
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 1–6
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

1

Using and comparing Rhetorical Structure Theory parsers with
rst-workbench

Arne Neumann
Independent researcher

rst-workbench@arne.cl

Abstract

I present rst-workbench, a software package
that simplifies the installation and usage of nu-
merous end-to-end Rhetorical Structure The-
ory (RST) parsers.1 The tool offers a web-
based interface that allows users to enter text
and let multiple RST parsers generate analy-
ses concurrently. The resulting RST trees can
be compared visually, manually post-edited (in
the browser) and stored for later usage.

1 Introduction

Rhetorical Structure Theory (RST) provides a for-
malism for hierarchical text organization that can
be applied to a wide range of natural language pro-
cessing tasks, ranging from text generation (Marcu,
1997; Konstas and Lapata, 2013) to the assessment
of conversational patterns of Alzheimer’s patients
(Abdalla et al., 2018; Paulino et al., 2018).

Most research on RST parsing is focused on
parser engineering, i.e. the evaluation of parsers
against a “gold standard” hand-annotated dataset.
Although RST corpora exist for a variety of other
languages (e.g. German, Dutch and Spanish), end-
to-end discourse parsers are usually only trained
and evaluated on English data, with the notable
exception of Braud et al. (2017a,b,c).

There are a number of RST parsers that were de-
veloped for other languages, but either are they not
publicly available (e.g. Reitter (2003) for German
and English as well as Pardo and Nunes (2008) for
Portuguese) or they do not produce complete RST
analyses, e.g. Sumita et al. (1992) for Japanese (no
intra-sentence relations) and da Cunha et al. (2012)
for Spanish (no inter-sentence relations).

1The rst-workbench and all related Docker configuration
files, images and REST API wrappers around the RST parsers
are available from https://github.com/arne-cl/
rst-workbench. An online demo is provided at https:
//rst-workbench.arne.cl/.

Compared to other NLP tasks like syntax pars-
ing, the amount of available training data is lim-
ited, with corpora being in the range from dozens
to a few hundred hand-annotated texts. There is
also little work evaluating RST parsers beyond
the Parseval-based procedure proposed by Marcu
(2000).2

For example, machine learning models are usu-
ally not compared with respect to their ability to de-
tect rare rhetorical relations. Zhang and Liu (2016)
found that rhetorical relations in RST-DT at differ-
ent levels—i.e. between clauses within sentences,
between sentences within paragraphs and between
paragraphs—all follow the same Zipf’s law–related
distribution. Individual relations show different
patterns, e.g. Attribution is more common in intra-
sentential relations than on higher levels.

In addition, no systematic review exists of the im-
pact of the preprocessing steps—sentence splitting,
syntax parsing and segmentation into Elementary
Discourse Units (EDUs)—on the quality of the re-
sulting RST parses. There is some work in this
direction, though.

For example, Surdeanu et al. (2015) imple-
mented two RST parsers that only differ in the
syntax parser used—the constituent-based RST
parser produced slightly better results, but the
dependency-based equivalent was 2.5 times faster.
Braud et al. (2017c) evaluated the influence of syn-
tactic information (using either constituency parses,
dependency parses or only POS tags) on discourse
segmentation. Rutherford et al. (2017) reviewed
the impact of different neural network architectures
on implicit discourse relation detection.

While Huber and Carenini (2020) showed that
RST parser performance can be improved by train-

2In a replication study, Morey et al. (2017) found that
most recently reported increases in RST parser performance
(9 parsers published between 2013 to 2017) are caused by
implementation differences of Marcu’s evaluation procedure.

https://github.com/arne-cl/rst-workbench
https://github.com/arne-cl/rst-workbench
https://rst-workbench.arne.cl/
https://rst-workbench.arne.cl/


2

ing them on large RST treebanks automatically
generated using distant supervision, I hypothesize
that RST parsers can profit even more from larger
human-annotated training corpora.

In turn, the annotation of RST corpora can likely
be sped up by leveraging RST parsers. In the same
vein that translators can produce high-quality trans-
lations by post-editing machine-translated texts
more quickly than by manual translation alone
(Gaspari et al., 2014; Koponen, 2016), I assume
that linguists can produce RST analyses faster with
machine support (i.e. by selecting the best au-
tomatic analysis from a number of RST parsers
and then post-editing it) than by relying on hand-
annotation alone.

If the goal is to make annotators use RST parsers
productively, the parsers need to be adapted to
meet their needs. While the primary focus of RST
parser development is improving upon state-of-the-
art benchmark results, this work focuses on usabil-
ity and compatibility, i.e. the parsers need to be
easy to install and run while supporting the same
format(s) that common RST annotation and visual-
ization tools use.

To achieve this, I implemented rst-workbench,
which:

• acts as a web-based front-end to six different
RST parsers,

• provides an easy way to install the parsers on
all modern desktop operating systems using
Docker containers,

• facilitates their integration into NLP pipelines
by wrapping them in REST APIs,

• enables the RST analyses produced by the
parsers to be visualized by and edited in
the rstWeb annotation tool (Zeldes, 2016) by
amending it with a REST API and by provid-
ing converters from the parsers’ output for-
mats to rstWeb’s input format.

The remainder of this paper is organized as fol-
lows. Section 2 gives a brief overview of related
work, while Section 3 describes the architecture
and usage of the system. Section 4 summarizes
the main conclusions and outlines areas of future
work.

2 Related work

To the best of my knowledge, rst-workbench is the
first tool that offers a graphical user interface for
and integrates several RST parsers. Besides rst-
Web (Zeldes, 2016), which is integrated in this soft-

Figure 1: Components and workflow of the rst-
workbench.

ware, there are two other annotation tools specif-
ically made for rhetorical structures: RSTTool
(O’Donnell, 2000) and TreeAnnotator (Helfrich
et al., 2018). For visualizing RST trees and query-
ing RST corpora, there is ANNIS3 (Krause and
Zeldes, 2014).

While I implemented very minimal REST APIs
around the individual RST parsers in Python,
CLAM (van Gompel and Reynaert, 2014) could
be used to create REST API wrappers around
command-line NLP tools by writing a configura-
tion file. For simple cases, it is slightly more com-
plicated to setup than my approach (cf. Section
3.2), but it comes with many additional features
(e.g. user authentication, batch processing and a
generic web interface for each API) and can be
extended with additional format converters and vi-
sualization components.

3 Software architecture and usage

The rst-workbench provides a simple way to install
multiple RST parsers on a computer, run them as
well as visually compare and edit their analyses in
a web browser. Its architecture and usage is sum-
marized in Figure 1. Screenshots of the workflow
are provided in Figures 2 and 3.

At the core, the rst-workbench consists of six
existing open-source RST parsers—HILDA (Her-
nault et al., 2010), Feng and Hirst (2014), DPLP (Ji
and Eisenstein, 2014), Heilman and Sagae (2015),
CODRA (Joty et al., 2015) and StageDP (Wang
et al., 2017, 2018)—packaged as Docker contain-
ers to make them easily installable without any user
intervention (cf. Section 3.1).

Users do not have to learn the different



3
Figure 2: Screenshot of rst-workbench showing the re-
sult of parsing the beginning of a newspaper article
with various RST parsers.

Figure 3: Post-editing a parse result in rstWeb (here:
changing the relation that holds between two EDUs).

command-line interfaces of the parsers, but can
simply interact with them via a web browser. To
make this possible, I added a REST API to each
of the parsers, which the browser can talk to (cf.
Section 3.2).

In the browser, annotators can enter text or up-
load a plain text document. After clicking the “Run
Parsers” button, all RST parsers are started concur-
rently to analyze the given text. The results appear
asynchronously in the browser, i.e. the user sees the
result of the fastest parser immediately when it is
available and does not have to wait for the remain-
ing parsers to finish processing. Users can now
select the parse tree that most resembles their lin-
guistic intuition, and click “Edit in rstWeb” to load
the analysis into the rstWeb annotation tool. Here,
all aspects of the RST tree can be modified, e.g.
rhetorical relations between EDUs and/or larger
subtrees can be replaced (Figure 3). Afterwards,
the result can be saved locally for further inspection
or corpus creation.

The technical setup needed to integrate all these
stand-alone tools into one software package with
a unified interface is described in the following
subsections.

3.1 Docker

Docker is a tool that allows programmers to bun-
dle a piece of software with all its dependencies
into a container, which a user can reproducibly
install on any computer with Linux, Mac OSX or
Windows without having to know any details about



4

the software. The step-by-step installation process
of a software package is described in a so-called
Dockerfile, which is both readable by machines and
humans.

Installing an RST parser from a Dockerfile will
save the user the effort of finding its dependen-
cies, installation parameters and training settings.
This will not, however, reduce the run time of the
installation and training process, as that will hap-
pen on the user’s local machine. This process can
be drastically sped up by using a Docker image,
which is a compressed file that contains the results
of running a Dockerfile. I provide Docker images
for all but one of the RST parsers available in the
rst-workbench.3 If Docker is already running on
the target system, the installation of an RST parser
boils down to a one-line command.4

At this point, the parsers can be used without
tedious installation procedures, but are still only
available as individual command-line tools with
different parameters and output formats. To im-
prove their usability, I make them available as web
services with a common interface (cf. Section 3.2).
To improve their comparability, I offer a simple
way to convert their output to a common format
and generate visualizations of the resulting RST
trees (Section 3.3).

3.2 Web application and REST APIs

With rst-workbench, I aim to make RST parsers
more accessible to a wider audience, by providing
a common (graphical) interface for them. I chose to
implement this in form of a web application, which
talks to the individual RST parsers via REST (Field-
ing, 2000), a simple text-based protocol commonly
used by programs running on different computers
to communicate with each other via the Internet.
I implemented REST interfaces for each of the
parsers using the Python hug library5. They re-
ceive requests containing the text to be analyzed,
run the actual (command-line) RST parsers in the
background on the given input, capture their out-

3All Docker images for the rst-workbench are available
at https://hub.docker.com/u/nlpbox. I can’t pro-
vide an image for the HILDA RST parser (Hernault et al.,
2010), as its license does not allow its source code to be
freely distributed. Nevertheless, if you have access to the
HILDA source code, you can simply build an image us-
ing the Dockerfile provided at https://github.com/
NLPbox/hilda-docker.

4For example docker run
nlpbox/heilman-sagae-2015 for the (Heilman
and Sagae, 2015) parser.

5http://www.hug.rest/

puts and send them back to the requesting program.
Using REST allows the user to run the parsers

on different machines than the web application (in
case one computer does not have enough RAM or
processing power to run all RST parsers at the same
time) and even to use the parsers as web services
without the front-end, e.g. to integrate them into
custom NLP pipelines. It also simplifies the pro-
cess of adding more parsers to the rst-workbench,
as it only needs to know where the parsers run and
which output format they use.

3.3 discoursegraphs and rstWeb

The interoperability of RST tools is hindered by
the lack of a standard format for encoding RST
analyses. While corpora are either using the LISP-
like dis or the XML-based rs3 format, RST
parsers are using a plethora of custom formats.
rst-workbench is able to convert many of them
into rs3—the format supported by RST annotation
tools like RSTTool (O’Donnell, 2000) and rstWeb
(Zeldes, 2016)— by utilizing a REST service I im-
plemented on top of the discoursegraphs converter
library (Neumann, 2015, 2016), which supports all
RST file formats of the given parsers.

Using the rs3 format and integrating rstWeb into
the rst-workbench allows it to leverage rstWeb’s
capabilities to visualize and (post)-edit RST trees.6

4 Conclusions

In this paper, I presented a software package that
simplifies the installation, usage and visual com-
parison of RST parsers. I showed how it can help
linguists to produce manual RST analyses with less
effort.

I plan to integrate the rst-workbench directly into
rstWeb to facilitate corpus annotation projects. In
rstWeb, an “administrator” can create an annota-
tion project, upload documents to be annotated and
assign them to annotators. With an integrated rst-
workbench, the administrator could precompute
and store the automatic RST analyses once for all
annotators, which would reduce wait time for the
annotators and allow them to work without switch-
ing browser tabs and tools.

In the current setup, analyzing a text with all
parsers may take up to two minutes. Most of this

6To achieve this, I added a REST interface to rstWeb. For
lack of time, it is not yet part of the official rstWeb source code,
but is available here: https://github.com/arne-cl/
rstWeb/tree/add-rest-api

https://hub.docker.com/u/nlpbox
https://github.com/NLPbox/hilda-docker
https://github.com/NLPbox/hilda-docker
http://www.hug.rest/
https://github.com/arne-cl/rstWeb/tree/add-rest-api
https://github.com/arne-cl/rstWeb/tree/add-rest-api


5

time is spent on loading the models of the underly-
ing syntax parsers. This can be drastically reduced
by “outsourcing” the syntax parsers into their own
web services, as I have already done for DPLP.7

References
Mohamed Abdalla, Frank Rudzicz, and Graeme Hirst.

2018. Rhetorical structure and Alzheimers disease.
Aphasiology, 32(1).

Chloé Braud, Maximin Coavoux, and Anders Søgaard.
2017a. Cross-lingual RST Discourse Parsing. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 292–304,
Valencia, Spain. Association for Computational Lin-
guistics.

Chloé Braud, Ophélie Lacroix, and Anders Søgaard.
2017b. Cross-lingual and cross-domain discourse
segmentation of entire documents. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Pa-
pers), pages 237–243, Vancouver, Canada. Associ-
ation for Computational Linguistics.

Chloé Braud, Ophélie Lacroix, and Anders Søgaard.
2017c. Does syntax help discourse segmentation?
Not so much. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 2432–2442, Copenhagen, Den-
mark. Association for Computational Linguistics.

Iria da Cunha, Eric SanJuan, Juan-Manuel Torres-
Moreno, M. Teresa Cabré, and Gerardo Sierra. 2012.
A Symbolic Approach for Automatic Detection of
Nuclearity and Rhetorical Relations among Intra-
sentence Discourse Segments in Spanish. In Pro-
ceedings of the 13th International Conference in
Computational Linguistics and Intelligent Text Pro-
cessing (CICLing 2012).

Vanessa Wei Feng and Graeme Hirst. 2014. A Linear-
Time Bottom-Up Discourse Parser with Constraints
and Post-Editing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 511–
521, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Roy Thomas Fielding. 2000. Architectural Styles and
the Design of Network-based Software Architectures.
Ph.D. thesis, University of California, Irvine.

Federico Gaspari, Antonio Toral, Sudip Kumar Naskar,
Declan Groves, and Andy Way. 2014. Perception
vs Reality: Measuring Machine Translation Post-
Editing Productivity. In Proc. Third Workshop on
Post-Editing Technology and Practice.

7See the Dockerfile in https://github.com/
NLPbox/dplp-docker.

Maarten van Gompel and Martin Reynaert. 2014.
CLAM: Quickly deploy NLP command-line tools
on the web. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: System Demonstrations, pages 71–75,
Dublin, Ireland. Dublin City University and Associ-
ation for Computational Linguistics.

Michael Heilman and Kenji Sagae. 2015. Fast Rhetor-
ical Structure Theory Discourse Parsing. arXiv
preprint arXiv:1505.02425.

Philipp Helfrich, Elias Rieb, Giuseppe Abrami, Andy
Lücking, and Alexander Mehler. 2018. TreeAnno-
tator: Versatile Visual Annotation of Hierarchical
Text Relations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC-2018), Miyazaki, Japan. Euro-
pean Languages Resources Association (ELRA).

Hugo Hernault, Helmut Prendinger, David A. duVerle,
and Mitsuru Ishizuka. 2010. HILDA: A Discourse
Parser Using Support Vector Machine Classification.
Dialogue & Discourse, 1(3).

Patrick Huber and Giuseppe Carenini. 2020. MEGA
RST Discourse Treebanks with Structure and Nucle-
arity from Scalable Distant Sentiment Supervision.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7442–7457, Online. Association for Computa-
tional Linguistics.

Yangfeng Ji and Jacob Eisenstein. 2014. Representa-
tion Learning for Text-level Discourse Parsing. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 13–24, Baltimore, Maryland.
Association for Computational Linguistics.

Shafiq Joty, Giuseppe Carenini, and Raymond T. Ng.
2015. CODRA: A Novel Discriminative Framework
for Rhetorical Analysis. Computational Linguistics,
41(3):385–435.

Ioannis Konstas and Mirella Lapata. 2013. Induc-
ing Document Plans for Concept-to-Text Generation.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1503–1514, Seattle, Washington, USA. Association
for Computational Linguistics.

Maarit Koponen. 2016. Is machine translation post-
editing worth the effort? A survey of research into
post-editing and effort. The Journal of Specialised
Translation, 25:131–148.

Thomas Krause and Amir Zeldes. 2014. ANNIS3: A
new architecture for generic corpus query and visu-
alization. Literary and Linguistic Computing.

Daniel Marcu. 1997. The Rhetorical Parsing, Summa-
rization, and Generation of Natural Language Text.
Ph.D. thesis, Department of Computer Science. Uni-
versity of Toronto.

https://doi.org/10.1080/02687038.2017.1355439
https://www.aclweb.org/anthology/E17-1028
https://doi.org/10.18653/v1/P17-2037
https://doi.org/10.18653/v1/P17-2037
https://doi.org/10.18653/v1/D17-1258
https://doi.org/10.18653/v1/D17-1258
https://doi.org/10.1007/978-3-642-28604-9_38
https://doi.org/10.1007/978-3-642-28604-9_38
https://doi.org/10.1007/978-3-642-28604-9_38
https://doi.org/10.3115/v1/P14-1048
https://doi.org/10.3115/v1/P14-1048
https://doi.org/10.3115/v1/P14-1048
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
http://www.computing.dcu.ie/~atoral/publications/2014_wptp-amta_post-editing-perception-vs-reality_paper.pdf
http://www.computing.dcu.ie/~atoral/publications/2014_wptp-amta_post-editing-perception-vs-reality_paper.pdf
http://www.computing.dcu.ie/~atoral/publications/2014_wptp-amta_post-editing-perception-vs-reality_paper.pdf
https://github.com/NLPbox/dplp-docker
https://github.com/NLPbox/dplp-docker
https://www.aclweb.org/anthology/C14-2016
https://www.aclweb.org/anthology/C14-2016
https://arxiv.org/pdf/1505.02425.pdf
https://arxiv.org/pdf/1505.02425.pdf
https://www.aclweb.org/anthology/L18-1308
https://www.aclweb.org/anthology/L18-1308
https://www.aclweb.org/anthology/L18-1308
https://journals.linguisticsociety.org/elanguage/dad/article/download/591/591-2300-1-PB.pdf
https://journals.linguisticsociety.org/elanguage/dad/article/download/591/591-2300-1-PB.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.603
https://doi.org/10.18653/v1/2020.emnlp-main.603
https://doi.org/10.18653/v1/2020.emnlp-main.603
https://doi.org/10.3115/v1/P14-1002
https://doi.org/10.3115/v1/P14-1002
https://doi.org/10.1162/COLI_a_00226
https://doi.org/10.1162/COLI_a_00226
https://www.aclweb.org/anthology/D13-1157
https://www.aclweb.org/anthology/D13-1157
https://jostrans.org/issue25/art_koponen.pdf
https://jostrans.org/issue25/art_koponen.pdf
https://jostrans.org/issue25/art_koponen.pdf
https://doi.org/10.1093/llc/fqu057
https://doi.org/10.1093/llc/fqu057
https://doi.org/10.1093/llc/fqu057
http://ftp.cs.toronto.edu/public_html/pub/gh/Marcu-PhDthesis.pdf
http://ftp.cs.toronto.edu/public_html/pub/gh/Marcu-PhDthesis.pdf


6

Daniel Marcu. 2000. The rhetorical parsing of unre-
stricted texts: a surface-based approach. Computa-
tional Linguistics, 26(3):395–448.

Mathieu Morey, Philippe Muller, and Nicholas Asher.
2017. How much progress have we made on RST
discourse parsing? A replication study of recent re-
sults on the RST-DT. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1319–1324, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Arne Neumann. 2015. discoursegraphs: A graph-
based merging tool and converter for multilayer
annotated corpora. In Proceedings of the 20th
Nordic Conference of Computational Linguistics
(NODALIDA 2015), pages 309–312, Vilnius, Lithua-
nia. Linköping University Electronic Press, Sweden.

Arne Neumann. 2016. Merging and validating het-
erogenous, multi-layered corpora with discourseg-
raphs. Journal for Language Technology and Com-
putational Linguistics, 31(1):101–115.

Michael O’Donnell. 2000. RSTTool 2.4 - A markup
Tool for Rhetorical Structure Theory. In INLG’2000
Proceedings of the First International Conference
on Natural Language Generation, pages 253–256,
Mitzpe Ramon, Israel. Association for Computa-
tional Linguistics.

Thiago Alexandre Salgueiro Pardo and Maria das
Graças Volpe Nunes. 2008. On the Development
and Evaluation of a Brazilian Portuguese Discourse
Parser. RITA, 15(2):43–64.

Anayeli Paulino, Gerardo Sierra, Laura Hernández-
Domı́nguez, Iria da Cunha, and Gemma Bel-Enguix.
2018. Rhetorical relations in the speech of
Alzheimers patients and healthy elderly subjects: An
approach from the RST. Computación y Sistemas,
22(3).

David Reitter. 2003. Simple Signals for Com-
plex Rhetorics: On Rhetorical Analysis with Rich-
Feature Support Vector Models. LDV Forum, 18(1).

Attapol Rutherford, Vera Demberg, and Nianwen Xue.
2017. A Systematic Study of Neural Discourse
Models for Implicit Discourse Relation. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 281–291, Valencia,
Spain. Association for Computational Linguistics.

K. Sumita, K. Ono, T. Chino, T. Ukita, and S. Amano.
1992. A Discourse Structure Analyzer for Japanese
Text. In Proceedings International Conference on
Fifth Generation Computer Systems, pages 1133–
1140.

Mihai Surdeanu, Tom Hicks, and Marco Antonio
Valenzuela-Escárcega. 2015. Two Practical Rhetor-
ical Structure Theory Parsers. In Proceedings of

the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Demonstrations, pages 1–5, Denver, Colorado. As-
sociation for Computational Linguistics.

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017. A
Two-Stage Parsing Method for Text-Level Discourse
Analysis. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 184–188, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018.
Toward Fast and Accurate Neural Discourse Seg-
mentation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 962–967, Brussels, Belgium. Association
for Computational Linguistics.

Amir Zeldes. 2016. rstWeb - A Browser-based Anno-
tation Interface for Rhetorical Structure Theory and
Discourse Relations. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 1–5, San Diego, California. Associ-
ation for Computational Linguistics.

Hongxin Zhang and Haitao Liu. 2016. Quantitative As-
pects of RST Rhetorical Relations across Individual
Levels. Glottometrics, 33:8–24.

https://www.aclweb.org/anthology/J00-3005
https://www.aclweb.org/anthology/J00-3005
https://doi.org/10.18653/v1/D17-1136
https://doi.org/10.18653/v1/D17-1136
https://doi.org/10.18653/v1/D17-1136
https://www.aclweb.org/anthology/W15-1843
https://www.aclweb.org/anthology/W15-1843
https://www.aclweb.org/anthology/W15-1843
https://jlcl.org/content/2-allissues/5-Heft1-2016/jlcl-2016-1-6Neumann.pdf
https://jlcl.org/content/2-allissues/5-Heft1-2016/jlcl-2016-1-6Neumann.pdf
https://jlcl.org/content/2-allissues/5-Heft1-2016/jlcl-2016-1-6Neumann.pdf
https://doi.org/10.3115/1118253.1118290
https://doi.org/10.3115/1118253.1118290
https://doi.org/10.22456/2175-2745.7015
https://doi.org/10.22456/2175-2745.7015
https://doi.org/10.22456/2175-2745.7015
https://doi.org/10.13053/cys-22-3-3028
https://doi.org/10.13053/cys-22-3-3028
https://doi.org/10.13053/cys-22-3-3028
http://www.david-reitter.com/pub/reitter_complex-rst_2003.pdf
http://www.david-reitter.com/pub/reitter_complex-rst_2003.pdf
http://www.david-reitter.com/pub/reitter_complex-rst_2003.pdf
https://www.aclweb.org/anthology/E17-1027
https://www.aclweb.org/anthology/E17-1027
https://www.airc.aist.go.jp/aitec-icot/ICOT/Museum/FGCS/FGCS92en-proc2/92eNLP-2.pdf
https://www.airc.aist.go.jp/aitec-icot/ICOT/Museum/FGCS/FGCS92en-proc2/92eNLP-2.pdf
https://doi.org/10.3115/v1/N15-3001
https://doi.org/10.3115/v1/N15-3001
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/D18-1116
https://doi.org/10.18653/v1/D18-1116
https://doi.org/10.18653/v1/N16-3001
https://doi.org/10.18653/v1/N16-3001
https://doi.org/10.18653/v1/N16-3001
https://d-nb.info/116540320X/34#page=12
https://d-nb.info/116540320X/34#page=12
https://d-nb.info/116540320X/34#page=12

