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Abstract

This paper presents an investigation aimed
at studying how the linguistic structure of
a sentence affects the perplexity of two of
the most popular Neural Language Models
(NLMs), BERT and GPT-2. We first com-
pare the sentence–level likelihood computed
with BERT and the GPT-2’s perplexity show-
ing that the two metrics are correlated. In ad-
dition, we exploit linguistic features capturing
a wide set of morpho-syntactic and syntactic
phenomena showing how they contribute to
predict the perplexity of the two NLMs.

1 Introduction and Motivation

Perplexity is one of the most standard metrics to as-
sess the quality of a language model. It is also used
in different scenarios, such as to classify formal
and colloquial tweets (González, 2015), to detect
the boundaries between varieties belonging to the
same language family (Gamallo et al., 2017), to
identify speech samples produced by subjects with
cognitive and/or language diseases e.g. dementia,
(Cohen and Pakhomov, 2020) or to assess whether
it matches various human behavioural measures,
such as gaze duration during reading (Demberg
and Keller, 2008; Goodkind and Bicknell, 2018).
With the recent success gained by Neural Language
Models (NLMs) across a variety of NLP tasks, the
notion of perplexity has started being investigated
also to dig into issues related to the interpretability
of contextual word representations, with the aim of
understanding whether there is a relationship be-
tween this metric and the grammatical abilities im-
plicitly encoded by a NLM (Gulordava et al., 2018;
Marvin and Linzen, 2018; Kuncoro et al., 2019).
In this context, Hu et al. (2020) and Warstadt et al.
(2020) observed a dissociation between the per-
plexity of a NLM and its performance on targeted
syntactic assessments probing the model’s ability
to encode a range of subtle syntactic phenomena.

These findings seem to be valid for models tested
across languages (Mueller et al., 2020).

In this paper, we address this scenario but from a
different perspective. Rather than studying the rela-
tion between the NLM’s perplexity and its linguis-
tic competences assessed on sentences undergoing
controlled syntactic modifications, we focus on sen-
tences representative of real usage. Our purpose
indeed is to understand which linguistic phenom-
ena of the input sentence may make perplexed a
NLM and whether they can effectively predict the
assigned perplexity score. To have a in-depth under-
standing of the relation between linguistic structure
and perplexity, we rely on a wide spectrum of lin-
guistic features modeling a variety of phenomena,
specifically morpho-syntactic and syntactic ones.
As we also intend to evaluate the possible influence
of the NLM architecture on this relation, in all our
experiments we consider two of the most popular
NLMs, a traditional unidirectional one, i.e. GPT-2
(Radford et al., 2019), and a bidirectional model
such as BERT (Devlin et al., 2019).
Contributions In this paper: (i) we showed that
a sentence-level likelihood computed by masking
each word sequentially for the BERT model has a
robust correlation with GPT-2’s perplexity scores;
(ii) we verified whether it is possible to predict
NLMs’ perplexities using a wide set of linguistic
features extracted by a sentence; (iii) we identified
the linguistic properties of a sentence that mostly
cause perplexity, reporting differences and similar-
ities between the two models.

2 Our Approach

We defined two sets of experiments. The first
consists in investigating the relationship between
BERT and GPT-2 sentence-level perplexity (PPL)
scores. To do so, we first computed BERT and
GPT-2 PPL scores for sentences contained in the
English Universal Dependencies (UD) treebank
(Nivre et al., 2016) and we assessed their corre-



41

lation. In the second set of experiments, we studied
whether a simple regression model that takes as
input a wide range of linguistic features automat-
ically extracted from each UD sentence is able to
predict the two NLMs sentence-level perplexities.

To understand which linguistic phenomena con-
tribute to the prediction of BERT and GPT-2 PPLs,
and how these features differ between them, we
performed an in-depth investigation training the
regression model with one feature at a time.

2.1 Linguistic Features
The set of considered linguistic features is based on
the ones described in Brunato et al. (2020) which
are acquired from raw, morpho-syntactic and syn-
tactic levels of annotation for a total of 78 features
that can be categorised in 9 groups corresponding
to different linguistic phenomena. A summary of
the linguistic features is reported in Table 1, while
the whole list is provided in Appendix A.

As shown in Table, these features model lin-
guistic phenomena ranging from raw text one,
to morpho–syntactic information and inflectional
properties of verbs, to more complex aspects of
sentence structure modeling global and local prop-
erties of the whole parsed tree and of specific sub-
trees, such as the order of subjects and objects with
respect to the verb, the distribution of UD syntactic
relations, also including features referring to the
use of subordination and to the structure of verbal
predicates.

All these features have been shown to play a
highly predictive role when leveraged by traditional
learning models on a variety of classification prob-
lems, also including the development of probes as
reported by Miaschi et al. (2020), who showed that
these features can be effectively used to profile the
knowledge encoded in the language representations
of a pretrained NLM.

2.2 Models and Data
For our experiments, we rely on the pre-trained ver-
sion of the two NLMs previously defined. BERT
(Devlin et al., 2019) is a Transformer-based masked
language model, pretrained on BookCorpus (Zhu
et al., 2015) and English Wikipedia. GPT-2 (Rad-
ford et al., 2018) is a large transformer-based lan-
guage model trained using the language modeling
task (LM) on 8 million documents for a total of 40
GB of text.

We first computed GPT-2’s sentence-level per-
plexities by dividing the sum of all sub-word con-

Linguistic Feature
Raw Text Properties
Sentence Length
Word Length
Vocabulary Richness
Type/Token Ratio for words and lemmas
Morphosyntactic information
Distibution of UD and language–specific POS
Lexical density
Inflectional morphology
Inflectional morphology of auxiliary verbs
Verbal Predicate Structure
Distribution of verbal heads and verbal roots
Verb arity and distribution of verbs by arity
Global and Local Syntactic Tree Structures
Depth of the whole syntactic tree
Average length of dependency links and of the longest link
Average length of prepositional chains and distribution by depth
Clause length
Relative order of elements
Order of subject and object
Syntactic Relations
Distribution of dependency relations
Use of Subordination
Distribution of subordinate and principal clauses
Average length of subordination chains and distribution by depth
Relative order of subordinate clauses

Table 1: Linguistic Features used in the experiments.

ditional log-probabilities by the total number of
words for each sentence in the UD dataset. On the
other hand, since BERT masked language model-
ing task does not allow to compute well-formed
probability distributions over sentences, we mea-
sure BERT sentence-level likelihood by masking
each word sequentially and computing the proba-
bility as follows:

p(S) ≈
k∏

i=1

p(wi|context)

where context, given the deep bidirec-
tionality of the model, corresponds to
w1, ..., wi−1, wi+1, ..., wk. The perplexity is
then computed as follows:

PPLS = e(
p(S)
N

)

where N correspond to the length of sentence
S. In order to uniform the terminology, in what
follows we will refer to the BERT sentence-level
likelihood as perplexity.

In order to evaluate our approach on gold an-
notated sentences, we relied on the three English
Universal Dependencies (UD) treebanks: the En-
glish version of ParTUT (Sanguinetti and Bosco,
2015), the UD version of the GUM corpus (Zeldes,
2017) and of the English Web Treebank (EWT)
(Silveira et al., 2014). Overall, the final dataset
consists of 22,505 sentences.
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Lengths ρ score # samples
All 0.63 22,505
n=10 0.66 847
n=15 0.60 793
n=20 0.64 643
n=25 0.53 422
n=30 0.54 277

Table 2: Spearman correlations between BERT and
GPT-2 perplexities computed for all UD sentences (All)
and sentences with fixed-length n.

3 A Linguistic Investigation on
Perplexity

As a first step, we assessed whether there is a re-
lationship between the perplexity of a traditional
NLM and of a masked NLM. We thus calculated
BERT and GPT-2 perplexity scores for each UD
sentence and measured the correlation between
them. Since PPL scores are highly affected by
the length of the input sequence, we computed ρ
correlation coefficients also considering groups of
sentences with fixed length. Specifically, we relied
on Spearman correlation because we were inter-
ested in measuring how the variations in perplexity
scores relate each other, rather than focusing on the
actual PPL values. Results are reported in Table
2. As we can notice, even considering samples
with fixed length, the two NLMs’ perplexities ex-
hibit moderate to substantial correlation (with p <
0.001), thus showing that BERT an GPT-2 do not
diverge excessively in their ability of predicting
the likelihood of the input sentences. Moreover,
this allows us to confirm that, although the deep
bidirectional structure of BERT does not permit
to compute a well-formed probability distribution
over a sentence (see Section 2.2), this metric could
be considered as a valid approximation of the per-
plexity computed with a unidirectional NLM.

Once established the correlation between the per-
plexities of the two NLMs, we performed a second
experiment to investigate (i) if the considered set
of linguistic features plays a role in predicting their
perplexity and (ii) which are the features that con-
tribute more to the prediction task. To do so, we
trained a LinearSVR model that predicts perplex-
ity’s scores using our set of linguistic properties as
input features. Since most of them refer to syntac-
tic properties of sentence that are strongly corre-
lated with its length, we considered as a baseline a
SVR model that takes sentence length as input and
outputs BERT/GPT-2 sentence’s perplexity. Re-
gression results deriving by considering both the

Figure 1: BERT and GPT-2 ρ scores (multiplied by
100) obtained with the LinearSVR model using linguis-
tic features, for the whole UD dataset and groups of
sentences with fixed length.

whole set (All) and each of the 9 groups of linguis-
tic features separately are reported in Figure 1. As
a general remark, for the whole UD dataset, we can
observe that the results considering both all and the
9 groups of linguistic features outperform the re-
sults obtained by the baseline, i.e. ρ=0.38 for BERT
and 0.22 for GPT-2 respectively. This demonstrates
that the considered features are able to model as-
pects involved in NLM’s perplexity that go beyond
the simple length of sentence. This is particularly
the case of GPT-2, suggesting that the probabil-
ity assigned to a sentence by a traditional NLM
is more explainable in terms of linguistic phenom-
ena mainly affecting morpho-syntactic and syntac-
tic structure. Consequently, the baseline score is
higher for BERT. If we consider the scores obtained
for each group of sentences with fixed length, we
can see that higher scores are obtained for groups
containing shorter sentences, for both NLMs. This
is quite expected since in these sentences the possi-
ble output space is smaller for almost all features,
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Figure 2: BERT and GPT-2 ρ scores obtained with the
LinearSVR model, for the whole UD dataset and 16
token-long sentences. Scores are reported for the 20
top-ranked features for BERT. Numbers in brackets cor-
respond to the relative in the GPT-2 ranking.

thus making them more predictive. Also in this
case, the impact of the linguistic features is always
higher for the prediction of GPT-2’s perplexity.

A more in-depth analysis of these results shows
that the distribution of the morpho-syntactic char-
acteristics of a sentence (POS) and of the syntactic
dependency relations (SyntacticDep) are the two
most predictive sources of linguistic information.
As Figure 1 reports, this holds for the two NLM
models and it remains constant throughout all the
groups of sentences with fixed lengths. Interest-
ingly, if we consider the whole set of sentences,
the effect of the morpho-syntactic information on
the prediction of GPT-2’s perplexity is exactly the
same of that of the whole set of linguistic features.
For some sentence lengths (15, 20, 30) the scores
obtained using only this type of information out-
perform even those obtained considering the whole
set of features. Note that this last remark is true
also in the prediction of BERT’s perplexity. As
expected the other most predictive group is the one
(RawText) that includes the length of sentence.

3.1 Focus on the contribution of individual
features

To investigate more in depth which linguistic phe-
nomena are more involved in the perplexity of the
two models, we trained the LinearSVR model using
each individual feature at a time. This was done for
both the whole dataset and the subset of sentences
(i.e. 758 sentences) having a length of 16 tokens,

which corresponds to the mean sentence length of
the UD dataset. A subset of results is reported in
Figure 2, while the whole results are provided in
Appendix B. As we can see in the left-side of the
heatmap, the two models share many features in the
first ten positions, thus showing that the two NLM
architectures are made perplexed by similar linguis-
tic characteristics of a sentence. In particular, for
both of them, the two most predictive features cor-
respond to the lexical density and the presence of
pronouns confirming the highly predictive power of
morpho-syntactic information. They are followed
by features related to the presence of verbs and
to their internal structure (i.e. verbal_heads and
avg_verb_edges), and, as it was expected, by the
length of the sentence. Despite these similarities,
we can see that the scores obtained by the regres-
sion model to predict BERT’s perplexity are on
average higher than GPT-2’s scores. Considering
that we obtained higher scores using all (or groups
of) features in the prediction of GPT-2’ perplexity
(see Figure 1), this latter result may suggest that
the interaction among features is less relevant in
the prediction of BERT’s perplexity. Differences
among the two models concern features that are
highly sensitive to sentence length, which result to
be more predictive of BERT’s perplexity. This is
the case of syntactic features capturing global and
local aspects of sentence structure, i.e. the depth of
the whole syntactic tree (parse_depth), the maxi-
mum length of dependency links (max_links_len)
and the length of verbal clauses (clause_length).
Also, the canonical order of nuclear sentence ele-
ments such as pre-verbal subjects contribute more
to predict BERT’s than GPT-2’s perplexity. Instead,
the distribution of proper nouns (%_upos_PROPN),
in particular in their singular form (%_xpos_NNP),
the length of token (char_per_tok) and vocabulary
richness are more predictive of GPT-2’s perplex-
ity. Although we cannot say from ranking results
whether features highly ranked are positively or
negatively correlated with perplexity, we can hy-
pothesize that knowing the distribution of tokens
belonging to open lexical categories (e.g. proper
nouns vs determiners) make the perplexity easier
to identify.

The right-side heatmap shows the top-ranked
features used to predict the two models perplexity
for sentences 16-token long. As expected, when
sentence length is controlled, the role of other fea-
tures less related to length becomes predominant.
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In particular, morpho-syntactic information is still
highly predictive for the two models, with lexical
parts-of-speech showing to be relevant not only for
GPT-2’s but also of BERT’s perplexity.

4 Conclusion

In this paper we proposed an investigation of the
linguistic phenomena characterizing the perplexity
of a undirectional and a bidirectional Neural Lan-
guage Model, GPT-2 and BERT. We first reported
robust correlations between GPT-2’s perplexity and
the sentence-level likelihood computed with BERT.
This is a quite prominent result, especially consider-
ing that these two metrics are differently computed
as a consequence of the two NLMs architectures.

Interestingly, we found the effectiveness of lin-
guistic features modelling a wide set of morpho-
syntactic and syntactic phenomena in predicting the
perplexity of the two NLMs, especially for shorter
sentences. Despite similar trends, we observed
some differences between the two NLMs both at
the level of regression accuracy and in the rankings
of the features exploited in the prediction of per-
plexity. GPT-2’s perplexity is better captured by
the considered features and it resulted to be more
affected by lexical parts-of-speech and features cap-
turing the vocabulary richness of a sentence. On
the contrary, BERT’s perplexity seems to be best
predicted by syntactic features highly sensitive to
sentence length.
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A Appendix A

fRaw Text Properties
[sent_length]: average length of sentences in a document, calculated in terms of the number of words per sentence
[char_per_tok]: average number of characters per word (excluded punctuation)
Vocabulary Richness
[ttr_lemma]: Type/Token Ratio (TTR) calculated with respect to the lemmata in a sentence. It ranges between 1 (high lexical variety) and 0
(low vocabulary richness)
[ttr_form]: Type/Token Ratio (TTR) calculated with respect to the word forms in a sentence. It ranges between 1 (high lexical variety) and 0
(low vocabulary richness)
Morphosyntactic information
[%_upos_*]: distribution of the part-of-speech categories defined in the Universal POS tags, as detailed at the following link: https://
universaldependencies.org/u/pos/index.html
[%_xpos_*]: distribution of the part-of-speech categories defined in the Penn Treebank POS tags, as detailed at the following link: https:
//www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
[lexical_density]: the value corresponds to the ratio between content words (nouns, proper nouns, verbs, adjectives, adverbs) over the total
number of words in a sentence
Inflectional morphology
[%_aux_tense_*]: distribution of auxiliary verbs according to their tense: https://universaldependencies.org/u/feat/
Tense.html
[%_aux_mood_dist_*]: distribution of auxiliary verbs according to their moods: https://universaldependencies.org/u/feat/
Mood.html
[%_aux_form_*]: distribution of auxiliary verbs according to their forms: https://universaldependencies.org/u/feat/
VerbForm.html
[verbs_gender_dist_*]: distribution of verbs according to the gender of participle forms, for the languages that have this features: https:
//universaldependencies.org/u/feat/Gender.html
[%_aux_num_pers_*]: distribution of auxiliary verbs according to their number and person: https://universaldependencies.org/
u/feat/Person.html
Verbal Predicate Structure
[verbal_head]: average distribution of verbal heads in the document, out ot the total of heads.
[%_verbal_roo]: average distribution of roots headed by a lemma tagged as verb, out of the total of sentence roots;
[avg_verb_edges]: verbal arity, calculated as the average number of instantiated dependency links (covering both arguments and modifiers)
sharing the same verbal head, excluding punctuation and auxiliaries bearing the syntactic role of copula according to the UD scheme
[verbal_arity*]: distribution of verbs for arity class (e.g. verbs with arity 1, 2, ...)
Global and Local Syntactic Tree Structures
[parse_depth]: mean of the maximum tree depths of the sentence. The maximum depth is calculated as the longest path (in terms of occurring
dependency links) from the root of the dependency tree to some leaf
[clause_length]: average clause length, calculated in terms of the average number of tokens per clause, where a clause is defined as the ratio
between the number of tokens in a sentence and the number of either verbal or copular head
[avg_links_len]: average number of words occurring linearly between each syntactic head and its dependent (excluding punctuation dependen-
cies)
[max_links_len]: the value of the longest dependency link in the document, calculated in number of tokens
[prep_1]: distribution of prepositional chains 1-complement long. A prepositional chain is calculated as the number of embedded prepositional
complements dependent on a noun
Relative order of elements
[%_obj_post]: distribution of objects following the verb
[%_subj_pre]: distribution of subjects preceding the verb
Syntactic Relations
[%_dep_*]: average distribution of the 37 universal syntactic relations used in UD (https://universaldependencies.org/u/dep/
index.html)
Use of Subordination
[principal_prop_dist]: distribution of principal clauses
[%_subord_prop]: distribution of subordinate clauses, as defined in the UD scheme: https://universaldependencies.org/u/
overview/complex-syntax.html#subordination
[subord_post]: distribution of subordinate clauses following the main clause
[avg_subord_chain]: average length of subordinate chains, where a subordinate ’chain’ is calculated as the number of subordinate clauses
embedded on a first subordinate clause
[subord_1]: distribution of subordinate chains 1-clause long

Table 3: Linguistic features used in the experiments.
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B Appendix B

Figure 3: BERT and GPT-2 ρ scores obtained with the LinearSVR model using one feature at a time, for the whole
UD dataset and sentences with lengths = 16.


