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Abstract

In this paper, we describe the GX system
in the EACL2021 shared task on machine
translation in Dravidian languages. Given
the low amount of parallel training data,
We adopt two methods to improve the over-
all performance: (1) multilingual translation,
we use a shared encoder-decoder multilin-
gual translation model handling multiple lan-
guages simultaneously to facilitate the transla-
tion performance of these languages; (2) back-
translation, we collected other open-source
parallel and monolingual data and apply back-
translation to benefit from the monolingual
data. The experimental results show that we
can achieve good translation results in these
Dravidian languages and rank first in the four
translation directions on the ranklist.

1 Introduction

In recent years, encoder-decoder based on neural
machine translation (NMT) has become the main-
stream paradigm in the field of machine transla-
tion (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Bahdanau et al., 2015; Gehring et al.,
2017). The Transformer model (Vaswani et al.,
2017), which is completely based on self-attention
mechanism, is the best model architecture for trans-
lation performance. However, these data-driven
neural machine translation depends heavily on
large-scale annotated parallel data, the translation
performance of low-resource languages remains a
concern (Zoph et al., 2016). One such language
family is the Dravidian family of languages, which
are under-resourced in speech and natural language
processing (Chakravarthi et al., 2021). The Dravid-
ian languages are first attested in the 6th century
BCE as Tamili 1 script inscribed on the cave walls
and pottery in the Madurai and Tirunelveli districts
of Tamil Nadu. The Dravidian languages with the

1also called Damili or Tamil Bhrami

most speakers are Tamil, Kannada and Malayalam,
of which Tamil have long literary traditions from
600 BCE.

In this paper, we adopt two approaches to get
a reliable translation for improving access to and
production of information for monolingual speak-
ers of Dravidian languages. The first approach
is multilingual translation. Compared with trans-
lating from a resource-poor language to English,
translating from English to a resource-poor lan-
guage is much more difficult. Translating from a
resource-poor language to English, can apply trans-
fer learning to make use of large parallel corpora
between English and other languages (Zoph et al.,
2016; Chakravarthi, 2020). However, the situation
of translating from English to a resource-poor lan-
guage is tough because there is little parallel data
for the target language and other languages.

In the case of low resources, the multilingual
translation method is often better than the perfor-
mance of individual language pair, because too
little data makes it difficult for the model to con-
verge to the best (Dong et al., 2015; Tan et al., 2019;
Chakravarthi et al., 2019b,a). The other approach
is back-translation.Data augmentation methods can
help alleviate this resource shortage by increas-
ing the amount of data. Back-translation is a typ-
ical method of data augmentation that can enrich
training data with monolingual data. These work
are often based on automatically creating pseudo-
parallel sentences through back-translation (Irvine
and Callison-Burch, 2013; Sennrich et al., 2016a;
Feldman and Coto-Solano, 2020).

For the EACL2021 shared task on machine trans-
lation in Dravidian languages, we present our re-
sults on the four language pairs: English-Tamil,
English-Malayalam, English-Telugu, and Tamil-
Telugu. Overall, the four language pairs can be
divided into two subtasks: between English and
Dravidian languages and between Dravidian Lan-
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guages. To get better performance, we implement a
translation system for each subtask. Since the sys-
tems are not constrained using exclusive data pro-
vided by the task’s organization, we collect other
open-source monolingual data of Tamil, Malay-
alam, and Telugu. We use back-translation to create
pseudo-parallel sentences. Based on official and
pseudo-parallel data, we train multilingual models
to perform the translation task.

2 Background

We briefly describe neural machine translation
model here. Given the source sentence x =
(x1, . . . , xI) and the corresponding target sentence
y = (y1, . . . , yJ), a standard NMT model directly
optimizes the conditional probability:

P (y | x; θ) =
J∏
j=1

P (yj | y<j ,x; θ) (1)

where θ is the set of the model parameters and
y<j denotes the partial translation. The architec-
ture of machine translation model is the neural net-
work based encoder-decoder framework (Sutskever
et al., 2014). The input sentence x will be first
converted to a sequence of vectors and fed into
the encoder. Then the Encoder generates a con-
text vector which is an accumulation of the hidden
state information related to each source language
word. The decoder decodes the target language
words from this context vector. Typically, this
framework can be implemented as recurrent neu-
ral network (RNN) (Bahdanau et al., 2015), con-
volutional neural network (CNN) (Gehring et al.,
2017) and Transformer (Vaswani et al., 2017). The
parameters of the NMT model are trained to max-
imize the likelihood of a set of training examples
L = {[xm,ym]}Mm=1:

L(θ) = arg max
θ

M∑
m=1

logP (ym | xm; θ) (2)

where M is the amount of training samples.

3 Data Preparation

The data of Dravidian languages provided by the
organizers are scarce, with only tens or hundreds
of thousands of parallel sentences per language
pair, which is shown in Table 1. In general, it
is difficult to train a well-performing translation
model with such a small amount of data, because it

Official En-Ta En-Te En-Ml Ta-Te
Release 28417 23222 382868 17155

Table 1: Statistics of the official published data for each
language pair.

Parallel En-Ta En-Te En-Ml
Wiki Titles v2 102142 - -
PMIndia v1 33669 40283 33669
Tanzil v1 93540 - 187081
NLPC UOM 8949 - -
UFAL EnTam 166871 - -

Monolingual Ta Te Ml
PMIndia v1 97216 118274 88244

Table 2: Statistics of other open source datasets, includ-
ing paraller and monolingual data.

is difficult for the model to learn enough translation
knowledge and ability.

In this work, all proposed systems are allowed
to use data other than those provided by the task
organizer. Therefore, We use other open-source
datasets, including Wiki Titles v22, PMIndia v13,
Tanzil v1 (Tiedemann, 2012), The NLPC UOM En-
Ta corpus and glossary (v1.0.3) (Fernando et al.,
2020) and The UFAL EnTam corpus (Ramasamy
et al., 2012). As monolingual data, we use the data
of PMIndia v1. See Table 2 for statistics imforma-
tion.

Sentences of English were tokenized by the
Moses scripts4. All non-English data were tok-
enized by the Indic NLP Library tool (Kunchukut-
tan, 2020), which is a library to provide a general
solution to very commonly required toolsets for
Indian language text. Then, all sentences further
segmented into subword symbols using Byte-Pair
Encoding (BPE) rules (Sennrich et al., 2016b) with
40K merge operations for all languages jointly.

4 System Description

In this section, we will describe our translation
system with the adapted methods in detail for dif-
ferent categories of translation direction, including
between English and Dravidian languages and be-
tween Dravidian Languages.

2http://data.statmt.org/wikititles/v2/
3http://data.statmt.org/pmindia/
4http://www.statmt.org/moses/
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Figure 1: The whole training process of the proposed system. The orange data represents official data shown in
Table 1, which is released by the organizers. The blue datasets represent other open-source data shown in Table 2.
The green data represents pseudo-parallel data which is generated by applying back-translation on monolingual
data.

4.1 Between English and Dravidian
Languages

In this part, there are three language pairs: English-
Tamil, English-Malayalam, and English-Telugu.
There is a one-to-three multilingual neural machine
translation model for these three language pairs.

As shown in Figure 1, we first train a Three-to-
En multilingual neural machine translation model
by the sum of the data of the organizer and we
collected (that is, the sum data of Official data
in Table 1 and Parallel data in Tabel 2). With
this well-trained translation model, we adapt back-
translation method on the monolingual data of
Tamil, Malayalam, and Telugu (that is, Monolin-
gual data in Tabel 2) to generate pseudo-parallel
sentences. Finally, we train an English-to-Three
multilingual translation model based on the sum
of the real and pseudo parallel corpora as our final
model.

4.2 Between Dravidian Languages

Tamil-Telugu is the most difficult one because this
language pair has very little parallel and mono-
lingual data. There is a four-to-four multilingual
neural machine translation model for this language
pair.

It has been shown that it is helpful to im-
prove the overall performance when similar lan-
guages or languages in the same language fam-
ily are trained together (Tan et al., 2019). There-
fore, to facilitate this low resource translation
language pair, we combine all the bilingual cor-
pora to train a multilingual model. As shown in
Figure 1, first, on the parallel data released by
the organizer and we collected (that is, the sum

data of Official data in Table 1 and Parallel data
in Tabel 2), we train a four-to-four multilingual
neural machine translation model with eight di-
rections of English↔Tamil, English↔Malayalam,
English↔Telugu and Tamil↔Telugu. Then,
pseudo-parallel sentences were generated by this
multilingual on monolingual data of Telugu. Fi-
nally, we train a multilingual translation model of
these eight directions based on the sum of all lan-
guages data as our final model.

5 Experiments

We first introduce the training details and empiri-
cally evaluate the systems in two scenarios.

5.1 Training Details

We implemented all proposed systems on the ad-
vanced Transformer (Vaswani et al., 2017) model
using the open-source toolkit Fairseq-py (Ott et al.,
2019), which consists of 6 stacked encoder/decoder
layers with the layer size being 512 and 4 heads
in each attention layer and feedforward network
size being 1024. All the models were trained on
4 GeForce RTX 3090, with 24GB memory, where
each was allocated with a batch size of 2,000 tokens
for these two scenarios. We trained the model with
dropout = 0.3 and using Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9, β2 = 0.98, and
ε = 10−9. For evaluation, we average the last
5 checkpoints saved and use beam search with a
beam size of 5 and length penalty α = 0.6. The
translation quality of development sets was evalu-
ated using the multi-bleu.pl scipt (Papineni et al.,
2002) based on n-gram matching with n up to 4.
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Systems En-Ta ∆ En-Te ∆ En-Ml ∆ Ta-Te ∆

Individual 32.92 - 34.62 - 24.82 - 28.63 -
Multilingual 47.97 15.05 40.39 5.77 25.01 0.19 54.97 26.34
+Monolingual 50.51 2.53 45.35 4.96 25.85 0.84 58.23 3.26
+Checkpoint Avg 50.70 0.21 45.65 0.30 25.87 0.02 58.27 0.04

Table 3: Results of development sets measured in BLEU on the Dravidian languages Translation task. ∆ means
the difference between the current result and the previous row. Individual means an separate NMT model for each
language pair without any other approaches. Multilingual means Multi-NMT models for the two tasks without
other approaches.

5.2 Systems
The specific meanings of each system in the exper-
iment are as follows:

Individual A NMT model is trained for each
language pair. Therefore, there are 4 different mod-
els for the translation directions.

Multilingual (Johnson et al., 2017) Handling
multiple languages in a single transformer model
which contains one encoder and one decoder with
a special language indicator added to the input sen-
tence.

+Monolingual Add the monolingual data on
the Multilingual system. It is the back-translation
method, which are introduced in Section 4.

+Checkpoint Avg On the basis of +Monolin-
gual system, we average the last 5 checkpoints to
get the final model.

5.3 Results
In this section we will introduce the results of de-
velopment sets and test sets.

Development Sets The development sets results
of the four directions are reported in Table 3. We
will discuss the two parts of the results separately.

Between English and Dravidian Languages,
there is a huge boost between multilingual and
individual, which up to 15.05 in En→Ta. This also
proves that it is difficult to achieve good results that
train an individual translation model only on low-
resource language pairs. While multilingual neural
machine translation, especially training on multiple
similar languages, will greatly improve the transla-
tion performance of low-resource language pairs.
Moreover, the addition of pseudo-parallel corpus
generated by monolingual data can also bring im-
provement, but the improvement is relatively weak.
This may be because the monolingual data is not
enough, and the parallel sentence requirements of
training excellent models still cannot be met. Be-
sides, checkpoint average also improves the trans-

Systems En-Ta En-Te En-Ml Ta-Te
Ours 36.66 38.86 19.84 35.29

Table 4: Results of test sets measured in BLEU on the
Dravidian languages translation task.

lation performance but the increase is very low. It
is worth noting that the En→Ml is not highly pro-
moted by our method. This may be because the
parallel sentences are more than other languages so
that it is difficult to gain knowledge from multilin-
gual translation and other approaches to improve.

Between Dravidian Languages, the translation
performance of Ta→Te benefit a lot from multilin-
gual translation. That is because individual base-
line trained on extremely low resources hard to
get a good performance and the directions training
samples of Ta→En and En→Te may boost the per-
formance of Ta→Te when training a multilingual
neural machine translation model. At the same
time, other approaches such as back-translation
and checkpoint average also improve the overall
translation quality.

Test Sets We evaluate the test set using the model
that works best on the validation set, the final model
that +Checkpoint Avg produced. The results are
shown in Table 4. Surprisingly, all systems score
low on the test sets, presumably because the valida-
tion set was easy and the test set was hard. In the
ranklist given by the organizer, our system ranks
first in all four translation directions, but our system
did not perform particularly well. Other competi-
tors’ systems also struggled to perform well, which
shows that Dravidian languages translation is a
difficult task. To obtain a satisfactory translation
result, we still have a lot of effort to do.



150

6 Related Work

There are several ways focusing on low-resource
translation, including: (a) learning knowledge
from high-resource pairs to promotes low-resource
translation, such as transfer learning, transferring
proper parameters (Zoph et al., 2016; Gu et al.,
2018b), lexical knowledge(Nguyen and Chiang,
2017; Lakew et al., 2018) and syntactic knowl-
edge (Gu et al., 2018a; Murthy et al., 2019) from
high-resource language, and multilingual trans-
lation, including sharing encoders (Dong et al.,
2015), sharing decoders (Zoph et al., 2016), shar-
ing sublayers (Firat et al., 2016) and an univer-
sal Multi-NMT model with a target language to-
ken to indicate the translation direction (Ha et al.,
2016; Johnson et al., 2017); (b) data augmenta-
tion in NMT, such as back-translation (BT) trans-
lates target-language monolingual text to create
synthetic parallel sentences (Irvine and Callison-
Burch, 2013; Sennrich et al., 2016a) and adding
an auxiliary auto-encoding task on monolingual
data (Cheng et al., 2016; Currey et al., 2017).

Also, Indian languages have been studied in
recent years (Tennage et al., 2017; Chakravarthi
et al., 2018; Kumar and Singh, 2019; Barrault et al.,
2020). Choudhary et al. (2018) show that subword
units mehtod is helpful when translation Tamil lan-
guage. Escolano et al. (2020) adopt a multilin-
gual adaptation method to benefit from the posi-
tive transfer from high resource languages in En-
glish and Tamil translation. Bao et al. (2020) ex-
plore pre-training and iterative back translation for
low-resource English-Tamil. Chen et al. (2020)
explore self-supervised model pretraining, multi-
lingual models, data augmentation, and reranking
techniques to solve the low resource problem.

7 Conclusion

In this paper, we describe the GX system in the Dra-
vidian translation task of EACL2021. We use two
main methods, multilingual translation and back-
translation, to enable the model to benefit from
multiple languages joint learning and monolingual
data. Experimental results show that the system can
successfully introduce multilingual neural machine
translation and back-translation on monolingual
data and improve the performance of the system.
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