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Abstract

Text transcripts without punctuation or sen-
tence boundaries are hard to comprehend for
both humans and machines. Punctuation
marks play a vital role by providing meaning
to the sentence and incorrect use or placement
of punctuation marks can often alter it. This
can impact downstream tasks such as language
translation and understanding, pronoun resolu-
tion, text summarization, etc. for humans and
machines. An automated punctuation restora-
tion (APR) system with minimal human in-
tervention can improve comprehension of text
and help users write better. In this paper we de-
scribe a multitask modeling approach as a sys-
tem to restore punctuation in multiple high re-
source – Germanic (English and German), Ro-
manic (French)– and low resource languages
– Indo-Aryan (Hindi) Dravidian (Tamil) – that
does not require extensive knowledge of gram-
mar or syntax of a given language for both spo-
ken and written form of text. For German lan-
guage and the given Indic based languages this
is the first towards restoring punctuation and
can serve as a baseline for future work.

1 Introduction

Automatic speech recognition (ASR) has become
ubiquitous these days and has wide applications in
business and personal life. One of the drawbacks
of ASR is it produces an unpunctuated stream of
text. Restoring punctuation manually is a time-
consuming task. Apart from spoken text a large
amount of written text online - blogs, articles, so-
cial media,etc. - sometimes lack the appropriate
punctuation marks due to human inconsistencies,
which can alter the meaning of text. An APR sys-
tem designed with an understanding of ASR and
written forms of text can help resolve these issues.
Transcriptions passed to an APR system, can im-
prove the following machine learning tasks such

as machine translation, conversational agents, co-
reference resolution, etc. Further it can be used as
an unsupervised auxiliary or pretext task, for train-
ing large scale transformer language models, as it
would require understanding about global structure
of the text.
Prior punctuation restoration methods have mostly
been solved using lexical features, prosodic fea-
tures or combination of both. Due to large avail-
ability of text data, majority of the methods have
focused on using lexical features. Early methods
(Christensen et al., 2001) used Hidden Markov
Models (HMM) to model punctuation using acous-
tic features such as pause duration, pitch and in-
tensity. Though the acoustic based models per-
form well on ASR system, they can perform bet-
ter when combined with textual data. Liu et al.
(2006); Batista et al. (2007); Kolář and Lamel
(2012) proposed various methods that combined
lexical features along with prosodic information
thereby improving APR tasks. Tilk and Alumäe
(2015, 2016) proposed unidirectional and bidirec-
tional Long Short Term Memory (Bi-LSTM) based
punctuation prediction model which did not require
extensive feature engineering. Though the above
method considered the long distant token dependen-
cies, it ignored label dependencies. To address la-
bel dependencies (Klejch et al., 2017) made use of
recurrent neural networks for sequence to sequence
mapping using an encoder-decoder architecture.
Recently the use of transformer based approaches
combination of speech and pre-trained word em-
beddings have achieved state of art performance
on IWSLT datasets (spoken transcripts from TED
talks for ASR tasks, but often used as benchmark
for comparison of punctuation restoration models).
Yi et al. (2020) used pretrained BERT (Devlin et al.,
2018) that is used to perform adversarial multi-task
learning to restore punctuation. Alam et al. (2020)
explored various transformer model architectures
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Language Total Other (O) Period Comma Question
English 48,334,765 43,855,115

(90.7%)
1,914,198
(3.96%)

2,492,124
(5.15%)

55,123
(0.11%)

French 22,315,779 20,223,881
(90.6%)

1,232,798
(5.5%)

815,123
(3.6%)

30,379
(0.11%)

German 41,269,527 36,438,630
(88.2%)

1,875,766
(4.54%)

2,816,425
(6.82%)

60216
(0.14%)

Hindi 3,388,500 3,135,290
(92.5%)

127,101
(3.75%)

100,710
(2.97%)

1246
(0.03%)

Tamil 906,271 791,6320
(87.8%)

58,963
(6.50%)

53,198
(5.86%)

1,496
(0.09%)

Table 1: Distribution of the High resource and long resource language datasets. The top-3 languages in the table
are considered high Resource,while the bottom 2 are low resource languages

and used an augmentation strategy to make models
more robust to ASR errors.

Though most approaches have shown consid-
erable improvement in overcoming some of the
challenges faced in terms of modeling and achiev-
ing the state of performance in spoken language
transcripts in English, there are the following limi-
tations:

• Restoring punctuation varies in spoken and
written text due to differences in rules of writ-
ing and speaking. The frequent use of per-
sonal pronouns, colloquial words and usage
of direct speech often results in more varied
use of punctuation in spoken text as compared
to written text. This often affects readability
for humans and machines.

• Though there has been some research (Tilk
and Alumäe, 2016; Kolář and Lamel, 2012;
Alam et al., 2020) that has focused on de-
veloping non-english APR system, extensive
research and baseline results have not been
studied for other languages.

To overcome some of the challenges, we make
the following contributions:

• We implemented a multi-task multilingual
punctuation restoration model. Our technique
implements punctuation restoration task as se-
quence labeling task, which is jointly trained
with language classifiers and text mode classi-
fication (’Spoken’ and ’Written’). We use the
proposed technique to build two multilingual
models for high resource and low resource
languages, thereby reducing the dependency
of multiple monolingual language models.

• We developed a web browser extension that
can help multilingual spoken and written users
to punctuate transcripts as a post-processing
step. We have made a demo of the web exten-
sion available online. 1

• We prepared training and test datasets and
evaluated the performance of our proposed
model. Further to evaluate the generalization
of the model we evaluated across the bench-
mark IWSLT reference dataset. The code and
models have been made publicly available.2

2 Punctuation restoration system

2.1 Data Gathering

Due to varying set of language data, we segregated
the data sources according to the languages, which
we gathered for spoken and written text. For Writ-
ten text we considered data from news web sources.

2.1.1 High Resource Languages
For high resource European languages, we consid-
ered a parallel sentence corpus known as the ‘EU-
ROPARL’ corpus (Vanmassenhove and Hardmeier,
2018) for spoken text. This corpus is a collection
of speeches made in the proceedings of European
parliament from 1996 to 2012, transcribed as text.
To gather written text we used news articles from
Alexa’s top-25 ranked news sources. These were
publicly available3 for every language.

1https://youtu.be/9FdkuENPhuY
2https://github.com/VarnithChordia/

Multlingual_Punctuation_restoration
3https://webhose.io/

https://youtu.be/9FdkuENPhuY
https://github.com/VarnithChordia/Multlingual_Punctuation_restoration
https://github.com/VarnithChordia/Multlingual_Punctuation_restoration
https://webhose.io/
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(a) Unpunctuated text transcripts within the editor window

(b) Select the text to be punctuated and right click to punctuate

(c) Output punctuated text

Figure 1: Example of punctuation via web extension.
Source: www.github.com

2.1.2 Low Resource Languages

Due to lack of language resources available for in-
dic languages for APR, we gather publicly released
datasets. For Spoken text we used the Indian Prime
Minister’s address to the nation. These corpora
manually translated into several Indian languages.
Written text was obtained from Siripragada et al.
(2020) who crawled articles articles released from
the Press Information Bureau (PIB), an Indian gov-
ernment agency that provides information to news
media.

2.2 Annotation

Due to lack of readily available annotated datasets
and large size corpora, we used an automated ap-
proach to label the data. We analyzed languages
and selected the three most common punctuation –
‘PERIOD’, ‘COMMA’ and ‘QUESTION MARK’
– that occurred across the languages for training
our model. This was done to improve the read-
ability of text so that could be easily understood
by users, one of the goals of the system. Since
we treat our task as a sequence labeling task, we
annotated every word in the sequence according
to the punctuation following it. We achieved this
by tokenizing the input text into a stream of word
tokens and punctuation tokens. We converted this
into a set of pairs of (token, punctuation) where
punctuation is the null punctuation (‘O’), if there
was no punctuation mark following in the text. To
make our data set more diverse and training more

robust, we ended sentences (10%) a few tokens be-
fore the ‘PERIOD’ tag and labeled the final token
as ‘EOS’ (end of sentence). Further we converted
all our text to lowercase to remove any signal while
training the language model. The distribution of
the labels can be seen in table 1.

Figure 2: Joint Punctuation model on indic languages
for spoken and written text.
Looks better when Zoomed.

2.3 Joint Multilingual Model-Architecture
The model consists of four main sub-parts as ob-
served in Figure 2 – (i) Transformer Language
Model (ii) BILSTM (iii) Neural Conditional Ran-
dom Field (NCRF++) and (iv) Language and Text
Mode classifiers. We use a pretrained transformer
language model to generate word/sub-word em-
beddings, but do not fine tune this model to our
specific task. A BILSTM on top of the transformer
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Model Language TextMode Period Comma Question Overall

Joint - BILSTM NCRF + FastText

English
Spoken 92.3 66.7 65.2 74.8
Written 83.3 57.6 32.5 57.7

French
Spoken 88.9 64.2 30.8 61.3
Written 77.0 56.7 33.9 55.9

German
Spoken 93.2 88.6 48.0 76.6
Written 77.3 71.0 31.0 64.1

Joint - XLMRoberta NCRF

English
Spoken 92.8 79.9 86.7 86.5
Written 90.4 75.9 80.7 82.3

French
Spoken 92.8 80.9 82.7 85.5
Written 83.8 66.2 75.1 66.2

German
Spoken 95.8 93.8 85.7 91.8
Written 91.8 88.8 69.7 83.4

Joint - Multilingual-BERT NCRF

English
Spoken 95.8 80.6 92.8 90.1
Written 96.0 82.7 79.7 86.4

French
Spoken 94.8 80.8 88.1 89.2
Written 93.5 78.5 73.0 81.7

German
Spoken 97.0 95.0 90.7 94.2
Written 96.0 74.3 90.0 86.8

Punctuation Restoration
(Alam et al., 2020)

English Spoken 80.8 75.0 78.7 78.1

Table 2: Results on High resource languages. The values in bold indicate the best perfoming model.

model is used to model token dependencies bet-
ter, from forward and backward directions. NCRF
(Yang and Zhang, 2018) relies on learning the high
level features from the deep neural network and
passes this information to a linear CRF layer for
inference, which helps manage label dependencies.
This architecture sequential in nature, is trained
for APR task. The output sequence representation
from the BILSTM is passed through a max pooling
layer, the result of which passed through linear feed
forward layer for language and text mode classifi-
cation. We jointly trained our sequential language
model, along with the classifiers.

2.4 Web Extension

We created a web extension that can be used to
punctuate text within the text editors on web pages.
It lets users to select text which could range from a
few words to large paragraphs to entire documents
to punctuate. The text does not have to be non
punctuated as the system removes punctuation as a
preprocessing step and punctuates again.The steps
to punctuate are shown in Fig 1.

3 Experiments

3.1 Experimental setup

We used the pretrained transformer model and spe-
cific tokenizers available on HuggingFace4. The
model architecture consists of the 12 hidden layer
encoder, which is used to produce the embeddings.
We used an optimized weighting technique (Peters
et al., 2018) to sum all the hidden layers rather than
use a common practice of using one single layer
to generate embeddings. This showed an improve-
ment in performance as seen under ablation studies
in table 5. The weighting method is as defined:

Oi = γ
L−1∑
j=0

SjHj (1)

where

• Hj is a trainable task weight for the jth layer.
γ is another task trainable task parameter that
aids the optimization process

• Sj is the normalized embedding output from
the jth hidden layer of the transformer.

• Oj is the output vector.

4https://huggingface.co/

https://huggingface.co/
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• L is the number of hidden layers.

To train the proposed model, we used a max-
imum sequence length of 505. We use a sub-
word tokenization technique - sentence piece model
(Kudo and Richardson, 2018) - which might result
in token length exceeding the maximum sequence
length, in such cases we exclude the tokens and
start a new paragraph. For sequences less than
the specified max sequence length, we pad the se-
quences to the maximum sequence length and mask
the padded sequence to avoid performing attention
on it. We used a batch size of 32, grouping similar
sequence length prior to padding that enhances the
speed while training the model. We do not fine tune
the transformer model, but use it to embed the input
text. A BILSTM stacked on top of the transformer
model, is set to a dimension of 512, the layers are
initialized with a uniform distribution in the range
of (-.003, .003). A Neural CRF layer is trained
with a maximum log-likelihood loss. Viterbi al-
gorithm is used to search for the label sequence
with the highest probability during decoding. The
entire model was trained with an Adam optimiza-
tion algorithm with a learning rate close to 1e-4
over 10 epochs. The proposed multitask network
was trained via a dynamically weighted averaging
(DWA) technique to balance each task. Thereby
not allowing one task to dominate over the other
or negatively impact the performance of the other.
This approach was proposed and utilized for train-
ing a multi-task computer vision network (Liu et al.,
2019), we followed a similar approach and imple-
mented this on language processing task to show
overall improvement in performance. Similar to
Gradnorm (Chen et al., 2018) which learns to aver-
age tasks over time, the DWA method does not use
the gradients of network rather uses numeric task
loss. The weighting λj for task j is defined as:

λj =
K exp(wj(n− 1)/T )∑

i exp(wi(n− 1)/T )
(2)

where

wj(n− 1) =
Lj(n− 1)

Lj(n− 2)
(3)

Lj is the loss function of each task j, so wj is the
ratio of loss function over the last two epochs. T
represents the temperature, which is used to repre-
sent the softness of task weighting. A higher value
of T represents a more even distribution between
the tasks, when T is high enough, the value of λj

equals 1. K is the total number of the tasks that we
are training for. The overall loss is the sum of the
individual task loss averaged over each iteration.

Lovrl =
λ1Lpr + λ2Llc + λ3Ltm

batchsize
(4)

where Lpr - Maximum Likelihood loss for Punc-
tuation restoration, Llc - Cross Entorpy loss for
Language Classification and Ltm - Cross entropy
loss for text mode classification.

3.2 Results
To evaluate the performance of our joint model, we
built different multilingual neural models. We split
our dataset into two parts — train set (80%),valida-
tion set (10%) and test set (10%). The performance
for every model was evaluated on test set, after
being trained on the train set. We chose F1-score
to evaluate the performance of our model. We es-
tablished a baseline using BILSTM-CRF and pre-
trained FastText word embeddings (Bojanowski
et al., 2017) as features and trained jointly on lan-
guage and text mode classification tasks. The Fast-
Text word embeddings used as features for train-
ing are monolingual. To train multilingual mod-
els, we developed cross lingual embeddings by
aligning monolingual embeddings of different lan-
guages along a single dimension using unsuper-
vised techniques (Chen and Cardie, 2018). The
parameters and training setup of the baseline was
similar to the proposed model, except we used
FastText based word embeddings as input features.
Further we make comparisons using MBERT and
XLM-Roberta as pretrained models. Table 2 shows
the performance of the various models on high
resource European languages along with their F1
scores. To ensure a fairer comparison, we imple-
mented the trained model by Alam et al. (2020)
that achieved state of art performance on IWSLT
datasets to evaluate on our test set. The Joint-
Multilingual BERT NCRF as proposed in section
2.3 outperforms the other models across spoken
and written text for all punctuations. We observe
German language performs the best across spoken
and written text. The performance of the German
language can be attributed to a couple of reasons.
In German multiple words can be condensed into
a single word. This reduces ambiguity and thus
there are fewer decision points for the machine to
provide inference on. German is an inflected lan-
guage i.e the word order changes according to the
function in the sentence. Most word orders are
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Model Language TextMode Period Comma Question Overall

Joint - BILSTM NCRF + FastText
Hindi

Spoken 84.8 47.0 47.6 59.6
Written 89.2 34.7 55.2 59.7

Tamil
Spoken 59.8 40.3 19.4 39.8
Written 47.2 24.9 14.9 29.0

Joint - XLMRoberta NCRF
Hindi

Spoken 88.7 67.3 41.1 65.6
Written 92.3 70.8 43.4 68.5

Tamil
Spoken 75.9 58.7 20.3 56.6
Written 70.5 43.6 20.3 44.8

Joint - Multilingual BERT NCRF
Hindi

Spoken 90.6 66.6 68.8 75.3
Written 93.7 74.9 59.6 76.1

Tamil
Spoken 85.3 71.8 66.6 74.6
Written 74.8 50.1 43.1 56.0

Table 3: Results on low resource languages

defined in terms of finite verb (V), in combination
with Subject (S), and object (O). In German, this
can vary according to independent or dependent
clauses. In cases of independent clauses, the main
verb must be the second element in the sentence
(SVO) and the past participle the final element.
Under dependent clauses, the object must be the
second element in the sentence (SOV). This may
provide an additional signal to model and that can
impact its performance.

Models F1-Score
DRNN-LWMA-pre (Kim, 2019) 68.6
Self-Attention (Yi and Tao,
2019)

72.9

BERT-Adversarial (Yi et al.,
2020)

77.8

Joint M-BERT (Our Model) 80.3
XLM-R Augmented (Alam et al.,
2020)

82.9

Table 4: Performance of the Joint Model on the IWSLT
Ref dataset in comparison with other models. The table
indicates the average F1 Scores.

To asses the ability of our model to generalize,
we evaluated our best performing model on the
reference transcripts of the IWSLT dataset. Even
though our model was not trained specifically using
these datasets, but was able to outperform on some
of the prior state of art models as shown in Table
4. The metrics shown refer to the average F1-score.
The performance of our proposed models was car-
ried out on the low resource languages for spoken
and written transcripts, which can be observed in

Table 3 . We obtained the best result using the
Joint-Multilingual BERT NCRF model. For low
resource languages the performance of Question
is lower than the Comma and Period, due to lower
number of questions in true label set.

3.3 Ablation Studies

Models HRL LRL
BILSTM-NCRF 66.3 32.3
M-BERT-NCRF 73.5 41.6
M-BERT-BILSTM 78.3 52.4
M-BERT-BILSTM NCRF W/O
Weighting Layers

82.6 63.1

M-BERT-BILSTM NCRF W/O
Classification layers

84.8 65.2

Our Model 88.0 70.5

Table 5: Ablation Study on our dataset. HRL - High
Resource Languages, LRL - Low resource languages

We experimented with different ablations of the
best performing model, as seen in table 5 .

• BILSTM-NCRF - We do not consider any
embeddings and train a simple BILSTM-
NCRF model.

• MBERT-NCRF - We removed the BILSTM
layer and use only NCRF layer on top of trans-
formers.

• MBERT-BILSTM - We remove the NCRF
layer and model only the token dependencies.

• Without weighted layers - We removed the
trainable weighing parameters and considered
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only the top layer of the transformer as input
to the BILSTM.

• Without classification layers - We removed
the classification layers and trained the model
without any auxillary information.

4 Conclusion

In this paper we described and implemented a joint
modeling approach for restoring punctuation for
High and low resource languages across spoken
and written text. Joint language model trained
with auxiliary language and text mode classifica-
tion improved the performance of the APR task.
We achieved reasonable performance on the bench-
mark IWSLT datasets without being trained on it.
We also presented a web extension that can help
multilingual users improve overall readability and
coherence of text. Further we present baseline re-
sults on indic languages that can be used for future
work. We have shown examples of punctuated text
that was output from our system in the Appendix
section.
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Ondřej Klejch, Peter Bell, and Steve Renals. 2017.
Sequence-to-sequence models for punctuated tran-
scription combining lexical and acoustic features.
In 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
5700–5704. IEEE.
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A Example Appendix

We present a few examples of text passed to our
system in Table 6 and Figure 3 as seen in the next
page. It contains two columns - ‘Input Text’ &
‘Output Text’. The ‘Input Text’ columns consists of
unpunctuated examples that was passed to our sys-
tem, while the ‘Output Text’ column is the punctu-
ated text that was returned. The highlighted colors
of punctuation marks indicate whether the punctua-
tion was replaced correctly or not. Green indicates
the correct punctuation restored, red indicates the
incorrect punctuation mark and yellow indicates
the missed punctuation mark.
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Input Text Output Text
japan then laid siege to the syrian penalty area for
most of the game but rarely breached the syrian de-
fence oleg shatskiku made sure of the win in injury
time hitting an unstoppable left foot shot from just
outside the area

Japan then laid siege to the syrian penalty area for
most of the game ,but rarely breached the syrian de-
fence .Oleg shatskiku made sure of the win in injury
time ,hitting an unstoppable left foot shot from just
outside the area .

russia’s refusal to support emergency supply cuts
would effectively and fatally undermine OPEC+’s
ability to play the role of oil price stabilizing swing
producer says Rapidan Energy’s Bob McNally

Russia’s refusal to support emergency supply cuts
would effectively and fatally undermine OPEC +’s
ability to play the role of oil price stabilizing . Swing
producer , says Rapidan Energy’s Bob McNally .

Romeo Romeo wherefore art thou Romeo Romeo , Romeo , wherefore art thou Romeo ?
sans préjuger de l’efficacité de ce couvre-feu avancé
ces données ne sont toutefois pas si facilement lisi-
bles selon les experts suivant l’épidémie de Covid-19
Tout d’abord on manque encore de recul

Sans préjuger de l’efficacité de ce couvre-feu avancé,
ces données ne sont toutefois pas si facilement lisi-
bles , selon les experts , suivant l’épidémie de Covid-
19 . Tout d’abord , on manque encore de recul .

Table 6: Examples of automatic punctuation restoration of text in our system for European languages.

Figure 3: Indic language example


