang et al., 2020; Wang et al., 2020). However,
there is still a lack of a system that has the ability
to automatically detect both entities with various
types and their diverse relations through papers,
especially when COVID-19 papers are published
rapidly. This motivates us to build the CovRelex
system, which aims to exploit such information.

3 Method

3.1 Overview

The core of our system is built from extracting
an enormous number of relations from COVID-19
related scientific papers (in CORD-19 corpus) by
several open domain relation extraction methods.
The extracted relations are represented not only
by their original form from the extraction methods
but also by the contained biomedical entities. Fur-
thermore, the relations are clustered and scored for
their informativeness over the corpus (Fig. 1).

A relation is a triplet in the form
(arg1, rel, arg2), where arg1, and arg2 are
noun phrases which may contain biomedical
entities, and rel is an expression describing the
directed relation from arg1 to arg2 (shown in
Fig. 2).
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Table 1: SciSpacy models used in our system.

Name Training Data Entity Types

en ner craft md CRAFT GGP, SO, TAXON, CHEBI, GO, CL

en ner jnlpba md JNLPBA DNA, CELL TYPE, CELL LINE, RNA, PROTEIN

en ner bc5cdr md BC5CDR DISEASE, CHEMICAL

en ner bionlp13cg md BIONLP13CG AMINO ACID, ANATOMICAL SYSTEM, CANCER, CELL,
CELLULAR COMPONENT, DEVELOPING ANATOMICAL STRUCTURE,
GENE OR GENE PRODUCT, IMMATERIAL ANATOMICAL ENTITY,

MULTI-TISSUE STRUCTURE, ORGAN, ORGANISM,
ORGANISM SUBDIVISION, ORGANISM SUBSTANCE,
PATHOLOGICAL FORMATION, SIMPLE CHEMICAL, TISSUE

3.2 Relation Extraction
With the objective of extracting as many relations
as possible, we employ several relation extraction
methods. Each method has their own character-
istics, thus, may extract different kinds of rela-
tions. By combining several methods, we can ob-
tain higher extraction coverage. The methods are
briefly described as follows.

• ReVerb (Fader et al., 2011) tackles the prob-
lems of incoherent and uninformative extrac-
tions by introducing constraints on binary,
verb-based relation phrases.

• OLLIE (Mausam et al., 2012) addresses the
problems that Open IE systems such as Re-
Verb only extract relations that are mediated
by verbs. Not only by verbs, OLIEE extracts
relations mediated also by nouns, adjectives,
and more.

• ClausIE (Del Corro and Gemulla, 2013) is a
clause-based approach to open information ex-
traction. It separates the detection of clauses
and clause types from the actual generation of
propositions.

• Relink (Tran and Nguyen, 2020) is a method
partly inherited from ReVerb, extracts rela-
tions from the connected phrases, not for iden-
tifying clause type like ClauseIE.

• OpenIE (Angeli et al., 2015) extracts relations
by breaking a long sentence into short, co-
herent clauses, and then finds the maximally
simple relations.

The extracted relations are also tagged with biomed-
ical entities recognized by using entity recognition
models presented in the next subsection.

3.3 Entity Recognition

We use biomedical entity recognition models spe-
cialized for predicting entity type and provided by
SciSpacy (Neumann et al., 2019) (Table 1). Each
of the models is trained on a different annotated
corpus, thus, covers a different set of biomedical en-
tities. By using multiple entity systems, we can ob-
tain various specialized entity information: chemi-
cals and diseases with BCD5CDR (Li et al., 2016),
cell types, chemicals, proteins, and genes with
CRAFT (Bada et al., 2012), cell lines, cell types,
DNAs, RNAs, and proteins with JNLPBA (Col-
lier and Kim, 2004), and cancer genetics with
BioNLP13CG (Pyysalo et al., 2015).

3.4 Relation Clustering

We build a cluster hierarchy on a subset of the ex-
tracted relations (this subset contains all relations in
which both arg1 and arg2 are biomedical entities),
so users can quickly find their interested relation
expressions or they can choose some clusters which
may contain their interested relation expressions.

We utilize FINCH (Sarfraz et al., 2019), hierar-
chical clustering method, and BERT (Devlin et al.,
2019) for this task. First, BERT-Base model is used
to encode each relation as a simple sentence “ arg1
rel arg2” into a 768-dimensional vector. Then,
FINCH is used to build the cluster hierarchy. For
each cluster, representative expressions of the clus-
ter are selected from its rels from top informative
relations scored by the formula presented in the
next subsection. The result cluster hierarchy is
illustrated in Fig. 3.
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Figure 3: Illustration of cluster hierarchy. “DISEASE-0-7”: the type of an entity contained in the arg1 is DISEASE,
the id of the level 0 (root) cluster is 0, the id of the level 1 cluster is 7. An expression has the form of ENTITY
TYPE (in arg1, omitted) relation/verb phrase ENTITY TYPE (in arg2). Expressions are separated by |.

Figure 4: An example of Single-Relation Query for (mers-cov, any-relation, DISEASE).

3.5 Relation Scoring
Relations are scored for informativeness based
from Pointwise Mutual Information (PMI) (Church
and Hanks, 1990), the association ratio for
measuring word association norms, based on
the information-theoretic concept of mutual in-
formation. The informativeness of a relation
(arg1, rel, arg2) can be regarded as PMI (Eq. 1) of
two points: arg-pair args = (arg1, arg2) and its
relation expression rel through occurrence p(.).

PMI(args, rel) = log2
p(args, rel)

p(args) p(rel)
(1)

It is difficult to apply Eq. 1, which computes
the occurrence by exact matching, for our system
because of the variation and noise in the contents
of the extracted relations. To mitigate the difficulty
of using exact match, we propose to use cosine
similarity with Tf-idf vectorization (Sparck Jones,
1988). While exact match counting of occurrence
indicates the presence of an instance (args or rel)
in the relation set, our use of cosine similarity
indicates the presence of the contents of the in-
stance in the relation set, thus can adapt to the
variation and noise in the contents of the relations.

With our approach, the relation’s informativeness
InfoScore(args, rel) is computed following Eq. 2.

InfoScore(args, rel) = log2
S(args, rel)

S(args)S(rel)
(2)

S(args, rel) =∑
(args′,rel′)

cos(v(args, rel), v(args′, rel′))

S(args) =
∑
args′

cos(v(args), v(args′))

S(rel) =
∑
rel′

cos(v(rel), v(rel′))

where (args′, rel′) are all relations other than
(args, rel), args′ are arg-pairs in all relations
other than (args, rel), rel′ are expressions in all
relations other than (args, rel), and v(t1, t2, ...tn)
is the vectorization function which concatenates
the input texts t1, t2, ..., tn and converts the con-
catenated text into a single Tf-idf vector.

3.6 Retrieval System
The retrieval system provides two kinds of queries:
Single-Relation Query and Graph Query. While
Single-Relation Query provides simple way to
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Figure 5: Graph Query: searching for a paper containing relations matching the query graph.

Figure 6: Example of Multi-Paper Graph Query. Left-hand side graph is the query. The right-hand side graph is
the summary of the results showing candidate entities. The highlighted nodes of the summary graph show entities
related to each other and mentioned in the two papers at the bottom.

search for specific relations, Graph Query pro-
vides a sophisticated way to search for papers con-
taining entities connected in a complex relation
graph.

3.6.1 Single-Relation Query

A query consists of partial information of a relation
which can contains keywords about arg1, arg2,
and rel, types of entities possibly included in the
arg1 or arg2, or clusters which the relation belongs
to. The retrieved results are relevant relations with
their corresponding papers. An example of Single-
Relation Query is illustrated in Fig. 4. The query
relation is (mers-cov, any-relation, DISEASE).
The results are best matched relations, for in-
stance, (MERS-CoV, include, “fever, chills/rigors,
headache, non-productive cough”).

The candidate relations are retrieved based on
the keyword matching score by BM25 (Schütze
et al., 2008) and InfoScore (Eq. 2), then filtered by
the entity types and the clusters. Keyword match-
ing score and InfoScore can be weighed for the
need of searching candidates that have high lexi-
cal matching with the query or candidates that are

highly informative.

3.6.2 Graph Query

This extends Single-Relation Query by enabling
more sophisticated paper search covering a com-
plex graph describing relations among entities.
An example of Graph Query is illustrated in
Fig. 5 with a query consists of 4 relations: (mers-
cov, cause, DISEASE), (CHEMICAL, any-relation,
mers-cov), (CHEMICAl, any-relation, DISEASE),
and (PROTEIN, any-relation, DISEASE). The re-
sult graph is built from linking entities and relations
obtained from each paper, which matches the query
graph. The entity linking is done through lexical
matching and type matching. This approach faces
the challenges from entities with synonyms and
performance of entity recognition.

One special feature of Graph Query is Multi-
Paper Graph Query which supports searching re-
lations across multiple papers. The important use
case is that interested relations are not described
in one single paper, i.e., one entity is mentioned
in different papers and thus engaged in different
relations. For example, if users want to “find some
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Table 2: Evaluation results on relation extraction. Correct I, II, and I&II: evaluated as correct relations (can be
entailed from the corresponding sentences) by the first, the second, and both the evaluators, respectively. Overall:
evaluation on the unique relations per sentence from all methods. Kappa: Cohen’s kappa coefficient.

Method Total Correct I Correct II Correct I&II Kappa
ReVerb 255 183 (72%) 224 (88%) 181 (71%) 0.47
OLLIE 398 304 (76%) 303 (76%) 275 (69%) 0.60
ClausIE 1,061 880 (83%) 760 (72%) 720 (68%) 0.47
Relink 302 210 (70%) 193 (64%) 173 (57%) 0.58
OpenIE 1,609 1,042 (65%) 901 (56%) 700 (44%) 0.30
Overall 3,477 2,479 (71%) 2,242 (64%) 1,913 (55%) 0.41

Table 3: Statistics of extracted relations.

Method Non-uniq.
/corpus

Uniq.
/corpus

Uniq.
/abstract

ReVerb 2.3M 1.7M 8
OLLIE 4.7M 3.6M 16
ClausIE 9.0M 6.9M 31
Relink 5.5M 4.1M 19
OpenIE 24.4M 18.6M 84
Overall 45.9M 33.3M 150

Table 4: Statistics of recognized entities.

Model /corpus /abstract
en ner craft md 1.8M 6
en ner jnlpba md 3.1M 11
en ner bc5cdr md 1.8M 6
en ner bionlp13cg md 1.4M 5
Total 6.4M 22

CHEMICAL that can treat some DISEASE caused
by COVID-19”, they will look for two relations:
(COVID-19, cause, DISEASE), and (CHEMICAL,
treat, DISEASE). In that case, the two relations
may be retrieved from two different papers. There-
fore, aggregating information scattering over multi-
ple papers is necessary for building a more compre-
hensive understanding. It is done through relation
grouping allowing users to segment the query graph
into several segments each belonging to different
papers. With the above example, users can define a
query graph (the left-hand side of Fig. 6) and our
system could find that “pneunomia” is a DISEASE
caused by COVID-19 and is treated with “Current
[piperacillin-tazobactam]CHEMICAL regimens” (the
right-hand side of Fig. 6) from two separate papers,
and more.

4 Results

4.1 Corpus

We performed relation extraction and entity recog-
nition from the CORD19 corpus provided in the
COVID-19 Open Research Dataset Challenge up-
dated by January 3rd, 2021. The corpus contains
≈400K entries to COVID-19 related papers. Re-
lation extraction and entity recognition were per-
formed on the abstracts of the papers.

4.2 Relation Extraction

As shown in Table 3, we extracted 40.5 million
relations including 29.8 million unique relations.
Among the relation extraction methods, OpenIE
outputs the largest number. The other three relation
extraction methods tend to output long and com-
posite relations while OpenIE tends to break down
and output shorter and simpler relations. However,
OpenIE also outputs small variations of similar
relations.

For assessing the quality of relation extraction,
we conduct an evaluation on a small data sample
consisting of 100 papers selected from the corpus.
The evaluation was conducted by two human eval-
uators with the criteria to answer whether the rela-
tion can be entailed from the sentence.

The results (Table 2) show that the evaluation
is a difficult task. The evaluation agreement be-
tween the two evaluators is 0.41 in term of Cohen’s
kappa coefficient (McHugh, 2012). It’s consid-
ered fair agreement (Fleiss et al., 2003). Among
the relation extraction methods, OLLIE yields the
best kappa coefficient of 0.60 (good agreement),
OpenIE yields the worst coefficient of 0.30 (poor
agreement), and the others yield the coefficients of
0.47 to 0.58 (fair to good agreement). One of the
possible reasons is the complexity of biomedical
texts: sentences with 31 tokens in average and up
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to 167 tokens in the evaluated sample, and common
use of conjunctions and nested clauses.

4.3 Entity Recognition
As shown in Table 4, a total of 6.4M entities
were recognized from the corpus with the four
entity recognition models. For each abstract of
a COVID-19 related paper, an average of 22 en-
tities were recognized. Among the four models,
en ner jnlpba md outputs the largest number of
entities, about 1.7 to 2.2 times more than the other
models, where this model’s specialized entity types
are cell lines, cell types, DNAs, RNAs, and pro-
teins.

5 Conclusion

We have presented our COVID-19 scientific paper
retrieval system which focuses on analysing enti-
ties and their relations. The system is empowered
with several relation extraction and entity recogni-
tion methods. The system supports users in acquir-
ing knowledge efficiently across a huge number
of COVID-19 scientific papers published rapidly.
There, however, exist extremely challenging prob-
lems to tackle for making the system more practi-
cal: dealing with the newly created and unknown
data, solving the performance gap when utilizing
present methods, and do these in the nick of time
of fighting with pandemics.
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