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Abstract

This paper describes our participating system
for the Shared Task on Discourse Segmenta-
tion and Connective Identification across For-
malisms and Languages. Key features of
the presented approach are the formulation as
a clause-level classification task, a language-
independent feature inventory based on Uni-
versal Dependencies grammar, and composite-
verb-form analysis. The achieved F1 is 92%
for German and English and lower for other
languages. The paper also presents a clause-
level tagger for grammatical tense, aspect,
mood, voice and modality in 11 languages.

1 Introduction

Despite the important role of discourse segmenta-
tion for natural language processing (NLP), there
is no clear-cut definition of what a discourse seg-
ment is. Degand and Simon (2009) determine the
boundaries of discourse segments as the intersec-
tion of clause boundaries and prosodic boundaries,
which means specifically that a discourse segment
spans one or several clauses (clauses as minimal
discourse segments had been proposed in preced-
ing works, e.g. Mann and Thompson (1988)). We
follow this approach and view discourse segmenta-
tion as a binary classification problem that predicts
for a clause whether it is the start of a new dis-
course segment. Working with only text makes it
impossible to fully implement Degand and Simon
(2009)’s approach and include features that capture
prosody and prosodic change. Instead, we repre-
sent clauses as morphosyntactic feature structures
that capture grammatical roles (subject, object etc.),
verbal categories and clause connectives, believing
that the use of pronouns, the change of tense, aspect
and mood, the presence of conjunctions and other
linguistic features also signal segment boundaries.

The shared task provides discourse-segmented
treebanks for 11 languages. All datasets exist in
the Universal Dependencies (UD) format (Nivre

Dataset Sents Conn. Delex. WO

deu.rst.pcc 2,193 no no OV
eng.pdtb.pdtb 48,630 yes yes VO
eng.rst.gum 8,292 no yes –”–
eng.rst.rstdt 8,318 no yes –”–
eng.sdrt.stac 11,087 no no –”–
eus.rst.ert 2,380 no no OV
fas.rst.prstc 2,179 no no OV
fra.sdrt.annodis 1,507 no no VO
nld.rst.nldt 1,651 no no OV
por.rst.cstn 2,221 no no VO
rus.rst.rrt 23,044 no no VO
spa.rst.rststb 2,089 no no VO
spa.rst.sctb 516 no no –”–
tur.pdtb.cdtb 31,197 yes yes OV
zho.pdtb.cdtb 2,891 yes yes VO
zho.rst.sctb 580 no no –”–

Table 1: Datasets: total number of sentences, whether
discourse connectives are annotated, whether surface
forms have been removed, and basic word order.

et al., 2016). UD grammar (UDG) builds on the
idea that all natural languages can be described by
a unique inventory of word categories and gram-
matical rules. Treebanks annotated in UDG thus
share the same part-of-speech (POS) tags, morpho-
logical features (MFs) and dependency relations
(DepRels), which encourages the development of
multilingual applications. Things that still signif-
icantly differ between languages are the surface
forms of words (obviously), the presence/absence
of MFs and the order of words and constituents.
To alleviate these dissimilarities, we will view sen-
tences as delexicalised, unordered trees and assimi-
late morphosyntactic features between languages.

2 Data and Task

Table 1 gives an overview of the available data.
There are 16 datasets for 11 languages, but
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the number of sentences for each dataset varies
greatly, from 0.5k in spa.rst.sctb to 48.6k in
eng.pdtb.pdtb.

In 13 of the datasets, only discourse segments are
annotated: a token which is the begin of a new dis-
course segment is labelled with BeginSeg=Yes.
In the remaining three datasets, the full discourse
connective is annotated: a token which is the
begin of a new discourse segment/connective is
labelled with Seg=B-Conn and subsequent to-
kens that are part of the connective are labelled
with Seg=I-Conn. The task for both annotation
schemes is to identify the starts of discourse seg-
ments/connectives. In addition, the full connective
should be identified for the latter scheme.

Five datasets are only made available in a delex-
icalised format to participants without a Linguistic
Data Consortium membership.

3 Universal Morphosyntactic Features

The following subsections briefly describe how dis-
tinct syntactic units are represented in UDG and
what features are extracted for the shared task.

3.1 Clauses

Clauses can be extracted from a UDG tree by
“cutting” specific clause-marking DepRels. These
are: root, csubj, ccomp, xcomp, acl,
advcl, parataxis, list, vocative and
discourse, as well as conj if its head is itself
governed by a clause-marking DepRel (cf. Dönicke,
2020).1 Figure 1 shows an example sentence with
three clauses, governed by discourse, root
and xcomp, respectively. The first two clauses are
the starts of a new discourse segment. We han-
dle punctuation at clause boundaries separately. In
the example, the comma (,) and the period (.) are
stored as preceding and succeeding punctuation of
the clause I ’ll try.

From a clause, we extract the following features:
root token’s DepRel and POS tag; preceding punc-
tuation; succeeding punctuation.

3.2 NPs

Noun phrases (NPs) realise grammatical roles
within a clause. Like clauses, they can be ex-

1If the head of a clause-marking DepRel is a modal verb,
we do not consider its subtree as a clause because we do not
want to separate modal verbs from the verbs they modify; in
some treebanks, the modal verb governs the modified verb
with an xcomp relation (whereas in the English treebanks, the
modified verb governs the modal verb with an aux relation).

OK , I ’ll try to send an email .
INTJ PUNCT PRON AUX VERB PART VERB DET NOUN PUNCT

[Seg] [Seg VERB] [PART NOUN]

discourse

punct

nsubj

aux

root

mark

xcomp

det

obj

punct

Figure 1: Example sentence from eng.sdrt.stac’s
development set. Brackets indicate clause spans. All
extracted features are shown in Appendix A.

tracted from a UDG tree by cutting specific Dep-
Rels. These are: nsubj, obj, iobj, obl and
nmod. In Figure 1, the second clause contains
the subject NP I, and the third clause contains
the object NP an email. The morphological fea-
ture structure (MFS) for each individual word (as
given in the data) is shown in (1) and (2), respec-
tively. 

CASE Nom
NUMBER Sing
PERSON 1
PRONTYPE Prs

 (1)

[
DEFINITE Ind
PRONTYPE Art

] [
NUMBER Sing

]
(2)

NP-level features are obtained by unifying the
MFSs of the involved words into a single feature
structure. As a grammatical rule, Case, Person,
Number and Gender have to agree for all words
within an NP. Sometimes, this rule is violated (in
the data) by compound nouns like internet prob-
lems where the nouns differ in Number (singular vs.
plural). Therefore, we take the agreement features
only from the NP’s root token; all other features
are taken from all words (and are allowed to have
multiple values). For a proper handling of analytic
languages such as Chinese, which tend to mark
features not by morphemes but by particles, we
introduce a rule for particles that we apply to an
NP’s root token w before unifying features:

Particle Rule If w has any particles (i.e. depen-
dents with the POS tag PART), move all parti-
cles’ features to w and delete the particles.

In Figure 2, for example, the particle de [的] has
the feature

[
CASE Gen

]
, which is moved to the

governing noun lèixíng [类型].



35

那么 它 创建 了 什么类型 的 术语 ？
ADV PRON VERB PART PRON NOUN PART NOUN PUNCT

[Seg NOUN]

advmod

nsubj

root

case nmod

nmod

case

obj

punct

Figure 2: Example sentence from zho.rst.sctb’s
training set.

From each NP in a clause, we extract: root to-
ken’s DepRel and POS tag; agreement features:
Case, Person, Number, Gender; other nominal
features: Degree, Definite, Animacy; lexical fea-
tures: PronType, NumType, Poss, Reflex, For-
eign, Abbr, Typo.2 To make the features NP-
specific, we prefix every feature with the root rela-
tion, e.g.

[
NSUBJ_CASE Nom

]
, assuming that a

clause usually contains only one NP per DepRel.

3.3 Composite Verbs

The composite verb in a clause consists of the main
verb and its accompanying full, light, auxiliary and
modal verbs as well as verbal particles. (Since we
do not distinguish a simple verb form (e.g. try)
from a compound verb form (e.g. will try), we use
the term “composite verb” for all cases.) In UDG,
we define these as tokens with the POS tag VERB
or AUX and subordinate tokens with the POS tag
PART and/or the DepRel compound. In Figure 1,
the second clause contains the composite verb ’ll
try, and the third clause contains the composite
verb to send. The MFSs of ’ll try (as given in the
data) are shown in (3).[

VERBFORM Fin
] [

VERBFORM Inf
]

(3)

Unfortunately, MFs in the datasets are far from
complete; the verbs in (3) are only labelled with
VerbForm but not with the other verbal features:
Aspect, Mood, Tense, Voice.—An issue that we
will take up again in Section 4. For the sake of
illustration, we now assume that the MFs are com-
plete, as shown in (4). Note that English finite
verbs do not mark Aspect and Voice at the morpho-
logical level and English infinitives do not have any
inflectional features (both properties differ in other
languages).

2Explanations and possible values for all of these features
can be found at https://universaldependencies.org/u/feat/.

TENSE Pres
MOOD Ind
VERBFORM Fin

 [VERBFORM Inf
]

(4)

Combining the MFSs of the individual words
into a single feature structure is not as easily possi-
ble as for NPs since there are no linguistic unifica-
tion/agreement rules amongst the words in a com-
posite verb as they exist for NPs. A simple method
for feature extraction would still be to use MFs
and prefix them by the POS tag of the correspond-
ing word (and allowing multiple values if there
are more than one words with the same POS tag).
The morphosyntactic feature structure (MSFS)
resulting from (4) is shown in (5).

AUX_MOOD Ind
AUX_TENSE Pres
AUX_VERBFORM Fin
VERB_VERBFORM Inf

 (5)

However, grammaticalised composite verb con-
structions are quite different for the languages of
the world (and also for those in the shared task).
Another way to represent (4) is as the grammatical
feature structure (GFS) in (6).

ASPECT Imp
MOOD Ind
TENSE Fut
VERBFORM Fin
VOICE Act

 (6)

Arriving at grammatical features (GFs) is a com-
plex task on its own, which is why we describe
the procedure separately in Section 4. Note that
the structure in (6) includes

[
TENSE Fut

]
, since

will try is grammatically future tense, whereas (5)
only includes

[
AUX_TENSE Pres

]
because of

the morphological present tense of will. GFs as-
similate universal clause representations in such
that they encode which features are expressed by
a composite verb and not how the verbs are com-
posed. For example, most languages have gram-
matical future tense, but in some languages (e.g.
English) future tense is only marked grammatically
whereas in others (e.g. Basque) it is also marked
morphologically. We thus assume that GFSs show
a greater similarity between languages than MSFSs.
Note, however, that GFSs still exhibit differences
between languages, because not all languages have
parallel grammaticalised constructions.3

3Just to give an example: English has progressive aspect
which German has not. The same holds for NPs: German has
dative case which English has not.

https://universaldependencies.org/u/feat/
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3.4 Free Discourse Elements
Some words are neither part of an NP nor of the
composite verb. If these words are clause-level,
i.e. directly governed by the clause’s root token,
we call them “free discourse elements”. These
elements comprise e.g. adverbs, complementis-
ers and conjunctions, and are thus very interesting
for the task of discourse segmentation. Therefore,
we extract DepRel and POS tag from every free
discourse element. As for NP-level features, we
prefix every feature with the element’s DepRel, e.g.[

MARK_POS SCONJ
]
.

3.5 Feature Vectors
When vectorising a document D = [c1, . . . , cn],
we get clause vectors ~c1, . . . ,~cn, which we then
concatenate to context-sensitive vectors XD =
[~x1, . . . , ~xn] using a window of 3 clauses: ~xi =
~ci−1 ◦ ~ci ◦ ~ci+1. For the context clauses ci−1
and ci+1, we add additional features that indi-
cate whether the clause is in the same sentence
as ci and whether the clause is directly subordi-
nate or directly superordinate to ci. The classes
corresponding to XD are YD = [y1, . . . , yn] with
yi ∈ {TRUE, FALSE} (see Section 5.1).

For the documents that include discourse con-
nectives, we create additional vectors XConn

D =

[~d1, . . . , ~dm] for the connectives d1, . . . , dm. Let
cj be the clause that starts with dj . To con-
struct ~dj , we extract from the first 5 tokens of
cj : POS tag; DepRel; index (starting at 1) of
head if the head is among the first five tokens,
0 otherwise. (All features are index-specific, e.g.[
1_POS INTJ

]
.) Since not every clause contains

5 or more tokens, we further add a feature with
value min{|cj |, 5}.4 We will use these features
to predict the length of the discourse connectives
Y Conn
D = [|d1|, . . . , |dm|] (see Section 5.2).

4 Grammatical TMVM Tagging

Dönicke (2020) presents an algorithm for tag-
ging the GFs Tense, Aspect, Mood, Voice and
Modality (TMVM) of a clause in German. The
algorithm identifies the words that contribute
to a composite verb and uses a function R
that maps a bag of MFSs to a GFS, like

R


LEMMA will

TENSE Pres
MOOD Ind
VERBFORM Fin

 , [VERBFORM Inf]




40.3% of the discourse segments start with a connective
that is longer than 5 tokens. These connectives are ignored.

=


ASPECT Imp
MOOD Ind
TENSE Fut
VERBFORM Fin
VOICE Act

,

where R relies on a comprehensive table of all
composite verb constructions (i.e. the complete
conjugation table of the language). Note that only
the lemmas of auxiliary verbs are relevant for the
algorithm since R does not depend on the main
verb. In addition to a list of auxiliary verbs, a list
of modal verbs is required.5

Algorithm 1 shows an updated version of the
original algorithm that has been modified to work
with a broader range of languages, specifically the
languages in the shared task. In the following, the
algorithm is briefly described, with a focus on the
adaptions made for multiple languages (numbers
in parentheses refer to lines in the pseudocode); for
further explanations see Dönicke (2020).

Given a composite verb V = [v1, . . . , v|V |] in a
language `, first of all the particle rule from Sec-
tion 3.2 is applied to all words (ll. 1–2). Consid-
ering the Chinese example in Figure 2 again, this
moves the feature

[
ASPECT Perf

]
from the parti-

cle le [了] to its governing verb chuàngjiàn [创建]
and removes the particle from V . After this step,
V contains only verbs.6

The algorithm is designed for an OV language,
i.e. a language in which the basic order of object
(O) and verb (V) is O-V. More importantly for the
algorithm, the basic order of auxiliary (Aux) and
verb in OV languages is V-Aux, whereas it is Aux-
V in VO languages (Dryer, 1992). Thus, if the
input language ` is a VO language (see Table 1), V
has to be reversed before going on (ll. 3–4).

To counteract finite-verb movement in some lan-
guages (e.g. German and Dutch), finite verbs and
non-finite verbs are selected separately (ll. 5–6) and
then the finite verb is inserted at the syntactically
highest position (ll. 7–9). After this step, all verbs
in V should be ordered from syntactically lowest

5The algorithm differentiates between full verbs, auxiliary
verbs and modal verbs. However, UDG only distinguishes full
verbs (VERB) and auxiliary verbs (AUX), and modal verbs
are tagged as either, depending on the language (see https:
//universaldependencies.org/u/pos/AUX_.html). Therefore, a
list of modal verbs is required to identify them. As a reviewer
pointed out, one could also use the language-specific POS tags
to identify modal verbs. In our implementation, we also need
the lemmas for modal unification across languages (see text).

6As in linguistic works (e.g. Antonenko, 2008; Do-
brushina, 2012), we also consider the Russian бы as particle
although it is tagged with AUX in the Russian dataset.

https://universaldependencies.org/u/pos/AUX_.html
https://universaldependencies.org/u/pos/AUX_.html
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Algorithm 1: Compute features of composite
verb V in language `

1 for i = 1 to |V | do
2 particle_rule(vi)
3 if ` is VO language then
4 V ← [v|V |, . . . , v1]

5 Vfin ← [finite verbs in V ]
6 V ← [non-finite verbs in V ]
7 if |Vfin| > 0 then
8 vfin ← right-most finite verb in Vfin

9 V ← [v1, . . . , v|V |, vfin]

10 if |V | = 0 then
11 return

[ ]
12 else if main verb in V then
13 vmain ← right-most main verb in V

14 else
15 vmain ← left-most verb in V

16 V ← [vmain, . . . , vfin]
17 M ← [features∗(vi, `) for i = 1 to |V |]
18 for i = |V | to 1 do
19 if vi is modal verb then
20 mi−1 ← mi

21 while |V | > 0 do
22 Set v1 to be the main verb
23 F ← ×

1≤i≤|V |
vi is not modal verb

m|M |−|V |+i

24 if
∑|F |

i=1

∑|fi|
j=1 |fij | = 0 then

25 return
[ ]

26 A← {}
27 for i = 1 to |F | do
28 A

∪← R∗(fi, `)
29 if |A| = 0 ∧ |V | = 1 then
30 A← m|M |
31 if |A| > 0 then
32 A← filter(A)
33 a← combine(A)
34 a← unify_verb_form(a)
35 Vmodal ← [modal verbs in V ]
36 Vmodal ← unify_modals(Vmodal, `)

37 a
t←
[

MODALITY Vmodal

]
38 return a

39 V ← [v2, . . . , v|V |]

40 return
[ ]

∪← and t← are augmented assignment operators for union and
unification, respectively.

to highest position.

If V is not empty (ll. 10–11), the main verb is
determined (ll. 12–15) and all syntactically lower

verbs are removed from V (l. 16), because they are
not relevant for TMVM tagging.

The MFs of each vi ∈ V are stored in mi ∈M
(l. 17), where mi is a set of MFSs since it is (the-
oretically) possible that a verb is morphologically
ambiguous. However, since the MFs for each verb
are given in the data, |mi| = 1 per default.7,8

As in the original algorithm, MFs of modal verbs
overwrite those of syntactically lower verbs (ll. 18–
20). All possible combinations of the involved
verbs’ MFSs, excluding modal verbs, are then
stored in F = {f1, . . . , f|F |} (l. 23). In a simple
case with no modal verbs and |mi| = 1 for all mi ∈
M , |F | = 1 and f1 contains the MFS of every verb
v1, . . . , v|V |, i.e. f1 = {m11, . . . ,m|V |1}.

9

Every combination fi ∈ F is then analysed with
the language-specific look-up table and the analy-
ses (i.e. GFSs) are stored in A (ll. 26–28).10 As
mentioned in Section 3.3, a lot of MFs are missing
in the data. R∗ treats missing features as features
with wildcard values and returns all matching anal-
yses, which means that the number of returned anal-
yses for fi increases with the number of missing
features in each fij ∈ fi and would become maxi-
mal if every fij is empty. As a basic restriction, we
require that at least one fij is not empty and return
an empty feature structure otherwise (ll. 24–25).

In contrast to too many analyses, it is also pos-
sible that no analysis is found. In this case, the
syntactically lowest verb is removed (l. 39) and the
look-up is repeated (l. 21). If only one verb is left
and still no analysis is found, A is set to the verb’s
MFSs (ll. 29–30).

The analyses in A are then filtered (l. 32),
e.g. by giving higher preference to analyses with

7As in Dönicke (2020), we add the participle analysis to
potential substitute infinitives in German.

8We perform a small number of modifications to the MFs
for cases where we think that the data is not labelled ideally.
For example, some languages use

[
VERBFORM Ger

]
and

some use
[

TENSE Pres
VERBFORM Part

]
for very similar forms of the

verb (gerunds and present participles). For this reason, the
UD guidelines discourage the use of

[
VERBFORM Ger

]
(see https://universaldependencies.org/u/feat/VerbForm.html#
Ger) and we convert it to the latter feature combination.

9Actually, the Cartesian product yields an ordered combi-
nation [m11, . . . ,m|V |1] but we treat it as unordered combi-
nation to be less prone to potential local verb movements.

10The look-up tables have been created manually. For
some languages, this required extensive study of composite
verb constructions, and we want to acknowledge a few works
that were very helpful in this process: Berro et al. (2019)
for Basque, Izadi and Rahimi (2015) for Persian, Babby and
Brecht (1975) for Russian, Jendraschek (2011) for Turkish,
and Li and Thompson (1989) for Chinese.

https://universaldependencies.org/u/feat/VerbForm.html#Ger
https://universaldependencies.org/u/feat/VerbForm.html#Ger
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[
VOICE Act

]
and/or

[
MOOD Ind

]
. The remain-

ing analyses are unified into a single GFS a, ignor-
ing features with conflicting values (l. 33).

Since not all languages have the same types of
non-finite verb forms, we normalise them as fol-
lows (l. 34):

[VERBFORM Inf] v a : a←
[

VERBFORM Inf
VERBFORM* Verb

]
[VERBFORM Vnoun] v a : a←

[
VERBFORM Inf
VERBFORM* Noun

]
[VERBFORM Part] v a : a←

[
VERBFORM Part
VERBFORM* Adj

]
[VERBFORM Conv] v a : a←

[
VERBFORM Part
VERBFORM* Adv

]
In a last step, we add the modal verbs to a (ll. 35–

37). In Dönicke (2020), the lemmas of the verbs
are used but in our multilingual implementation,
we map the lemmas to three categories of modal
verbs (cf. Biber et al., 2002, p. 176): permis-
sion/possibility/ability (POS), obligation/necessity
(OBL), and volition/prediction (VOL).

5 Classification

We expect a high interdependence between the ex-
tracted features, which is why we use decision trees
for the classification of clauses. A decision tree is a
statistical classification method that can both learn
such complex dependencies and also visualise them
in an understandable manner.

Experiments with other classifiers, including
complement Naive Bayes, random forest and multi-
layer perceptron, could not improve the perfor-
mance over that of a simple decision tree. This
suggests that the decision tree makes the best out
of the available features.

5.1 Discourse Segments

Given a training set XDtrain , we train a decision
tree classifier with Gini impurity as split criterion.
Since the performance of a decision tree strongly
depends on its depth and leaf size, grid search is
performed to select the optimal values for the max-
imum tree depth in {5, 10, 15, 20, 25,∞} and the
minimum leaf size in {1, 2, 5, 10, 15, 20}. For the
grid search, the development set XDdev

correspond-
ing to XDtrain is used for validation.

5.2 Discourse Connectives

The classifier that predicts the length of a connec-
tive is also a decision tree with Gini impurity as
split criterion. We let this tree fully expand on

the training set XConn
Dtrain

(maximum tree depth =∞;
minimum leaf size = 1) since we assume that dis-
course connectives are like a closed class and gen-
eralising to unseen feature combinations is rarely
needed.

6 Experiments

Parsed vs. Plain As suggested in the shared task,
we evaluate our systems in two main conditions:
using the parsed/treebanked datasets (.conllu
files) and using the plain/tokenised datasets (.tok
files). We approach the second condition by pre-
processing the plain datasets with spaCy (https:
//spacy.io/) and training new classifiers on the pro-
cessed training sets. SpaCy provides pretrained
UDG models for all shared task’s languages ex-
cept German, Persian, Basque and Turkish. For
these languages, we trained new models on the UD
treebanks HDT (German), PerDT (Persian), BDT
(Basque) and Kenet (Turkish) (Zeman et al., 2021).

Morphosyntactic vs. Grammatical In all ex-
periments, we represent composite verbs either as
morphosyntactic (M) or as grammatical (G) feature
structures (as described in Section 3.3).

Monolingual vs. Multilingual Each system is
evaluated on all 16 test sets. In the monolingual
condition, we train a system on one dataset only.
We further train a system on all training sets com-
bined (ALL) as well as 16 systems on all but one
training sets (CV). In the CV condition, we eval-
uate the system on the test set corresponding to
the excluded training set. Thus, the CV condition
corresponds to a scenario without training data for
the test language.

7 Results and Discussion

Tables 2 and 3 show the results in the parsed and
the plain condition. Numbers are the F1 scores for
discourse segmentation or connective identification,
depending on the dataset. For the monolingual
experiments, the highest value in each column is
boldfaced. For the multilingual experiments, the
higher value on each test set is underlined. In the
monolingual experiments, the F1 scores for parsed
data are on average 3.5% higher than those for plain
data. The best result on a test set is usually achieved
by the system trained on the corresponding training
set.

The systems presented in this paper do not per-
form better than the best systems from DISRPT

https://spacy.io/
https://spacy.io/
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Test set
deu. eng. eng. eng. eng. eus. fas. fra. nld. por. rus. spa. spa. tur. zho. zho.
rst. pdtb. rst. rst. sdrt. rst. rst. sdrt. rst. rst. rst. rst. rst. pdtb. pdtb. rst.
pcc pdtb gum rstdt stac ert prstc annodisnldt cstn rrt rststb sctb tdb cdtb sctb

Training set M G M G M G M G M G M G M G M G M G M G M G M G M G M G M G M G

deu.rst.pcc 89 92 26 25 73 76 66 62 91 91 71 71 66 63 57 58 87 89 67 72 64 65 80 78 65 63 7 7 18 18 63 65
eng.pdtb.pdtb 29 27 74 74 29 29 25 21 8 8 25 25 20 21 13 14 22 21 22 21 24 24 25 26 16 15 13 16 7 10 7 8
eng.rst.gum 88 89 26 28 86 86 80 80 89 89 69 70 74 73 60 61 85 85 74 74 67 67 74 74 57 57 6 6 19 21 52 55
eng.rst.rstdt 86 87 26 26 83 83 75 75 88 88 69 70 75 69 61 61 83 83 73 72 63 65 70 72 55 55 6 6 19 19 43 48
eng.sdrt.stac 85 85 21 21 64 64 51 51 92 92 70 70 61 61 50 50 82 82 64 64 59 59 77 77 68 68 8 8 16 16 73 73
eus.rst.ert 86 86 28 27 65 66 55 53 91 90 73 75 64 62 52 52 85 86 67 65 65 64 80 80 67 67 12 9 17 17 74 69
fas.rst.prstc 87 88 34 32 72 73 64 68 91 90 73 71 80 81 54 56 83 83 68 70 67 67 74 77 61 62 7 8 20 19 68 65
fra.sdrt.annodis 87 87 27 32 76 78 55 71 72 88 69 70 70 71 62 62 85 86 73 73 66 66 75 76 58 59 7 7 16 18 72 53
nld.rst.nldt 87 87 32 35 74 73 58 57 91 90 72 74 67 67 55 57 90 90 73 69 68 67 83 83 66 64 11 12 17 17 64 72
por.rst.cstn 88 86 30 33 76 73 59 23 90 59 69 69 63 65 60 57 85 84 80 80 67 66 78 76 62 60 10 7 18 3 59 56
rus.rst.rrt 89 89 26 26 69 70 55 54 85 86 71 70 62 66 55 55 86 87 71 71 73 73 78 79 63 64 9 9 17 16 68 68
spa.rst.rststb 87 87 30 32 69 70 54 54 83 83 69 69 56 58 54 52 79 83 70 69 66 66 86 85 69 69 8 7 16 16 62 62
spa.rst.sctb 78 85 20 27 60 67 51 51 81 89 65 68 56 19 48 48 76 80 63 65 59 60 79 78 65 66 8 7 16 16 73 39
tur.pdtb.tdb 5 7 30 33 11 14 8 8 1 1 10 10 9 14 8 8 9 12 14 15 12 14 11 12 10 10 37 37 1 1 2 2
zho.pdtb.cdtb 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0
zho.rst.sctb 69 69 17 17 53 53 47 47 65 65 64 64 53 53 46 46 72 72 54 54 56 56 73 73 62 62 9 9 15 15 72 72
ALL 89 89 72 71 77 77 26 20 91 91 73 73 76 76 59 58 89 88 76 76 72 73 84 84 65 67 34 33 8 10 70 68
CV 90 90 26 26 71 70 24 19 81 83 72 71 67 63 58 57 88 87 74 74 65 66 81 80 66 66 13 13 5 13 65 62

Table 2: Results on the parsed data in %.

Test set
deu. eng. eng. eng. eng. eus. fas. fra. nld. por. rus. spa. spa. tur. zho. zho.
rst. pdtb. rst. rst. sdrt. rst. rst. sdrt. rst. rst. rst. rst. rst. pdtb. pdtb. rst.
pcc pdtb gum rstdt stac ert prstc annodisnldt cstn rrt rststb sctb tdb cdtb sctb

Training set M G M G M G M G M G M G M G M G M G M G M G M G M G M G M G M G

deu.rst.pcc 89 89 – – – – – – 53 53 69 69 71 71 57 56 82 81 67 67 62 62 71 73 63 63 – – – – 65 64
eng.pdtb.pdtb – – 48 48 – – – – – – – – – – – – – – – – – – – – – – – – – – – –
eng.rst.gum – – – – 75 75 – – – – – – – – – – – – – – – – – – – – – – – – – –
eng.rst.rstdt – – – – – – 80 80 – – – – – – – – – – – – – – – – – – – – – – – –
eng.sdrt.stac 78 83 – – – – – – 67 69 60 62 62 71 55 62 79 81 68 72 58 58 72 70 59 57 – – – – 55 48
eus.rst.ert 83 84 – – – – – – 51 52 72 73 55 56 53 53 82 81 63 67 60 59 74 76 69 67 – – – – 69 69
fas.rst.prstc 88 86 – – – – – – 57 57 70 69 77 74 57 56 83 83 67 66 64 63 74 74 63 65 – – – – 67 67
fra.sdrt.annodis 85 85 – – – – – – 59 55 65 65 65 64 66 65 83 83 73 76 64 65 71 72 57 61 – – – – 54 64
nld.rst.nldt 86 85 – – – – – – 54 53 71 71 66 64 56 57 87 87 67 68 64 64 77 77 62 68 – – – – 67 70
por.rst.cstn 84 85 – – – – – – 54 54 68 67 64 61 60 62 84 85 77 77 65 65 74 72 62 59 – – – – 69 69
rus.rst.rrt 87 87 – – – – – – 48 51 70 68 61 65 56 58 80 83 68 72 71 71 73 73 64 64 – – – – 68 68
spa.rst.rststb 84 82 – – – – – – 43 46 68 69 57 64 55 54 79 80 69 68 63 61 80 81 68 68 – – – – 70 70
spa.rst.sctb 85 82 – – – – – – 51 46 65 65 59 59 53 53 81 77 64 63 60 55 77 78 69 68 – – – – 70 70
tur.pdtb.tdb – – – – – – – – – – – – – – – – – – – – – – – – – – 41 41 – – – –
zho.pdtb.cdtb – – – – – – – – – – – – – – – – – – – – – – – – – – – – 9 9 – –
zho.rst.sctb 80 80 – – – – – – 50 50 63 63 56 56 45 45 77 77 59 59 55 55 71 71 68 68 – – – – 69 69
ALL 86 88 – – – – – – 65 65 72 72 73 74 61 62 84 85 75 75 71 71 80 79 67 65 – – – – 67 69
CV 85 87 – – – – – – 49 51 70 70 63 63 61 59 84 83 72 73 65 65 76 78 68 65 – – – – 65 65

Table 3: Results on the plain data in %. Delexicalised datasets are excluded because they cannot be preprocessed;
italicised results have been obtained by the shared task organisers.

2019 (Zeldes et al., 2019). A fundamental dif-
ference between previous systems and the current
system is the classification approach: Whereas
previous works performed a token-level classifi-
cation, the current work tries a clause-level clas-
sification. The latter approach relies on the as-
sumption that starts of discourse segments are
almost always starts of clauses; and it was our

mistake and maybe also bit of an unfortunate co-
incidence that we checked this hypothesis only
for deu.rst.pcc and eng.sdrt.stac (the
datasets which we mostly used for development),
where indeed 95% and 97%, respectively, of the
segment starts coincide with clause starts. As we
can see in Table 4, the percentage is much lower in
other datasets. Since we train our decision tree to
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Dataset % R P F1 F1∗1 F1∗2
discourse segmentation

deu.rst.pcc 95 89 95 92 94 –
eng.rst.gum 85 80 94 86 94 –
eng.rst.rstdt 84 66 87 75 80 –
eng.sdrt.stac 97 86 99 92 94 –
eus.rst.ert 85 66 87 75 84 –
fas.rst.prstc 80 74 88 81 91 –
fra.sdrt.annodis 65 50 82 62 83 –
nld.rst.nldt 93 86 95 90 95 –
por.rst.cstn 74 68 97 80 95 –
rus.rst.rrt 82 64 86 73 85 –
spa.rst.rststb 91 82 89 85 90 –
spa.rst.sctb 88 57 79 66 79 –
zho.rst.sctb 88 67 79 72 81 –
mean 85 72 89 79 88 –

connective identification

eng.pdtb.pdtb 82 66 86 74 84 97
tur.pdtb.tdb 44 24 80 37 63 96
zho.pdtb.cdtb 40 1 30 2 6 89
mean 55 30 65 38 51 94

Table 4: Percentage of segment starts that are also
clause starts, and achieved recall, precision and F1 (see
Table 2) for each dataset. F1∗1 and F1∗

2 are the F1 scores
of the individual classifiers that predict clause-initial
segment starts and connective lengths, respectively.

distinguish clauses where the first token is the start
of a discourse segment from all other clauses (in-
cluding clauses that contain starts of discourse seg-
ments at non-initial positions), the percentage sets
an upper bound for the classification recall. The
languages with the highest achieved precision are
English (86%–99%), Portuguese (97%), German
(95%) and Dutch (95%); the languages with the
highest F1 are German (92%), English (74%–92%)
and Dutch (90%). If only clause-initial segment
starts are taken into account (F1∗1 in Table 4), the
F1 of the decision tree significantly increases for
almost all datasets (+9% on average). The per-
formance for determining the length of discourse
connectives ranges between 89% and 97% (F2∗1 in
Table 4).

These results suggest that the clause-level ap-
proach could achieve reasonable results if segment
starts would always coincide with clause starts.
This precondition is, however, hard to fulfil, since
there are not only different frameworks for dis-
course segmentation but also different notions of

what a clause is. In this paper, we define clauses
in terms of UDG. In practice, UD annotations are
carried out by many different research groups or
converted from non-UD treebanks and thus prone
to inconsistencies that may also affect the annota-
tions of clause-marking relations (e.g. de Marneffe
et al., 2017). Furthermore, a lot of the datasets in
the shared task incorporate automatically created
dependency trees (created by models trained on UD
treebanks), which may lead to follow-up errors in
the clause-splitting step. Dönicke (2020) reports an
F1 of 81% for predicting clauses in a German text
after preprocessing it with a spaCy model trained
on the German UD treebanks. Even though this
number only gives a rough estimate on how well
our system identifies clauses, there is clearly room
for improvement. One could also try to resolve the
mismatch between segment starts and clause starts
in a postprocessing step, e.g. by a second classifier
that identifies the position of a segment start in a
clause (similar to our connective-length classifier).

All of the systems from DISRPT 2019 use lexi-
cal features, where the best systems (Muller et al.,
2019; Iruskieta et al., 2019) are recurrent neural net-
works. The system that is most similar to the cur-
rent work is the (best) system from Bourgonje and
Schäfer (2019), who use a random forest classifier
and extract features at the token-level, e.g. surface
form, POS tag, position in the sentence, succeeding
punctuation mark. Like we do with clauses, they
extract features from the current, the preceding and
the succeeding token. For German and Basque,
our clause-level, delexicalised and unordered-tree
approach yields higher F1s than Bourgonje and
Schäfer (2019)’s random forest; these are, how-
ever, the only languages on which our system per-
forms better. The motivation for not using lexi-
cal features was to create language-independent,
universal representations for multilingual learning.
However, lexical features potentially improve the
performance in a monolingual setting.11

11A multilingual alternative to lexical features are semantic
features, which we also experimented with in the development
phase. We extracted semantic features for English verbs and
their synonyms in the other languages from ConceptNet (Speer
et al., 2017), and added the features of a clause’s main verb
to its grammatical feature structure. (The most common se-
mantic features are: change, contact, communication, motion,
social, stative, possession, cognition, body, creation, percep-
tion, emotion.) Using these features could not improve our
results. A possible reason for this is that we assigned semantic
features without disambiguating verb senses and therefore a
lot of verbs received a broad range of features. However, we
are not aware of an existing multilingual resource for word
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Training on all languages does never im-
prove over the performance of the best mono-
lingual system. The results with a multilin-
gual training set, however, might be distorted be-
cause eng.pdtb.pdtb, tur.pdtb.tdb and
rus.rst.rrt constitute far larger parts in the
multilingual training set than the other datasets.
This is also visible in the CV experiments: when
one of the large datasets is excluded, the perfor-
mance drops more than when a smaller dataset is
excluded. For example, the performance drops
from 71% to 26% when eng.pdtb.pdtb is
excluded, whereas it drops from 67% to 66%
when spa.rst.sctb (the smallest dataset) is
excluded. Although our system does not profit
from multilingual training in the context of the
shared task, it might be useful in scenarios
where no training data is available for a lan-
guage. For example, training and testing on
spa.rst.rststb achieves an F1 of 85%, and
training on other RST treebanks leads to 72%–83%
on spa.rst.rststb (see Table 2). Note that
training on the small but same-language treebank
spa.rst.sctb yields 78%, whereas training on
nld.rst.nldt, which is three times as large,
yields 83%. Joining only some and not all datasets
might improve the performance for individual lan-
guages as well. Future work on multilingual train-
ing could also experiment with balanced datasets.

The use of GFSs instead of MSFSs did not have
a great impact on the classification performance
(<1% difference on average). Inspection of the
learned decision trees showed that the top-level
features concern punctuation, clause types, free dis-
course elements and partially NPs, but features con-
cerning the verb are less common. (As an extreme
example, the decision tree for eng.sdrt.stac,
see Appendix B, does not include any verbal fea-
ture.) Unexpectedly, tense, mood, voice etc. seem
to be irrelevant for discourse segmentation, and so
it does not matter how they are represented.

8 Conclusion

In this paper, we approached discourse segmenta-
tion as a clause-level classification task and repre-
sented clauses as delexicalised UD-based feature
structures. While the approach works sufficiently
on some datasets (e.g. German), the performance
is generally lower than that of other approaches
(cf. Zeldes et al., 2019). A major reason for this

sense disambiguation and semantic feature assignment.

is that, contrary to our expectation, boundaries of
discourse segments do not typically fall onto clause
boundaries in most datasets.

In the context of the shared task, we extended
Dönicke (2020)’s algorithm for the grammatical
analysis of composite verb forms and created the
language-specific resources to run it for all 11
languages. Thus, we also contribute to the task
of compound-verb analysis, which is (in contrast
to morphological analysis) underrepresented in
NLP.12 However, annotating data with grammat-
ical features and testing the algorithm goes beyond
the scope of participating in the shared task and is
left to future work.

Our system is available at https://gitlab.gwdg.de/
tillmann.doenicke/disrpt2021-tmvm.
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A Clause Representations

The three clauses from Figure 1 are represented as
follows (using GFs for composite verbs):

CLAUSE_DEPREL discourse
CLAUSE_POS INTJ
DISC_DISCOURSE_DEPREL discourse
DISC_DISCOURSE_POS INTJ

 (7)



CLAUSE_DEPREL root
CLAUSE_POS VERB
CLAUSE_PREC ,
CLAUSE_SUCC .
NP_NSUBJ_CASE Nom
NP_NSUBJ_DEPREL nsubj
NP_NSUBJ_NUMBER Sing
NP_NSUBJ_PERSON 1
NP_NSUBJ_POS PRON
NP_NSUBJ_PRONTYPE Prs
VERB_ASPECT Imp
VERB_MOOD Ind
VERB_TENSE Fut
VERB_VERBFORM Fin
VERB_VOICE Act



(8)



CLAUSE_DEPREL xcomp
CLAUSE_POS VERB
NP_OBJ_DEFINITE Ind
NP_OBJ_DEPREL obj
NP_OBJ_NUMBER Sing
NP_OBJ_POS NOUN
NP_OBJ_PRONTYPE Art
VERB_VERBFORM Inf


(9)

The prefix clause, NP, verb or disc corre-
sponds to the syntactic unit as described in Sections
3.1–3.4.

http://hdl.handle.net/11234/1-3687
http://hdl.handle.net/11234/1-3687
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B Decision Tree
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Figure 3: Decision tree learned on eng.sdrt.stac (using GFSs). “TRUE” are segment starts. The number
prefixed to a feature is the offset to the current clause, e.g. feature of the preceding clause start with “-1”.


