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Abstract
In this work we propose an approach for gener-
ating statements that explicate implicit knowl-
edge connecting sentences in text. We make
use of pre-trained language models which we
refine by fine-tuning them on specifically pre-
pared corpora that we enriched with implicit
information, and by constraining them with
relevant concepts and connecting common-
sense knowledge paths. Manual and automatic
evaluation of the generations shows that by re-
fining language models as proposed, we can
generate coherent and grammatically sound
sentences that explicate implicit knowledge
which connects sentence pairs in texts – on
both in-domain and out-of-domain test data.

1 Introduction

In everyday communication and in texts people
usually omit information that seems clear and
evident, such that only part of the message needs to
be expressed in words. In the following sentence:

(1-i) Students should be allowed to use com-
puters during the lectures, (1-ii) even though that
bears the risk that they are writing emails instead
of listening to the teacher.

in order to understand the connection between (i)
and (ii) we must know that Computers are used
for sending emails, or that Lectures are given by
teachers. Such implicit knowledge can easily be
inferred by humans, since it is part of their back-
ground knowledge. By contrast, for computational
systems implicitness in texts represents a challenge.

In this work we propose an approach for gen-
erating implicit knowledge sentences in-between
contiguous sentences, which explicate their logi-
cal connection, utilizing pre-trained language mod-
els (LMs) that we refine as follows: i) we inject
’explanatory’ knowledge by fine-tuning LMs on
specifically prepared corpora, and (ii) condition
text generation through constraints in form of rel-
evant concepts and knowledge paths. Our work is

inspired by the recent success of pre-trained LMs
(Devlin et al., 2018; Radford et al., 2019; Yang
et al., 2019a) in various downstream NLP tasks,
including text generation and NL inference (Wang
et al., 2018). However, for the task of reconstruct-
ing implicit knowledge, such LMs need to be care-
fully guided, not only to yield coherent statements,
but to also ensure that they convey the missing, im-
plicit information that connects given sentences in
a text. To this end we create corpora with sentence
pairs enriched with implicit information based on
on Generics-KB (Bhakthavatsalam et al., 2020) and
e-SNLI (Camburu et al., 2018), which we use for
LM fine-tuning. For improved performance we ex-
plore methods of constrained language generation,
guiding the model by way of relevant concepts and
connecting commonsense knowledge paths.

We aim to build a system that is not limited to
specific text genres or knowledge domains, and
thus evaluate our models in-domain – on testsets
from our fine-tuning corpora; and out-of-domain –
using IKAT (Becker et al., 2020), an argumentative
corpus which offers sentence pairs annotated with
implicit knowledge that connects them.

A central contribution of this work is an in-
depth evaluation of the quality of generations de-
livered by different model variants, and their ability
of expressing implicitly conveyed knowledge. We
propose a manual evaluation setup covering four
dimensions – grammaticality, coherence, content,
and comparison to gold references – , and compare
these to various automatic evaluation metrics. Our
experiments show that with our proposed approach
we can generate coherent sentences that explicate
implicit knowledge that connects given sentence
pairs; and that current text generation metrics are
not sufficient to evaluate this challenging task.

Our contributions are: (i) We empirically com-
pare different types of LMs, exploring which model
is best suited for the task of generating sentences
that express implicit information between sen-
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tences. (ii) We create datasets that include implicit
information holding between sentence pairs, which
we use for fine-tuning our LMs, and which can
be used for general commonsense reasoning tasks.
(iii) We propose a method for constrained genera-
tion by injecting concepts or commonsense knowl-
edge paths as language modeling constraints, and
show that key concepts, and even more, knowl-
edge paths improve the quality of generations. (iv)
We carefully evaluate the quality of the generated
implicit knowledge sentences, both manually and
automatically, and discuss strengths and limitations
of automatic similarity metrics.1

2 Related Work

Recent progress in pretraining LMs on large text
corpora led to improvements for various down-
stream NLP tasks. It has also been shown that
knowledge acquired during pre-training can be
leveraged by fine-tuning these models to advanced
semantic inference or NL generation tasks (Wang
et al. 2018). Recently, pre-trained LMs have been
augmented with external knowledge from com-
monsense knowledge bases such as ConceptNet,
which provides more explicit knowledge ground-
ing and improves their performance on downstream
tasks that require reasoning abilities. Wang et al.
(2020b), for example, retrieve multi-hop knowl-
edge paths from ConceptNet for fine-tuning LMs
for multiple choice question answering. Chang
et al. (2020) and Bosselut et al. (2021) incorporate
knowledge paths from ConceptNet into pre-trained
LMs for solving the SocialIQA task (Sap et al.,
2019). However, all these approaches evaluate the
effectiveness of integrating commonsense knowl-
edge indirectly on downstream tasks, and do not ex-
plicitly evaluate the impact and relevance of knowl-
edge for a specific system prediction. We address
this shortcoming by generating and carefully eval-
uating statements that connect pairs of sentences
as explanations of their underlying, implicit knowl-
edge link. Closest to this aim is the task of explana-
tion generation, which has received attention very
recently. Wang et al. (2020a) propose the SemEval-
2020 Task 4 (Subtask C), which is to generate an
explanation for why a statement does not make
sense, by way of a natural language statement. A
comparison of the participating systems (cf. Peru-

1The code for our proposed approach can be found here:
https://github.com/Heidelberg-NLP/LMs4Im
plicit-Knowledge-Generation.

mal et al./Jon et al. 2020) shows that pre-trained
LMs play a central role in the success of the top-
performing systems, demonstrating that they con-
tain commonsense information to a good extent.
The success of models enriched with knowledge
from external sources such as ConceptNet further-
more shows that additional knowledge supports the
generation of commonsense explanations. How-
ever, there is still a large gap between systems and
human performance.

Pre-trained LMs enhanced with commonsense
knowledge have also been the models of choice for
other text generation tasks, e.g. dialogue genera-
tion (Zhou et al., 2018), story ending generation
(Guan et al., 2020), or abductive NLI (Ji et al.,
2020b). While these models aim at generating ex-
planations for a single statement, or completing a
given sequence of sentences, we investigate how to
make use of LMs to generate a sentence that fills
in implicit knowledge between two sentences.

Constraining LMs. Recent work addresses
how to control content in LM text generation, while
maintaining fluency, coherence and plausibility of
the generated text. Lin et al. (2020) explore how
to generate a coherent and plausible situation de-
scription given an unordered set of concepts as in-
put, and find that even pre-trained LMs (BART, T5)
fine-tuned to this task cannot solve it: the generated
sentences are grammatical, but highly implausible,
lacking commonsense. This suggests that either
the underlying LMs, or input constraints for gener-
ation need to incorporate commonsense knowledge.
Orbach and Goldberg (2020) attempt to control the
content when generating longer stories by specify-
ing facts the story needs to include. They propose
a plan-and-cloze model that first creates a cloze
template, placing input facts at fixed positions in
the output. In the cloze step, the system expands
the fact tokens into complex sentences that com-
plete the story. While uni-directional LMs such
as GPT-2 or BART generate fluent text but do not
well adhere to the desired content, the fine-tuned
multi-directional XLNet outputs coherent text and
adheres to the facts.

While none of the above works incorporate exter-
nal knowledge to guide generation, Ji et al. (2020a)
perform explanation generation for single state-
ments, using ConceptNet background knowledge.
The model selects concepts from the statement,
retrieves connecting paths from ConceptNet, and
selects bridge concepts from a subgraph. A pre-

https://github.com/Heidelberg-NLP/LMs4Implicit-Knowledge-Generation
https://github.com/Heidelberg-NLP/LMs4Implicit-Knowledge-Generation
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trained decoder generates the explanation, using as
input the statement and top-ranked concepts from
the subgraph. In our work we also select concepts
from texts, but dynamically generate commonsense
knowledge paths as constraints. Importantly, we
aim to generate coherent explanations in-between
sentences – a challenge for uni-directional LMs.

3 Knowledge-constrained text generation

3.1 Task Definition and Approach

The task we tackle in this work is: given two con-
tiguous sentences (source sentences S1, S2), gen-
erate an explanatory sentence (target sentence T )
that explains the underlying, implicit information
that connects them. We explore different types of
LMs and their aptness for solving this task. We
fine-tune them on existing or adapted datasets to
inject relevant knowledge, and add key concepts
or connecting knowledge-paths as constraints to
achieve coherent and informative explanations.

3.2 Types of Language Models

We compare three types of LMs: GPT-2 (Radford
et al., 2019), an autoregressive model which gener-
ates the output sequence from left to right; XLNet
(Yang et al., 2019b), a bidirectional generalized au-
toregressive LM; and BART (Lewis et al., 2019),
a seq2seq model with a bidirectional masked en-
coder and a left-to-right decoder. While GPT-2 and
BART generate the next tokens seeing only the left
(previous) context, XLNet predicts the next tokens
based on the left and right context, in a random or-
der. GPT-2 is pre-trained on web pages from Com-
monCrawl, XLNet on CommonCrawl+ClueWeb
(Callan et al., 2009), and BART on the CNN/DM
summarization dataset (Hermann et al., 2015).

3.3 Fine-tuning LMs

Task-adapted Datasets for LM Fine-tuning. All
chosen LMs are pre-trained on information that is
explicit in text. To condition them to generate im-
plicit information that connects sentences, we fine-
tune them on datasets that include knowledge state-
ments connecting contiguous sentence pairs. We
create two such corpora, one based on Generics-KB
(Bhakthavatsalam et al., 2020), which offers state-
ments expressing generic knowledge; the other on
e-SNLI (Camburu et al., 2018), which comprises
explanations of inferential commonsense knowl-
edge. Each data instance contains two source sen-
tences S1, S2, a target sentence T , and two key

concepts c1, c2 which we extract from the original
data as described below. For examples see Table 1.

Generics-KB contains naturally occurring
generic sentences crawled from the web using lin-
guistic rules and BERT-based scoring. It is rich in
high-quality statements that express generic knowl-
edge. Each generic sentence occurs in its surround-
ing context (1-5 sents before/after), hence each
instance forms a triple consisting of the context
before (Cb), the generic sentence (GS) and the
context after (Ca). We collect all instances where
a phrase p1 (NP, VP, ADJP or ADVP) from GS
also occurs in Cb, and another phrase p2 from GS
occurs in Ca. For each instance we extract the
sentence containing p1 and the one containing p2
as our source sentences S1, S2; GS as our target
sentence T ; and p1 and p2 as key concepts c1, c2.

e-SNLI is an extension of the SNLI dataset
(Bowman et al., 2015), additionally annotated with
explanations: Given a premise-hypothesis pair and
the relation between them (entailment, contradic-
tion, or neutral), annotators added natural language
sentences that explain why the pair is in the rela-
tion. Annotators had to mark essential key phrases
for the relation in premise and hypothesis, and had
to formulate explanations that employ these key
phrases. For fine-tuning and testing our models,
we consider all instances labelled with entailment
and contradiction relations (but do not include the
labels in fine-tuning). We interpret premise and hy-
pothesis as our source sentences S1 and S2, the ex-
planation as our target sentence T , and the marked
key phrases as our key concepts c1 and c2.

In- and Out-Of-Domain Test Sets. We test the
resulting models in-domain – on testsets from our
fine-tuning corpora; and out-of-domain – on the
IKAT dataset (Becker et al., 2020), which is based
on the argumentative Microtexts Corpus (Peldszus
and Stede, 2015). For all sentence pairs S1 and S2

that are adjacent or argumentatively related, anno-
tators added the implicit knowledge that connects
them, using simple sentences, which we use as tar-
gets T . They also marked two key phrases in each
implicit knowledge sentence, where in most cases
one key phrase appears in the first source sentence,
and the other in the second – which we interpret as
key concepts c1 and c2 in our approach.

3.4 Constraining Explanation Generation

Our hypothesis is that unconditioned generation
may not be sufficient to produce statements carry-
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Dataset Source Sentence 1 Source Sentence 2 Target Sentence Key Concepts Paths
G-KB The patient is assessed

for pain every 4 hours.
Combination of treatments
are needed for effective
pain management.

Pain management
is provided for pa-
tients in pain.

pain manage-
ment, patients

pain manage-
ment USEDFOR
patients

eSNLI The city has a lot of peo-
ple in it.

It is busy city that looks
like New York City

A city that is busy
has a lot of people
in it.

a lot of people,
busy city

busy city HAS-
PROPERTY a lot
of people

IKAT Education and training
are fundamental rights
which the state must pro-
vide.

If a university lacks the
fundings, sponsors must
be found.

Education and train-
ing must be funded.

education and
training, fund-
ings

education and
training HAS
PREREQUISITE
fundings

Table 1: Source sentence pairs and target sentences (reference) from our three datasets, with marked key concepts and
automatically predicted knowledge paths between them.

G
en

-K
B BL Patients often report back to the clinic with a worsening pain condition within one to two hours of first assessment.

+c Patients often have few if any symptoms at first, but pain becomes less intense and less frequent in coming hours.
+p Patients are admitted to the hospital with moderate to high intensity pain.

e-
SN

L
I BL A busy city that looks like new york city has a lot of people in it, so the city has to have a lot to people in the city.

+c The city has a lot of people in it because it is a busy city.
+p A busy city implies that there are a lot of people in the city.

IK
A

T BL The state and society must be found if a university lacks the funds to provide education and training.
+c The state and the society must pay for education and training if the university lacks the funds.
+p If a university lacks the funds, it can not be providing education and training to its students.

Table 2: Example generations for pairs from Tab. 1, from BART: w/o constraints or constrained w/ concepts (c) or paths (p).

ing relevant knowledge which explains the connec-
tion between two sentences. Hence we experiment
with direct injection of constraints or triggers to
guide the generation to emit meaningful and coher-
ent implicit knowledge statements: We include (i)
key concepts as offered by each dataset, since we
expect them to direct the model towards concepts
that are relevant for explaining how the two sen-
tences are related. We also include (ii) relational
knowledge between the key concepts as constraints,
by establishing multi-hop knowledge paths be-
tween them. To this end we combine relation clas-
sification and target prediction models specifically
adapted to ConceptNet. The two respective models
are based on LMs fine-tuned on ConceptNet (Speer
et al., 2017), a large network that represents com-
monsense facts.2 We generate single- and multihop
paths between key concepts from a sentence pair,
and use these paths as constraints when generating
target sentences. We expect the generated paths to
provide useful relational information for the model.
Example paths appear in Table 1.

4 Data and Experimental Setup

Datasets. We use the data from GenericsKB and
e-SLNI for fine-tuning and testing models (in-

2Details about the models appear in the Appendix.

domain), and IKAT for testing out-of-domain.3 For
statistics see Table 3. All instances contain two
source sentences S1,2, a target sentence T , and two
key concepts c1,2, where c1∈S1, c2∈S2, and c1,2
∈ T . We experiment with c1,2, and with paths p
generated between c1 and c2 as constraints, which
we establish as explained above.

Input Sequences. We build the input sequences
by concatenating the source sentences S1 and S2,
separated by a SEP token. When including key con-
cepts c1,2 or knowledge paths p as constraints, we
append them to the input sequence right after S1

and S2, separated by a SEP token. Thus, the con-
cepts and paths we use as constraints are encoded
by the tokenizer of each language model together
with the rest of the input sequence. Accordingly,
our input sequences are structured as follows:
S1 <SEP> S2 <SEP> (c1, c2|p) <EOT> T .

Fine-tuning LMs. For LM fine-tuning, we ap-
pend the target sentence to the input sequence, sep-
arated from the rest of the input by an EOT tag.
GPT-2 and XLNet are trained to reconstruct the
target sentence T . During inference, the models
only see the source sentences, and constraints if

3In preliminary experiments we also tried to fine-tune our
LMs on GenericsKB and e-SNLI together, which did not im-
prove results compared to when using these datasets separately
for fine-tuning – most likely because the datasets are very dif-
ferent from each other in terms of linguistic characteristics
(e.g. sentence lengths and structure) and the covered topics.



15

train dev test eval-1 eval-2
G-KB 21,644 6,184 3,091 10 30

e-SNLI 18,160 2,028 1,002 10 30
IKAT - - 719 10 40

Table 3: Datasets: Nb. of source sentence pairs with associ-
ated implicit knowledge sentences, used for fine-tuning and
testing; and subsets from test used in evaluations.

given, and they complete the input sequence by
generating T . In contrast, BART encodes S1 and
S2, and its decoder is trained to predict T based on
the encoded source sentences.

We use the pre-trained models from Hugging-
Face Transformers (Wolf et al., 2019) and adapt
them for fine-tuning on our customized training
data. In order to generate compact sentences cap-
turing the relevant implicit knowledge (instead of
long explanations), we set a length limitation of 20
tokens for each generation. More details about our
models are listed in the Appendix.

5 Evaluation and Results

This section presents an in-depth evaluation of
the quality of generations from different model
variants, and their ability of expressing implicitly
conveyed knowledge. We design a manual evalua-
tion setup covering various dimensions, and com-
pare the results to several automatic evaluation
metrics. We conduct evaluation in-domain on our
customized test data; and out-of-domain on IKAT.

5.1 Manual Evaluation

Questions to Annotators.4 To filter out source
sentence pairs between which no implicit infor-
mation is missing, we first ask the annotators for
each source sentence pair if they are implicitly con-
nected by some (unexpressed) piece of knowledge
(yes/no). The annotators are then guided through
follow-up questions covering four dimensions:
(1) Grammaticality – we ask if the generated sen-
tence is grammatically correct, given the choices
correct, almost correct (minor grammatical errors),
and incorrect (major grammatical errors);
(2) Coherence – we ask if the generated sentence is
logically and semantically consistent with respect
to the two source sentences, given the choices fully
coherent, partly coherent, or incoherent;
(3) Content – we ask if the generated sentence

4The annotation manual together with example annotations
can be found here: https://github.com/Heidelber
g-NLP/LMs4Implicit-Knowledge-Generation/
blob/main/manual.pdf

gives an explanation of the connection between
the two source sentences, given the choices yes,
neutral (if the generated sentence is related to the
source sentences, but not in a clear logical relation),
and no (if the sentence is misleading or contradic-
tory in the context of the source sentences);5 (4)
Comparison to the annotated reference sentence
6 – we ask if the generated sentence is similar in
meaning to the reference, given the choices similar,
partly similar, or not similar. In addition, we ask
if the reference sentence or the generated sentence
is a more meaningful explanation of the implicit
knowledge that connects the source sentences, or
if both are equally meaningful explanations.

Annotation Setup. Our goal is to investigate
which model variant is best suited for generating
grammatically sound, coherent and meaningful ex-
planations. We approach this question with two
annotation rounds: In a first round we aim to de-
termine which model is best suited for generating
implicitly conveyed knowledge, and which dataset
is best suited for fine-tuning the model for gen-
erating statements on out-of-domain test sets. In
a second annotation round we aim to determine
which types of constraints yield best results, now
restricted to the best performing model and training
setup, as determined in round one.

Annotator Agreement. Annotation was per-
formed by two annotators with a background in
computational linguistics. We measure IAA using
Cohen’s Kappa, combined over round one and two,
and achieve an agreement of 95% on dimension 1,
80% on 2, 77% on 3, and on dimension 4 82% for
the first and 78% for the second question. Remain-
ing conflicts were resolved by an expert annotator.

5.1.1 Best Model Type and Fine-Tuning Data
For the first annotation round we sample 10 source
sentence pairs from each testset, hence 30 pairs
overall, and the sentences generated by GPT-2, XL-
Net and BART for each instance, using concepts as

5The difference between dimension 2 and 3 is that with
dimension 2 (coherence), we want to explore if the generated
sentence semantically fits to the two given source sentences.
We understand coherence together with Hobbs (1979) as the
existence of specific knowledge relations that hold between
concepts in a text (or discourse), such as Cause-Effect, Con-
dition, or Temporal Sequence, cf. Wolf and Gibson (2004).
These relations make the texts interpretable and informative
and are motivated ultimately by the speaker’s or writer’s need
to be understood (Hobbs, 1979). In contrast, when evaluat-
ing the content of the generated sentence in dimension 3, we
want to discover if the sentence really explains the connection
between the two source sentences.

6The reference sentence is only provided for Question 4.

https://github.com/Heidelberg-NLP/LMs4Implicit-Knowledge-Generation/blob/main/manual.pdf
https://github.com/Heidelberg-NLP/LMs4Implicit-Knowledge-Generation/blob/main/manual.pdf
https://github.com/Heidelberg-NLP/LMs4Implicit-Knowledge-Generation/blob/main/manual.pdf
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Figure 1: Example generations for the IKAT test set, for all three models, fine-tuned on e-SNLI vs. GenericsKB, with concepts
vs. paths as constraints.

constraints. For IKAT, we consider the sentences
generated by each model fine-tuned on e-SNLI
vs. GenericsKB. This sums up to 120 annotation
samples (generated sentences).7 In Fig. 1 we give
example generations for IKAT, for all three model
types, comparing fine-tuning on e-SNLI vs. Gener-
icsKB; and constraining with concepts vs. with
paths. More examples appear in the Appendix.

Results. For all 30 sentence pairs the annota-
tors agreed that there is some implicit information
connecting them. Table 4 displays the results of
the first annotation round for the four dimensions
described above. All three models are able to gener-
ate grammatically correct sentences (col. 1), with
BART’s generations scored as correct most often.
BART also generates the most coherent sentences
(col. 2), in-domain (e-SNLI and GenericsKB) and
out-of-domain (IKAT), followed by XLNet. For
dimension 3, which evaluates whether the gener-
ations are meaningful explanations of implicit
knowledge connecting the source sentences (col.
3), only BART fine-tuned on e-SNLI gives satisfac-
tory results (in-domain, when fine-tuned and tested
on e-SNLI; and out-of domain, when fine-tuned on

730 generated sents for e-SNLI and GenericsKB, resp. (10
source sents x 3 models), and 60 generated sents for IKAT (10
source sents x 3 models x 2 different fine-tuning datasets).

e-SNLI and tested on IKAT). Many of the genera-
tions from GPT-2 are judged as neutral (orange in
Table 4) or misleading (red). The last two columns
reflect the comparison of the generated vs. anno-
tated reference sentence (dimension 4). BART’s
generations are overall rated as most similar to the
reference sentence, especially when fine-tuned on
e-SNLI (in- and out-of-domain), and are judged as
better or equally good explanations compared to the
reference sentences in 70% (e-SNLI, in-domain)
and 50% (IKAT–e-SNLI, out-of-domain).

To summarize, according to our first round of
evaluation, the BART model generates the most
grammatical and coherent statements that are found
to explain the connection between the source sen-
tences best. They are also judged to be most sim-
ilar to the reference sentence. When applied on
out-of-domain testsets, BART performs best when
fine-tuned on e-SNLI.

5.1.2 Best Constraints
While the first round of annotations used a rela-
tively small set of 120 generated target sentences
that helped us to determine BART as the best-suited
model type, we now aim to deeper investigate the
generations of BART to study the effect of differ-
ent types of constraints on the quality of expla-
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DIMENSION Grammaticality Coherence Explanation Sim. to Reference Gen. vs. Ref.
CHOICES Yes/Almost/No Yes/Partly/No Yes/Neutral/No Yes/Partly/No GS/Both/RS

GPT-2 e-SNLI 60/30/10 30/20/50 60/20/20 40/20/40 20/20/60
G-KB 100/0/0 40/50/10 30/70/0 20/40/40 0/20/80
IKAT - e-SNLI 70/10/20 20/30/50 20/80/0 20/60/20 0/40/60
IKAT - G-KB 100/0/0 40/50/10 20/60/20 20/20/60 10/10/80

XLNet e-SNLI 90/10/0 60/20/20 60/20/20 60/20/20 30/30/40
G-KB 90/10/0 40/50/10 50/50/0 0/60/40 20/10/70
IKAT - e-SNLI 80/20/0 60/20/20 50/40/10 30/60/10 0/40/60
IKAT - G-KB 90/0/10 20/80/0 50/30/20 10/20/70 0/10/90

BART e-SNLI 100/0/0 100/0/0 100/0/0 80/20/0 40/30/30
G-KB 100/0/0 40/60/0 40/60/0 20/80/0 20/10/70
IKAT - e-SNLI 90/0/0 60/40/0 70/20/10 60/30/10 20/30/50
IKAT - G-KB 100/0/0 50/50/0 50/40/10 50/40/10 40/0/60

Table 4: Results of the 1st manual evaluation (in %). For all 10 source sentence pairs, each model generates a target sentence
when fine-tuned and tested in-domain on (i) e-SNLI and (ii) GenericsKB; or out-of-domain testing on IKAT, when fine-tuned on
(iii) e-SNLI or (iv) GenericsKB; with marked best/worst scores for in- and out-of domain testing.

nations. We provide our annotators with 70 new
source sentence pairs (20 from e-SNLI, 20 from
GenericsKB, 30 from IKAT), and three different tar-
gets per pair, generated by three model variants of
BART: (i) a baseline fine-tuned without any knowl-
edge constraints; (ii) BART fine-tuned using the
key concepts as constraints; and (iii) BART fine-
tuned using an automatically generated common-
sense knowledge path between the key concepts
as constraint. Since fine-tuning on e-SNLI has
been determined as best suited for out-of-domain
testing, we consider only generations from BART
fine-tuned on e-SNLI for testing on IKAT. In our
evaluation we consider the 70 sentence pairs and
the respective sentence generations from Round
2, and the generations for the 30 source sentence
pairs from the best performing model BART from
Round 1, resulting in 100 sentence pairs, with three
generations per pair.

Results. Similar to Round 1, for 98% of the
source sentence pairs the annotators agreed that
there is some implicit information connecting them.

Fig. 2 shows the results of the second round
of evaluations, example generations appear in Ta-
ble 2. We find that using knowledge constraints
improves the quality of generations compared to
the baseline without constraints, on all four dimen-
sions: on each of our three test sets, generations
are rated as more grammatical when constrained
with concepts and paths (with GenericsKB as only
exception); they are annotated as more coherent,
and rated as better explanations of implicit knowl-
edge. Knowledge constraints also lead to a higher
similarity to the reference sentence on all three
datasets, and sentences generated with knowledge
constraints are more often rated as better explana-

tions than the reference sentences. Overall we find
that knowledge paths improve scores over the base-
line more than concepts (a plus of 2–15 pp). The
improvements are most significant for IKAT, where
adding concepts boosts evaluation scores between
18 (Grammaticality) and 53 pp (Coherence), and
adding paths by 20 (Grammaticality) and 55 pp
(Coherence). The generations of BART, fine-tuned
on e-SNLI, as shown in the first example in Fig. 1,
demonstrate how the integration of paths as con-
straints can improve text generation even more than
when only injecting key concepts. The path used
as constraint is Germany’s aging society CAUSES

increasing costs. When constraining BART with
key concepts, it generates The social security and
pension costs are being paid for by the people of
Germany, while the generation with the knowledge
path as constraint is Social security and pension
costs are rising because more pension is needed for
elderly people in Germany). This shows that the
relation CAUSES gives our model an important hint
about the causal relation that is needed to explain
the connection between the two given sentences.

To summarize, the results from our second eval-
uation round clearly show that constraints in form
of relevant concepts and knowledge paths can help
LMs for generating grammatically sound, coherent
and meaningful explanations of the missing knowl-
edge between sentences, especially when applied
on out-of-domain test sets.

5.2 Automatic Evaluation

In our automatic evaluation setup, we apply a range
of different evaluation metrics commonly applied
in text generation tasks, which either measure the
similarity to a reference sentence (in our case, the
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Figure 2: Results of 2nd manual evaluation: comparing models constrained with concepts (+c) or paths (+p) against a baseline
without constraints. We display improvements in percentage points (pp) for the best option (blue bar) per dimension.

generic sentences in GenericsKB, inference expla-
nations in e-SNLI, or implicit knowledge state-
ments in IKAT); or the linguistic quality and di-
versity of the generated sentence.

(i) BLEU (Papineni et al., 2002) and ROUGE
(Lin, 2004) measure token overlap using ngrams.
We apply BLEU-1 to measure precision and
ROUGE-1 to measure recall based on unigrams;

(ii) BERT-Score (Zhang* et al., 2020) and
Sentence-BERT (Reimers and Gurevych, 2019)
compute semantic similarity scores for text se-
quences based on word or sentence representations.
BERT-Score uses BERT’s contextualized word em-
beddings to calculate a cross similarity score for
each token in the generation with each token in the
reference, while Sentence-BERT is fine-tuned on
NLI and STS to predict the similarity of two se-
quences. For BERT-Score we report F1 scores; for
Sentence-BERT we average the similarity scores
obtained for the generated vs. reference sentences.

(iii) S2Match (Opitz et al., 2020) is an AMR
graph matching metric, which measures the overlap
of the AMR semantic graphs that we construct from
the reference and generated sentence using Cai and
Lam (2020)’s parser, and reports accuracy;

(iv) Distinct-N (Li et al., 2015) and GRUEN
(Zhu and Bhat, 2020) are reference-free metrics that
only consider properties of the generated sentence.
Distinct-N measures the diversity of a sentence
by focusing on the number of distinct unigrams
(Distinct-1) and bigrams (Distinct-2); GRUEN eval-
uates the linguistic quality of a sentence in terms
of grammaticality, non-redundancy, and structure.

In a preliminary experiment based on the com-
plete test sets of Generics-KB, e-SNLI and IKAT
(cf. Table 3) we first investigate which model gen-
erates sentences that are most similar to the refer-
ence sentence (using reference-based metrics), or
which show highest linguistic quality and diversity
(using reference-free metrics); and which dataset
is best suited for fine-tuning the models for gener-
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e-SNLI 7.27 0.4 0.34 0.89 0.56 0.72 0.58 0.63
e-SNLI+c 12.71 0.47 0.38 0.90 0.63 0.75 0.66 0.63
e-SNLI+p 9.51 0.48 0.39 0.89 0.65 0.76 0.67 0.66
G-KB 1.22 0.15 0.31 0.88 0.53 0.71 0.62 0.82
G-KB+c 1.58 0.18 0.32 0.88 0.54 0.72 0.66 0.83
G-KB+p 1.14 0.17 0.31 0.89 0.56 0.73 0.67 0.80
IKAT 4.6 0.22 0.33 0.88 0.49 0.70 0.64 0.66
IKAT+c 6.06 0.31 0.42 0.90 0.63 0.72 0.67 0.71
IKAT+p 7.23 0.33 0.46 0.91 0.64 0.74 0.70 0.76

Table 5: Automatic similarity scores for generations of
best performing model BART, w/o constraints or with con-
cepts/paths as constraints. Adding concepts and paths im-
proves scores in-domain (e-SNLI and Generics-KB), and out-
of-domain (IKAT finetuned on e-SLNI).

ating statements on out-of-domain test sets (here,
IKAT). Results and detailed analysis of this experi-
ment appear in our Appendix. We find that decid-
ing which model performs best depends a lot on the
chosen similarity metric, but overall we don’t see
the clear superiority of the BART model (nor the
inferiority of GPT-2) that we determined through
manual evaluation. While in Dimension 4 of the
manual evaluation setup (where annotators judged
whether generated and reference sentence express
the same or similar meaning), BART was clearly
rated as the best performing model, this is not re-
flected in the automatic evaluation scores. Among
all metrics only SentenceBERT, giving highest
scores to BART, followed by XLNet, aligns with
our observations from manual evaluation. How-
ever, our other observation from manual evaluation
– that e-SNLI is the most appropriate dataset for
fine-tuing LMs for out-of-domain testing — aligns
with the scores obtained by automatic evaluation
metrics (for details, cf. Appendix).

We next analyse which types of constraints im-
prove generation, focusing on the BART model,
which has shown to be best for generating im-
plicit knowledge statements in our manual eval-
uation setup. Our automatic evaluation is based
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on the same subset of source sentence pairs used
for the second round of manual annotations (cf.
Table 3), and we again compare generations with-
out constraints to conditioning on key concepts or
knowledge paths.8 Results are displayed in Table
5. We observe that for all metrics, scores increase
when constraining LMs with concepts or knowl-
edge paths, with BLEU and S2Match scores for
GenericsKB as only exceptions. As in manual eval-
uation (Fig. 1), we find that improvements are most
significant for IKAT. The observed improvements
may in part be traced back to increased word over-
lap due to key concepts being used as constraints.
Yet we also observe that automatically generated
knowledge paths between these concepts improve
scores additionally – according to reference-based
metrics (showing that generations become more
similar to references), and reference-free metrics
(showing improvement of the linguistic quality and
diversity of generations). This points to the fact
that constraining LMs with automatically generated
relational knowledge is a promising step towards
generating grammatically correct and meaningful
implicit knowledge statements.

6 Discussion

Limitations of Automatic Evaluation Metrics
for Text Generations. Concluding, we pinpoint
two important limitations of automatic text genera-
tions metrics – especially reference-based ones: Be-
sides well-known issues regarding the reliability, in-
terpretability and biases of such metrics (Callison-
Burch et al., 2006), scores are mostly obtained by
comparing generations against a single reference,
which is – here, as in other generation tasks – often
only one among several valid options. For the task
of reconstructing implicit information, Becker et al.
(2017) show that annotators often propose differ-
ent valid sentences for filling knowledge gaps in
argumentative texts. For our setting this means that
a generated sentence may be a relevant explicita-
tion of implicit information, even if not similar to
the reference. Such cases are poorly or not at all
captured by automatic similarity metrics. An ex-
ception we found is SentenceBERT, which is based
on sentence representations, and which aligned rea-
sonably well with insights from our manual evalua-
tion. Still, automatic evaluation of text generations

8The automatic evaluation scores for the complete test
sets, which confirm our findings from the subset of the second
annotation round, appear in the Appendix.

needs to be considered with caution, and should
always be accompanied by manual evaluation.

Our Implicitness Assumption. Our experi-
ments are based on the underlying assumption that
usually some information between pairs of sen-
tences stays implicit, which has been confirmed
empirically for our datasets: Our annotators stated
for 100% (first round) and 98% (second round)
of all sentence pairs that they are implicitly con-
nected by some unexpressed piece of knowledge.
However, we did not specifically address the cases
of sentence pairs between which no implicit in-
formation is missing (even though these cases are
rare), nor did we investigate how our models would
perform when provided with sentence pairs that
are not related (arbitrary pairs). For a real-world
application, both aspects would be considerable.

7 Conclusion

In this work we propose an approach for generat-
ing statements that explicate implicit knowledge
connecting sentences in text, using pre-trained
LMs. We show that despite their great success
in many NLP downstream tasks, LMs need to be
well equipped and carefully guided for the chal-
lenging task of reconstructing implicit knowledge,
to ensure that they convey the missing, implicit in-
formation that connects sentences in text. We refine
different pre-trained LMs by fine-tuning on specifi-
cally prepared corpora that we enrich with implicit
information, filled in between sentences, and ex-
plore methods of constrained language generation,
guiding the models by way of relevant concepts
and connecting commonsense knowledge paths.

While most current automatic NLG metrics are
not sufficient to evaluate this challenging task, our
in-depth evaluation of the quality of generations
from different model variants shows that the BART
model, which attends over its full input when gen-
erating text, yields most informative and relevant
explanations. We also establish that e-SNLI, being
focused on the NLI task, is best suited for condi-
tioning LMs for our task, especially for out-of do-
main settings. Finally, by providing the LMs with
relevant connecting key concepts as constraints,
and further by connecting commonsense knowl-
edge paths, we achieve generation of coherent and
grammatically sound sentences that – according
to manual evaluation – can explicate the implicit
knowledge that connects sentence pairs in texts –
for in-domain and out-of-domain test data.
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GenericsKB datasets, respectively, while BART re-
quires 8 hours, and XLNet around 20 hours (due to
its permutation procedure) for the same data.

Limiting Length of Generations. In order to
generate compact sentences capturing the relevant
implicit knowledge (instead of long explanations),
we set a length limitation of 20 tokens for each
generation. In the left-to-right decoding procedure
of GPT-2 and BART, the generation can be stopped
earlier than 20 tokens, when the model predicts an
EOT token. Thus, both GPT-2 and BART models
can predict complete sentences of up to 20 tokens
due to the autoregressive decoder. In contrast, XL-
Net has a permutation language modeling mech-
anism and predicts the next tokens based on the
previous and next tokens. Its generations usually
don’t contain a significant EOT token. predicted
target sequence of tokens in a post-processing step
by cutting it after a generated comma (,).

Maximum Sequence Lengths. Our customized
train sets have different maximum sequence
lengths: e-SNLI has a maximum sequence length
of 80 tokens including the target sentence, while
GenericsKB has up to 140 tokens per sequence.

B Establishing Knowledge Paths for
Constraining Text Generation

For dynamically establishing connections between
the key concepts from two source sentences, we
combine two model types: COREC-LM (Becker
et al., 2019), an open-world multi-label relation
classifier enhanced with a pretrained language
model, that predicts relation types between two
given concepts – for establishing direct connections
between concepts; and COMET (Bosselut et al.,
2019), a pretrained transformer model that learns
to generate target concepts given a source concept
and a relation, for generating multihop paths. By
combining the generations of these models, we
generate single- and multihop paths between key
concepts c1, c2 from a sentence pair, and use these
paths as constraints when generating target sen-
tences. We are able to retrieve paths for 86.2%
of all key concept pairs from GenericsKB, respec-
tively, for 30.2% from e-SNLI and for 44.2% from
IKAT. The differences can be explained by the fact
that while the key concepts in GenericsKB are ex-
tracted phrases (NPs, VPs, ADJPs and ADVPs),
the key concepts in e-SNLI and IKAT are manu-
ally labelled, and thus are often very specific and
contain nested phrases (e.g. leans over a pickup

truck (e-SNLI)). Therefore, it is more difficult to
predict a relation or path between them. When
we experiment with paths as constraints; for all in-
stances where no path could be established between
the key concepts, we only use the key concepts as
constraints.

C Automatic Evaluation of the Complete
Test Sets

As mentioned in Section 5.2 of our main paper,
in a preliminary study based on the complete test
sets of Generics-KB, e-SNLI and IKAT, we inves-
tigate which model generated sentences that are
most similar to the reference sentence, or which
show highest linguistic quality and diversity; and
which dataset is best suited for finetuning the mod-
els for generating statements on out-of-domain test
sets (here, IKAT). Results for this first analysis ap-
pear in Table 7. For metrics that measure token
overlap (BLEU and ROUGE), highest scores are
obtained when finetuning and testing on e-SNLI,
which can be traced back to frequently used linguis-
tic patterns (e.g., x implies y, or x is the same as
y) that occur in train and test sets of e-SNLI. The
reference-free metrics Distinct and GRUEN that
measure diversity and non-redundancy, therefore
yield higher scores when models are finetuned on
the more diverse GenericsKB data, for both in- and
out-of-domain testing. The AMR metric S2Match
gives higher scores on e-SNLI than GenericsKB
in in-domain testing, and finetuning on e-SNLI
yields higher S2Match scores for out-of-domain
testing on IKAT. This also aligns with the sen-
tence representation based metric SentenceBERT.
BertScore, finally, is not at all discriminative – it
yields uniformly high scores for each model and
configuration, ranging only between .88 and .9.

We also find that the scores differ considerably
for in-domain vs. out-of-domain testing: results
on IKAT are lower compared to testing on e-SNLI
or GenericsKB according to all reference-based
metrics, while we observe the opposite for the
reference-free metrics.

We next analyse on the complete test set which
types of constraints improve generation, focusing
on the BART model, which has shown to be best
for generating implicit knowledge statements in our
manual evaluation setup. The automatic evaluation
scores for the complete test sets are displayed in
Table 8 and confirm our findings from the subset
of the second annotation round, as presented in
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Pretrained model ID Model details Parameters Time in s (seq
length = 80)

Time in s (seq
length = 140)

gpt2 12-layer, 768-hidden, 12-heads 117M 0.039 0.056
xlnet-large-case 24-layer, 1024-hidden, 16-heads 340M 0.166 0.297
facebook/bart-large-cnn 24-layer, 1024-hidden, 16-heads 406M 0.075 0.116

Table 6: Benchmarks of the used pre-trained models.

Section 5.2 of our main paper.

D Example Generations

In addition to the examples shown in our main
paper, in Fig. 1 we give some more example gen-
erations for the IKAT test set, for all three model
types, comparing finetuning on e-SNLI vs. Gener-
icsKB; and constraining with concepts vs. with
paths.
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GPT-2
G-KB G-KB 5.3 .2 .33 .88 .5 .95 .89 .79
e-SNLI e-SNLI 14.9 .46 .44 .89 .58 .91 .86 .52
IKAT G-KB 2.9 .19 .3 .88 .45 .96 .85 .78
IKAT e-SNLI 4.7 .26 .37 .89 .51 .88 .86 .64

XLNet
G-KB G-KB 6.6 .27 .36 .89 .53 .92 .87 .74
e-SNLI e-SNLI 10.7 .43 .38 .89 .59 .88 .85 .58
IKAT G-KB 4.2 .22 .34 .9 .48 .97 .88 .79
IKAT e-SNLI 10.5 .33 .42 .9 .56 .9 .85 .69

BART
G-KB G-KB 5.2 .27 .35 .89 .57 .86 .93 .75
e-SNLI e-SNLI 10.7 .44 .42 .89 .61 .81 .91 .59
IKAT G-KB 2.37 .22 .3 .88 .53 .88 .93 .80
IKAT e-SNLI 3.92 .29 .38 .9 .58 .87 .93 .71

Table 7: Automatic Similarity scores computed for the gen-
erations of all models, on the complete test sets. We compare
the impact of (i) model types and (ii) data used for finetun-
ing (train), in-domain (GenericsKB and e-SNLI) and out-of-
domain (IKAT).

B
L

E
U

-1

R
O

U
-1

S2
M

B
E

R
T

S-
B

E
R

T

di
st

1

di
st

2

G
R

U
E

N

e-SNLI 7.36 0.37 0.36 0.88 0.54 0.77 0.89 0.59
e-SNLI+c 10.73 0.44 0.42 0.89 0.61 0.81 0.91 0.59
e-SNLI+p 11.71 0.44 0.43 0.89 0.62 0.84 0.92 0.59
G-KB 5.21 0.23 0.32 0.88 0.55 0.86 0.93 0.75
G-KB+c 5.2 0.27 0.35 0.89 0.57 0.86 0.93 0.75
G-KB+p 5.4 0.28 0.35 0.89 0.58 0.87 0.93 0.75
IKAT 2,74 0.19 0.29 0.87 0.43 0.86 0.92 0.67
IKAT+c 3.92 0.28 0.38 0.89 0.56 0.87 0.92 0.7
IKAT+p 4.84 0.3 0.4 0.9 0.57 0.9 0.93 0.72

Table 8: Automatic similarity scores for generations of best
performing model BART on the complete test sets, w/o con-
straints or with concepts/paths as constraints. Adding concepts
and paths improves scores in-domain (e-SNLI and Generics-
KB), and out-of-domain (IKAT finetuned on e-SLNI).
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Figure 3: Example generations for IKAT, for all three models, finetuned on e-SNLI vs. GenericsKB, with concepts vs. paths as
constraints.


