
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 205–211
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

205

GCM: A Toolkit for Generating Synthetic Code-mixed Text

Mohd Sanad Zaki Rizvi Anirudh Srinivasan Tanuja Ganu
Monojit Choudhury Sunayana Sitaram

Microsoft Research India
{v-mori, t-ansrin, tanuja.ganu, monojitc, sunayana.sitaram}@microsoft.com

Abstract

Code-mixing is common in multilingual com-
munities around the world, and processing it
is challenging due to the lack of labeled and
unlabeled data. We describe a tool that can
automatically generate code-mixed data given
parallel data in two languages. We imple-
ment two linguistic theories of code-mixing,
the Equivalence Constraint theory and the Ma-
trix Language theory to generate all possible
code-mixed sentences in the language-pair, fol-
lowed by sampling of the generated data to
generate natural code-mixed sentences. The
toolkit provides three modes: a batch mode, an
interactive library mode and a web-interface
to address the needs of researchers, linguists
and language experts. The toolkit can be used
to generate unlabeled text data for pre-trained
models, as well as visualize linguistic theories
of code-mixing. We plan to release the toolkit
as open source and extend it by adding more
implementations of linguistic theories, visual-
ization techniques and better sampling tech-
niques. We expect that the release of this
toolkit will help facilitate more research in
code-mixing in diverse language pairs. 12

1 Introduction

Code-mixing, which is the alternation between two
or more languages in a single conversation or ut-
terance is prevalent in multilingual communities
all over the world. Processing code-mixed lan-
guage is challenging due to the lack of labeled as
well as unlabeled data available for training NLP
models. Since code-mixing is a spoken language
phenomenon, it is more likely to occur in informal
written text, such as social media and chat data.
Such data may not as easily available as monolin-
gual data for building models, and may also exhibit

1Screencast: https://aka.ms/eacl21gcmdemo
2Code: https://aka.ms/eacl21gcmcode

other issues such as cross-transcription and non-
standard spellings.

To alleviate this problem and train language mod-
els that can use unlabeled data for pre-training, we
see the generation of synthetic code-mixed data as
a promising direction. Various linguistic theories
have been proposed that can determine how lan-
guages are mixed together, and in prior work we
presented the first computational implementation
(Bhat et al., 2016) of the Matrix-language (Myers-
Scotton, 1993) and Equivalence Constraint theories
(Poplack, 1980). We also showed that generating
synthetic data using our computational implemen-
tations improved word embeddings leading to bet-
ter downstream performance on sentiment analysis
and POS tagging (Pratapa et al., 2018b), as well as
RNN language models (Pratapa et al., 2018a). The
multilingual BERT (Devlin et al., 2019) model fine-
tuned with synthetic code-mixed data outperformed
all prior techniques on the GLUECoS benchmark
(Khanuja et al., 2020) for code-switching, which
spans 11 NLP tasks in two language pairs. The
approach of generating synthetic code-mixed data
has gained traction following our work, with other
approaches including using Generative Adversarial
Networks (Chang et al., 2019), an encoder-decoder
framework with transfer learning (Gupta et al.,
2020), using parallel data with a small amount of
real code-mixed data to learn code-mixing patterns
(Winata et al., 2019) and a novel two-level varia-
tional autoencoder approach (Samanta et al., 2019).

In this work, we present a tool GCM that can
automatically generate synthetic code-mixed data
given parallel data or a Machine Translation system
between the languages that are being mixed. Our
tool is intended for use by NLP practitioners who
would like to generate training data to train models
that can handle code-mixing, as well as linguists
and language experts who would like to visualize
how code-mixing occurs between languages given

https://aka.ms/eacl21gcmdemo
https://aka.ms/eacl21gcmcode


206

different linguistic theories. The toolkit provides
three modes - a batch mode, that can run the data
generation pipeline on servers, an interactive mode,
that can be used for quick prototyping as well as
a web interface that can be used to visualize code-
mixed sentence generation. The GCM tool will be
released as open source and we plan to improve it
by adding more implementations of linguistic theo-
ries, visualization techniques and better algorithms
for sampling. We expect that the release of this
toolkit will spur research in code-mixing in diverse
language pairs and enable many NLP applications
that would not be possible to build due to the lack
of code-mixed data.

2 Method

In this section we discuss the linguistic theories
that we implement in the tool and the pipeline we
use for generating code-mixed (hereafter referred
to as CM) sentences.

2.1 Linguistic theories

Our tool currently contains implementations of two
two linguistic theories for generating valid CM text:
Equivalence Constraint Theory (Poplack, 1980)
and Matrix Language Theory (Myers-Scotton,
1993).

The Equivalence Constraint Theory states
that intra-sentential code-mixing can only occur
at places where the surface structures of two lan-
guages map onto each other, thereby, implicitly
following the grammatical rules of both the lan-

guages. The Matrix Language Theory deals with
code-mixing by introducing the concept of “Matrix
Language” or the base language into which pockets
of the “Embedded Language” or second language
are introduced in such a way that the former sets
the grammatical structure of the sentence while the
later “switches-in” at grammatically correct points
of the sentence.

Figure 1: (a) Input sentences for Hindi-English (1E,
1H) and Spanish-English (2E, 1S) and (b) GCM output
Code-Mixed sentences for Hindi-English (1CM) and
Spanish-English (2CM).

Figure 1 shows example source sentences in
Hindi, English and Spanish and their CM coun-
terparts generated by the EC theory. Figures 2 and
3 show the parse trees of all the sentences above,
illustrating how the sentences are generated by the
theory.

2.2 Code-mixed (CM) Text Generation
Process

The generation process is a sequential process (Fig-
ure 4), which requires parallel sentences in the two
languages being mixed as input data. Three ma-

Figure 2: Parse-trees of (a) sentences [1E] and (b) [1H], and (c) of [1CM] according to the EC Theory

Figure 3: Parse-trees of (a) sentences [2E] and (b) [1S], and (c) of [2CM] according to the EC Theory

2



207

Figure 4: The CM Generation Process

jor components play a part in the process and the
stages occur in the following order:

The first stage is the “Alignment stage”. In this
stage, the Aligner is used to generate word level
alignments for input pair of sentences. We cur-
rently use “fast align” (Dyer et al., 2013) which
performs well compared to other aligners in terms
of both speed and accuracy.

The second stage is the Pre-GCM stage which
is responsible for pre-processing the input. This
stage combines the aligner outputs along with con-
stituent parse trees generated by the parser and
“Pseudo Fuzzy-match Score” (Pratapa et al., 2018a)
for each sentence pair to make one row of input
data for the GCM stage. The Parser is used to
generate a sentence level constituent parse tree for
one of the source languages. Previously in (Pratapa
et al., 2018a) we used the Stanford Parser (Klein
and Manning, 2003) but we now also provide the
option to use the Berkeley Neural Parser (Kitaev
and Klein, 2018). This stage is also responsible
for creating appropriate batches of data to be con-
sumed by the next stage.

The final GCM stage, processes each batch of
data, applying linguistic theories in order to gener-
ate CM sentences as output.

2.3 Sampling

Figure 5 shows some sentences generated by the
EC theory for a pair of Hindi-English source sen-
tences. Through manual observation and user stud-
ies, we find that the EC theory generates sentences
that may be grammatically correct, but may not
feel natural to bilingual speakers. In prior work we
showed that sampling appropriately from the gener-

Figure 5: Need for Sampling: Not all generated CM
sentences feel natural

ated data is crucial. We experimented with various
sampling techniques and showed that training an
RNN Language Model with sampled synthetic data
reduces the perplexity of the model by an amount
which is equivalent to doubling the amount of real
CM data available (Pratapa et al., 2018a). So, we
add a sampling stage after the generation stage, for
which we propose the following techniques.

• Random: For each parallel pair of input sen-
tences, we arbitrarily pick a fixed number k
of CM sentences from the generated corpus.
The advantage of this method is that we are
not dependent on having real CM data.

• SPF-based: The Switch Point Fraction or
SPF is the number of switch points in a sen-
tence divided by the total number of words in
the sentence (Pratapa et al., 2018a). For each
parallel pair of input sentences, we randomly
pick k CM sentences such that the SPF distri-

3



208

bution of these is as close as possible to that of
the real CM data. The benefit of this method
is that we can generate a synthetic CM corpus
that close to the real data distribution in terms
of amount of switching, but this method im-
poses a requirement of having real CM data
for the given language pair.

• Linguistic Features-based: Words do not
get switched at random, and it would be use-
ful to be able to learn patterns of switching
from real CM data. For example, learning how
nouns and verbs tend to get switched can cre-
ate more realistic data. However, this method
imposes additional requirements - in addition
to real CM data, we also need POS taggers for
CM data, which are not readily available.

Out of the above techniques, Random and SPF-
based sampling are currently implemented in the
system. In the future, we would like to add im-
proved sampling techniques to the tool, since it is
an important step to achieve high quality synthetic
data.

3 System Overview

We provide three modes in the GCM tool: a batch
mode, an interactive library mode and a web-
interface to address the needs of NLP practitioners,
researchers, linguists and language experts:

3.1 Batch Mode
This mode is primarily intended for those who want
to generate CM data on servers given large paral-
lel corpora of monolingual data. It operates via a
configuration file that contains multiple options to
customize CM text generation. We describe some
of the options available in batch mode (Listing 1).
The entire list of options can be found in the code
documentation.

1 [GENERAL]
2 .
3 .
4 # choose which stages of the pipeline

are going to be run; default: pregcm
, gcm

5 stages_to_run =
6 # whether to run the pregcm and gcm

stages parallely; default: 0 ; set
to 1 to run parallely

7 parallel_run =
8

9 [ALIGNER]
10 .
11 .
12

13 [PREGCM]
14 .
15 # cut-off value for PFMS score
16 max_pfms =
17 # select the parser to be used from

available parsers - stanford and
benepar; default: benepar

18 parser =
19

20 [GCM]
21 .
22 # max number of sentences to generate

per sentence; default: 5
23 k =
24

25 [OUTPUT]
26 # language tag at word level in each

output code-mixed sentence
27 lid_ouput =
28 # visualize DFAs that were used to make

generations
29 dfa_output =
30 # sampling technique to use - random or

spf
31 sampling =

Listing 1: Options available in the configuration file in
batch mode

In the [GENERAL] section, the option
stages_to_run lets the user choose specific stages
to be run on the data. When a large scale CM cor-
pus is to be generated, it is useful to run the CM
generator pipeline in parallel mode to speed up the
process. The parallel_run options lets the user
run the Pre-GCM and GCM stages asynchronously
so that instead of waiting for all the data to be pre-
processed, the GCM stage can start working on
batch of data as and when ready.

The max_pfms option in [PREGCM] lets user se-
lect the “Pseudo Fuzzy-match Score” threshold for
the input sentences. In order to prepare consistent
input data, we perform back-translation as one of
the steps. The Pseudo Fuzzy-match Score quan-
tifies the quality of back-translation that directly
impacts the quality of CM data generated, hence
this feature is particularly important.

parser lets you choose between the Stanford
Parser and Berkeley Natural Parser. The Stanford
Parser contains support for parsing Arabic, Chi-
nese, English, French, German and Spanish, while
the Berkeley Natural Parser can parse English, Chi-
nese, Arabic, German, Basque, French, Hebrew,
Hungarian, Korean, Polish, Swedish. While we
rely on one of these supported languages to be one
of the two languages in the parallel corpus from
which the CM text is generated, we generate the
second parse tree using the alignments from the
previous step. So, we can generate CM sentences

4



209

in language pairs where one of the languages is
supported by either of the two parsers.

The k option in [GCM] controls the maximum
number of CM sentences to be generated per
input sentence. Similarly, the lid_output and
dfa_output options in the [OUTPUT] lets the
user extract additional information in the form of
word-level language tags and DFAs for each gener-
ated CM sentence. This can be used for debugging
the CM generation process, since the user can see
the language tags assigned to the generated CM
sentence in case both languages are in the same
script. The sampling option lets the user choose
the kind of sampling technique they want for gener-
ating CM text: currently, the options available are
Random or SPF based, as described earlier.

3.2 Library Mode

The library mode is a light weight interactive inter-
face for a programmer to go back and forth with
the output of various stages to adjust parameters.
This mode was designed to be able to accommo-
date modules that the user may want to add to the
pipeline to increase speed, accuracy and language
coverage. The library is designed to be continu-
ously extensible, for example, to add a new pre-
processing sub-module or a parser in a language
that the available parsers do not support. Below is
an example of using the library mode to experiment
with CM generation by utilizing the outputs of both
the Stanford Parser and the Berkeley Neural Parser
(Listing 2):

1 from gcm.aligners import fast_align
2 from gcm.parsers import benepar,

stparser
3 from gcm.stages import pregcm, gcm
4

5

6 # code to generate alignments using
fast_align

7 # assuming corpus is the variable
storing data

8

9 aligns = fast_align.gen_aligns(corpus)
10

11 # code to use benepar to generate parse
trees from the corpus

12 pt_benepar = benepar.parse(corpus)
13

14 # code to use stanford parser to
generate parse trees from the corpus

15 pt_stanford = stparser.gen_parse(corpus)
16

17 # generating two set of CMs one based on
the stanford parser and the other

on benepar
18 # assuming pfms_scores to have PFS of

the input sentences

19

20 pgcm_benepar = pregcm.process(corpus,
aligns, pt_benepar)

21 pgcm_stanford = pregcm.process(corpus,
aligns, pt_stanford)

22

23 gcm_stanford = gcm.gen(pgcm_stanford)
24 gcm_benepar = gcm.gen(pgcm_benepar)
25

26 # now both the generated CMs can be
trained on downstream language-
modeling tasks to compare their
performance

Listing 2: Using library mode to generate CM text
based on Benepar and Stanford Parser parse trees.

3.3 Web UI

In addition to the batch mode and library modes,
which are targeted at users who want to either cre-
ate large amounts of CM data or are proficient pro-
grammers, we also wanted to create a way for lin-
guists and language experts to be able to visualize
linguistic theories of code-mixing in an intuitive
and easy to use interface. For this, we created a
Web UI mode, which we describe next. The Web
UI mode is meant to generate CM sentences for
one pair of input sentences at a time.

The user can provide either a pair of parallel
sentences, or can use the Translate option to trans-
late a source sentence into another language using
translation APIs. The user can choose the linguistic
theory that they want to use to generate the CM
text as can be seen in Figure 6.

Once the user has selected the options and clicks
on the generate button, we generate the output of
GCM which consists of all the parse trees and the
generated CM sentences. As shown in Figure 7,
we show all possible sentences generated by the
linguistic theory and do not restrict the number
of sentences or sample them. This is to enable
users to see all the sentences that are generated by
the linguistic theory, which can then be restricted
or sampled by using the code in batch or library
mode. We expect that the Web UI will be very
useful as the support for more implementations of
CM theories increases, as well as to visualize CM
between different language pairs.

4 Conclusion and Future Work

Generating synthetic CM data has become a
promising direction in research on code-mixing,
due to the lack of available data and has proved to
be successful in improving various CM NLP tasks.

5



210

Figure 6: Selecting the linguistic theory and giving input sentences to GCM Web UI.

Figure 7: Code-Mixed sentences and the associated parse trees as output.

In this paper, we describe a tool for generating syn-
thetic CM data given parallel data in two languages,
or a translator between two languages. We imple-
ment two theories of code-mixing, the Equivalence
Constraint (EC) theory and the Matrix-Language
(ML) theory to generate CM data, followed by a
sampling stage to sample sentences that are close
to real code-mixing in naturalness. The GCM tool
operates in three modes - a batch mode, which
is meant for large scale generation of data, a li-
brary mode, which is meant to be customizable and
extensible and a Web UI, which is meant as a visu-

alization tool for linguists and language experts.

We plan to release the GCM tool as open source
code and add more implementations of linguistic
theories, generation techniques and sampling tech-
niques. We believe that this tool will help address
some of the problems of data scarcity in CM lan-
guages, as well as help evaluate linguistic theories
for different language pairs and we expect that the
release of this toolkit will spur research in diverse
code-mixed language pairs.

6



211

References
Gayatri Bhat, Monojit Choudhury, and Kalika Bali.

2016. Grammatical constraints on intra-sentential
code-switching: From theories to working models.
arXiv preprint arXiv:1612.04538.

Ching-Ting Chang, Shun-Po Chuang, and Hung-Yi
Lee. 2019. Code-switching sentence generation by
generative adversarial networks and its application
to data augmentation. Proc. Interspeech 2019, pages
554–558.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: Findings, pages 2267–2280.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. Gluecos: An evaluation benchmark for code-
switched nlp.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), Melbourne, Australia. Association for Com-
putational Linguistics.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430, Sapporo, Japan.
Association for Computational Linguistics.

Carol Myers-Scotton. 1993. Duelling languages:
Grammatical structure in code-switching. Claren-
don Press, Oxford.

Shana Poplack. 1980. Sometimes i’ll start a sentence
in spanish y termino en espaÑol: toward a typology
of code-switching 1. Linguistics, 18:581–618.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018a. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553.

Adithya Pratapa, Monojit Choudhury, and Sunayana
Sitaram. 2018b. Word embeddings for code-mixed
language processing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3067–3072.

Bidisha Samanta, Sharmila Reddy, Hussain Jagirdar,
Niloy Ganguly, and Soumen Chakrabarti. 2019. A
deep generative model for code-switched text. In
Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence, pages 5175–5181.
AAAI Press.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280.

7

https://www.aclweb.org/anthology/N13-1073
https://www.aclweb.org/anthology/N13-1073
https://doi.org/10.3115/1075096.1075150
https://doi.org/10.3115/1075096.1075150

