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Abstract

Text classification has wide-ranging applica-
tions in various domains. While neural net-
work approaches have drastically advanced
performance in text classification, they tend
to be powered by a large amount of training
data, and interpretability is often an issue. As a
step towards better accuracy and interpretabil-
ity especially on small data, in this paper
we present a new knowledge-infused attention
mechanism, called KW-ATTN (KnoWledge-
infused ATTentioN) to incorporate high-level
concepts from external knowledge bases into
Neural Network models. We show that KW-
ATTN outperforms baseline models using only
words as well as other approaches using con-
cepts by classification accuracy, which indi-
cates that high-level concepts help model pre-
diction. Furthermore, crowdsourced human
evaluation suggests that additional concept in-
formation helps interpretability of the model.

1 Introduction

Text classification is a fundamental Natural Lan-
guage Processing (NLP) task which has wide-
ranging applications such as topic classification
(Lee et al., 2011), fake news detection (Shu et al.,
2017), and medical text classification (Botsis et al.,
2011). The current state-of-the-art approaches for
text classification use Neural Network (NN) mod-
els. When these techniques are applied to real
data in various domains, there are two problems.
First, neural approaches tend to require large train-
ing data, but it is often the case that large training
data or pretrained embeddings are not available in
domain-specific applications. Second, when text
classification is applied in real life, not only the ac-
curacy, but also the interpretability or explainability
of the model is important.

As a way to improve interpretability as well as
accuracy, incorporating high-level concept infor-
mation can be useful. High-level concepts could

help interpretation of model results because con-
cepts summarize individual words. The concept
“medication” would be not only easier to interpret
than the words “ibuprofen” or “topiramate” but
also contributes to understanding the words better.
In addition, higher-level concepts can make raw
words with low frequency more predictive. For
instance, the words “hockey” and “archery” might
not occur in a corpus frequently enough to be con-
sidered important by a model, but knowing that
they belong to the concept “athletics” could give
more predictive power to the less frequent individ-
ual words depending on the task, because the fre-
quency of the concept “athletics” would be higher
than individual words.

In this paper we present a new approach that
incorporates high-level concept information from
external knowledge sources into NN models. We
devise a novel attention mechanism, KW-ATTN,
that allows the network to separately and flexibly
attend to the words and/or concepts occurring in a
text, so that attended concepts can offer informa-
tion for predictions in addition to the information
a model learns from texts or a pretrained model.
We test KW-ATTN on two different tasks: patient
need detection in the healthcare domain and topic
classification in general domains. Data is anno-
tated with high level concepts from external knowl-
edge bases: BabelNet (Navigli and Ponzetto, 2012)
and UMLS (Unified Medical Language System)
(Lindberg, 1990). We also conduct experiments
and analyses to evaluate how high-level concept
information helps with interpretability of resultant
classifications as well as accuracy. Our results indi-
cate that KW-ATTN improves both classification
accuracy and interpretability.

Our contribution is threefold: (1) We propose
a novel attention mechanism that exploits high-
level concept information from external knowledge
bases, designed for providing an additional layer
of interpretation using attention. This attention
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mechanism can be plugged in different architec-
tures and applied in any domain for which we have
a knowledge resource and a corresponding tagger.
(2) Experiments show KW-ATTN makes statisti-
cally significant gains over a widely used atten-
tion mechanism plugged in RNN models and other
approaches using concepts. We also show that
the attention mechanism can help prediction accu-
racy when added on top of the pretrained BERT
model. Additionally, our attention analysis on pa-
tient need data annotated with BabelNet and UMLS
indicates that choice of external knowledge impacts
the model’s performance. (3) Lastly, our human
evaluation using crowdsourcing suggests our model
improves interpretability.

Section 2 relates prior work to ours. Section 3
explains our method. Section 4 evaluates our model
on two different tasks in terms of classification
accuracy. Section 5 describes our human evaluation
on interpretability. Section 6 concludes.

2 Related Work

2.1 Knowledge-infused Neural Networks

There has been a growing interest in incorpora-
tion of external semantic knowledge into neural
models for text classification. Wang et al. (2017)
proposed a framework based on convolutional neu-
ral networks that combines explicit and implicit
representations of short text for classification by
conceptualizing a short text as a set of relevant
concepts using a large taxonomy knowledge base.
Yang and Mitchell (2017) proposed KBLSTM, a
RNN model that uses continuous representations
of knowledge bases for machine reading. Xu et al.
(2017) incorporated background knowledge with
the format of entity-attribute for conversation mod-
eling. Stanovsky et al. (2017) overrided word em-
beddings with DBpedia concept embeddings, and
used RNNs for recognizing mentions of adverse
drug reaction in social media.

More advanced neural architectures such as
transformers has been also benefited by external
knowledge. (Zhong et al., 2019) proposed a Knowl-
edge Enriched Transformer (KET), where contex-
tual utterances are interpreted using hierarchical
self-attention and external commonsense knowl-
edge is dynamically leveraged using a context-
aware affective graph attention mechanism. ERNIE
(Zhang et al., 2019) integrated entity embeddings
pretrained on a knowledge graph with correspond-
ing entity mentions in the text to augment the text

representation. KnowBERT (Peters et al., 2019)
trained BERT for entity linkers and language mod-
eling in a multitask setting to incorporate entity
representation. K-BERT (Liu et al., 2020) injected
triples from knowledge graphs into a sentence to
obtain an extended tree-form input for BERT.

Although all these prior models incorporated
external knowledge into advanced neural architec-
tures to improve model performance, they didn’t
pay much attention to interpretability benefits.
There have been a few knowledge-infused mod-
els that considered interpretability. Kumar et al.
(2018) proposed a two-level attention network for
sentiment analysis using knowledge graph embed-
ding generated using WordNet (Fellbaum, 2012)
and top-k similar words. Although this work men-
tions interpretability, it did not show whether/how
the model can help interpretability. Margatina et al.
(2019) incorporated existing psycho-linguistic and
affective knowledge from human experts for senti-
ment related tasks. This work only showed atten-
tion heatmap for an example.

Our work is distinguished from others in that
KW-ATTN is designed in consideration of not only
accuracy but also interpretability of the model. For
this reason, KW-ATTN allows separately and flexi-
bly attending to the words and/or concepts so that
important concepts for prediction can be included
in prediction explanations, adding an extra layer
of interpretation. We also perform human evalu-
ation to see the effect of incorporating high-level
concepts on interpretation rather than just showing
a few visualization examples.

2.2 Interpretability

Interpretability is the ability to explain or present a
model in an understandable way to humans (Doshi-
Velez and Kim, 2017). This interpretability is bene-
ficial for developers to understand the model, help
identify and possibly fix issues with the model, or
to enhance the model. It is crucial for application
end users because knowing explanations or justi-
fications behind a model’s prediction can further
assist in decision making or the task at hand.

To provide interpretability, researchers have used
inherently interpretable models such as sparse lin-
ear regression models, decision trees, or rule sets.
These models are generally useful for simple pre-
diction tasks, yet it is difficult to apply them to com-
plicated tasks. To interpret complex models used
for complex tasks, one can examine how prediction
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changes between two different inputs (Shrikumar
et al., 2017; Lundberg and Lee, 2017) or by locally
perturbing an input (Ribeiro et al., 2016). However,
a recent and popular method in NLP has been the
use of an attention mechanism, which was found
to be effective in helping interpret complex mod-
els by highlighting which inputs are informative
to prediction (Wang et al., 2016; Lin et al., 2017;
Ghaeini et al., 2018; Seo et al., 2016).

Along the lines of work using attention for in-
terpretation, our model improves attention-based
interpretability by using high-level concept infor-
mation. To our knowledge, no prior work used
external high-level concept information for better
interpretability.

3 Our Approach

3.1 External Knowledge Bases

We automatically annotate data with high-level con-
cepts from two knowledge bases: BabelNet and
UMLS.

3.1.1 BabelNet
BabelNet (Navigli and Ponzetto, 2012) is a con-
stantly growing semantic network which connects
concepts and named entities in a large network
of semantic relations, currently made up of about
16 million entries, called Babel synsets. In our
study, we use the hypernyms of Babel synsets as
additional higher-level concept information for the
raw words or phrases in text. We first map texts
with concepts in Babel synsets using an entity link-
ing toolkit, Babelfy (Moro et al., 2014), and then
retrieve hypernyms, high-level concepts, of the con-
cepts using BabelNet APIs. Table 1 shows example
annotations for the sentence “My mom was diag-
nosed with stage 3 ovarian cancer.”

Expression BabelNet Concepts
“Mom” mother

“diagnosed” analyze
“state” state

“ovarian cancer” disease

Table 1: Babelfy annotations for BabelNet concepts

3.1.2 Unified Medical Language System
(UMLS)

We also exploit an external medical ontology, the
UMLS (Lindberg, 1990), for a comparison with
BabelNet for the patient need task. The UMLS is a

high-level ontology for organizing a great number
of concepts in the biomedical domain, which pro-
vides unified access to many different biomedical
resources. On top of the UMLS, the UMLS seman-
tic network (McCray, 2003) implements an upper-
level conceptual layer for all UMLS concepts. This
semantic network categorizes all concepts in the
UMLS into 134 semantic types and provides 54
links between the semantic types to represent rela-
tionships in the biomedical domain.

We use the semantic types of the UMLS seman-
tic network as additional higher-level concepts be-
cause it can abstract more fine clinical concepts that
exist across much larger medical ontologies such
as UMLS, SNOMED (Benson, 2010), and ICT-
10(Organization et al., 2017). To obtain the seman-
tic types, we annotate raw text by using MetaMap.
Table 2 shows an example from MetaMap. Note
that the automatic annotation can be noisy (e.g., in-
correct semantic types for “mom” in the example).

Expression UMLS Semantic Type
“Mom” Quantitative Concept

“Diagnosed” Diagnostic Procedure
“Stage 3 ovarian cancer” Neoplastic Process

Table 2: MetaMap annotations for UMLS concepts

3.2 Incorporating High-Level Concepts
To incorporate high-level concept information into
a NN model, we design a new attention mecha-
nism, KW-ATTN, which allows giving separate
but complementary attentions to a word and its
corresponding concept. To test KW-ATTN, we
choose a one-level RNN architecture with an at-
tention mechanism (1L), a hierarchical RNN ar-
chitecture with an attention mechanism (2L) as
in Hierarchical Attention Network (HAN) (Yang
et al., 2016), and a pretrained BERT (Devlin et al.,
2018). Our 2L model architecture is shown in Fig-
ure 1. The whole architecture begins with words in
each sentence as input. They are embedded and en-
coded using a word encoder, and then the resulting
hidden representations move forward to a word-
concept attention layer after being concatenated
with the corresponding concept embeddings. This
part is different from common RNN architectures
for text classification, where only the hidden rep-
resentations from the word encoder are used for a
word-level attention layer. Then, the output of this
attention layer is used in the next phase, a sentence
encoder in case of 2L, and a final layer in case of



99

h
!
i1

α iT piT
α iT (1− piT )

v

Bi-Directional 
GRU Layerh

!
1

h
!
1

h
!
2

h
!
2

h
!
L

h
!
L

s1 s2 sL… si …

α1 …h1
α 2 h2

α L hL

α i1pi1
α i1(1− pi1) α i2pi2

α i2 (1− pi2 )

Word  
Encoder
Word 

Embeddings  
in i-th sentence

Softmax Layer

…

…

concepts in i-th sentence

Concept 
Embeddings  

in i-th sentence

Concept Embedding Layer

ci1 ci2 ciT

…

Bi-Directional 
GRU Layer

wi1 wi2 wiT…

xi1 xi2 xiT…
h
!
i1

h
!
i1

h
!
i2

h
!
i2

h
!
iT

h
!
iT

Word Embedding Layer

Words in i-th sentence

Sentence  
Encoder

Sentence 
Embeddings 

Sentence level 
Attention Layer

Word-Concept level 
Attention Layer

Bi-Directional 
GRU Layer

xc
i1 xc

i2 xc
iT

hi1
h c

i1
hi2
h c

i2

c

h
!
i1 h
!
i2

h
!
i2

h
!
iT

h
!
iT

c c
c

c
c

h c
iT

hiT

Figure 1: Overview of KW-ATTN (in red) when plugged in HAN (2L). KW-ATTN 1L does not have the sentence
embeddings, sentence encoder, and sentence level attention layers. KW-BERT replaces the word encoder with a
pretrained BERT model.

1L. When KW-ATTN is applied to BERT (KW-
BERT), the word encoder using RNN is replaced
with BERT and then the output of KW-ATTN is
feed to the final layer as in 1L.

Word and Concept Embeddings: Each word
wit (a one-hot vector, where t ∈ {1, · · · , T} and
Ti is the number of words in the i-th sentence)
is mapped to a real-valued vector xit through an
embedding matrix We by xit = Wewit. To use
high-level concepts, each concept cit (a one-hot
vector) corresponding to word wit is also mapped
to xcit through an embedding matrix Wec by xcit =
Weccit. When a word is not mapped into a concept,
we map the concept vector to a no-concept vector.

Word and Concept Encoders: We encode T
words in each sentence i using a word encoder.
The corresponding T concepts are also encoded
using a concept encoder. We use a bi-directional
GRU (Cho et al., 2014) to build a representation for
the t-th word and concept in the sentence i, denoted
as hit and hcit as follows:

−→
h it =

−−−→
GRU(xit),

←−
h it =

←−−−
GRU(xit),

hit = [
−→
h it,
←−
h it],

−→
h cit =

−−−→
GRU(xcit),

←−
h cit =

←−−−
GRU(xcit),

hcit = [
−→
h cit,
←−
h cit].

where t ∈ {1, · · · , T}, and Ti is the number of

words in the i-th sentence. Note that we obtain
a representation that summarizes the information
of the whole sentence around the t-th word wit by
concatenating the forward hidden state

−→
h it and the

backward hidden state
←−
h it.

Word-Concept Attention: In this stage, the
output from the word encoder hit and the corre-
sponding concept output hcit are combined by going
through a word-concept level attention layer. This
layer consists of two attention levels. One is an
attention vector αit that tracks the importance of a
combined word-concept, which we call “combined”
attention. The other attention vector we call “bal-
ancing” attention pit is for flexibly incorporating
concept information into the model. The balancing
attention is introduced to give attention comple-
mentarily to both word and concept because the
importance of a word or concept can differ at times.
For example, when “football” is attended, we don’t
know if “football” itself is important for the predic-
tion, or “football”, “tennis”, and all others together
are important. Additionally, this balancing atten-
tion helps the model to be more robust to noisy
concepts that may be caused by automatic annota-
tion.

In detail, each position in a sentence includes
a word and its corresponding concept. For each
position, combined attention α is assigned, which
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represents attention to the position (both word and
concept). Within each position, balancing attention
p is assigned to a concept and its complement 1−p
is assigned to the corresponding word. As seen in
Figure 1, αit represents the contribution of the po-
sition t (both the t-th word and its concept) to the
meaning of the sentence i in the sentence, while
1 − pit represents a weight on the word and pit
represents a weight on the word’s concept. Hence,
αit(1−pit) and αitpit represent the contribution of
the t-th word and concept to the sentence i, respec-
tively. This attention mechanism using combined
and balancing attentions enables us to give separate
but complementary attentions to the word and con-
cept. In addition, we set pit as 0 when a word does
not have a corresponding concept because in this
case the model should attend only the word. The
new attention mechanism is as follows:

uit = tanh(Wα[hit, h
c
it] + bα)

pit = sigmoid(wp[hit, h
c
it] + bp)

αit =
exp

(
uTituα

)∑
t exp

(
uTituα

)
si =

∑
t

αit ((1− pit)hit + pith
c
it)

where Wα, bα, wp, bp and uα are the model
parameters. si is a representation for the i-th sen-
tence.
si is used as an input to the next layer, the sen-

tence encoder in case of 2L (HAN). Then, the sen-
tence representations hi go through the sentence
level attention layer, and build a document vector
v, as shown in Figure 1. In case of a 1L model
or a BERT model, all the words in the document
are treated as one single sentence. Then, there is a
single representation s1, which is equivalent to the
document vector v in the 2L case.

Finally, based on this vector v, classification
probability for each class is computed in the final
layer.

4 Experiments

KW-ATTN is evaluated on two different datasets
for patient need detection (need dataset) (Jang
et al., 2019) and topic classification (Yahoo an-
swers) (Zhang et al., 2015). We use different tasks
to more broadly demonstrate the benefits of our
approach.

4.1 Data

Patient need detection: This dataset is for detect-
ing patient need in posts from an online cancer
discussion forum. We use the health information
need data for binary classification (450 positive
samples out of 853). Although this dataset is quite
small, we choose to use it because RNN approaches
showed effectiveness (Jang et al., 2019) and it is a
dataset we can compare the effect of general knowl-
edge graph and domain-specific medical ontology.
We build two different concept annotations with
BabelNet and UMLS.

Yahoo answers: This dataset is for topic clas-
sification. It incluldes 10 different topics such as
Society & Culture and Sports. To generate a dataset
that is still small but one order of magnitude bigger
than the need dataset, we randomly select 10,000 in-
stances of the dataset enforcing a balanced dataset
(1,000 instances per topic), and annotate them with
BabelNet concepts.

The data statistics of our concept annotated
datasets are summarized in Table 3. The ratios
of words that match concepts are 6.6%(the need
dataset with BabelNet), 36.3%(the need dataset
with UMLS), and 8.9%(Yahoo answers). In all our
experiments, we perform 10-fold cross-validation
ten times. For each run, we use 80% of data for
training, 10% for development, and 10% for test.

4.2 Experiment Settings

We compare our KW-ATTN 1L and 2L with a
widely used attention mechanism leveraging only
words (Yang et al., 2016; Ying et al., 2018). We
call it ATTN. In addition, we use other proven
approaches that leverage concept information:
Concept-replace uses input documents where raw
words are replaced with the corresponding Ba-
belNet/UMLS high-level concepts when the map-
pings are available, as in (Stanovsky et al., 2017;
Magumba et al., 2018). Concept-concat uses con-
catenation to combine word and concept embed-
dings, as in (Wang et al., 2017; Zhou et al., 2018).
Attn-concat uses concatenation to combine a con-
cept embedding and a hidden representation of
word and use ATTN. Attn-gating uses a gate mech-
anism to select salient features of a hidden word
representation, conditioned on the concept infor-
mation. Both Attn-concat and Attn-gating are state-
of-the-art presented by Margatina et al. (2019). All
these methods are tested in 1L and 2L settings.

The parameters for RNN models are tuned on
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Data Classes #D #S #W #C(D) #C(S) Voca(W) Voca(C)
Need-BN 2 853 19.2 11.0 13.9 0.7 12,484 629

Need-UMLS 2 853 19.2 11.0 75.6 6.15 12,484 118
Yahoo answers 10 10,000 7.9 12.9 10.1 1.3 65,003 3,816

Table 3: Data summary statistics. Need-BN: need dataset with BabelNet concepts, Need-UMLS: need dataset
with UMLS concepts, #D: # of documents, #S: average # of sentences per document, #W: # of words per sen-
tence, #C(D): # of annotated concepts per document, #C(S): # of annotated concepts per sentence, Voca(W): word
vocabulary size, Voca(C): concept vocabulary size.

Yahoo answers Need BN Need UMLS
Model 1L 2L 1L 2L 1L 2L
ATTN .557 .574 .706 .684 .706 .684

Concept-replace .560 .563 .698 .671 .699 .676
Concept-concat .569 .571 .664 .602 .702 .661

Attn-concat (Margatina et al., 2019) .585 .577 .669 .669 .709 .681
Attn-gating (Margatina et al., 2019) .593 .577 .712 .587 .679 .631

KW-ATTN .605* .597* .721* .692* .727* .703*

Table 4: Comparison of KW-ATTN against baselines for 1-level (1L) and 2-level (2L) networks, in terms of F1
macro scores. *: indicates statistically significant improvement over the next best model via t-test (p < 0.05).

development data in the following ranges: word
embedding dimension: 25, 50, 100, 200, GRU
size: 10, 25, 50, learning rate: 0.1, 0.05, 0.01,
0.005, 0.001, 0.0005, and 0.0001. The word em-
beddings are initialized randomly, and concept em-
beddings are initialized using pretrained concept
embeddings trained on English web data and Ba-
belNet semantic network, SW2V (Mancini et al.,
2016).1 We randomly initialize word embeddings
rather than using pretrained embeddings because
our model often uses phrases recognized by knowl-
edge resources, and they are usually not part of
pretrained embeddings. We optimize parameters
using Adam (Kingma and Ba, 2014) with epsilon
1e-08, decay 0.0, a mini-batch size of 32, and the
loss function of negative log-likelihood loss. We
use early-stopping.

In addition, we also conduct experiments with
pre-trained BERT Word Encoder (KW-BERT) to
see if injecting concept also helps the model trained
on large-scale corpora. We use the ‘bert-base-
uncased’ model, and the dimension of Concept
bi-GRU is 384, making the concept representation
the same dimension of BERT word representations.
We show both the results from frozen models and
fine-tuned models.The frozen models do not up-
date parameters of pretrained models, i.e., they

1We also tried SW2V Wiki, SensEmbed (Iacobacci et al.,
2015) and SENSEMBERT (Scarlini et al., 2020) pretrained
embeddings, but SW2V WEB slightly outperformed others
(no statistical significance).

use pre-trained contextualized embeddings without
fine-tuning. In contrast, fine-tuned BERT or KW-
BERT are adapted to the target task. The learning
rates for learning frozen models and fined-tuned
models are 2e-3 and 1e-6, respectively.

4.3 Experiment Results

The results are shown in Table 4. First, we observe
that 2L models do not perform better than 1L mod-
els. This could be because 2L models are too large
for the data sizes, especially for the need data. It
could indicate that the document itself is not too
long to put in one RNN, and the sentence bound-
ary might not be necessary for the classification.
Second, using concept information alone does not
perform well in general, which indicates that con-
cept information alone is not sufficient. Using word
and concept information together (concept-concat)
also do not always result in a gain of performance.
Third, Attn- models generally perform better than
simpler Concept- models. However, KW-ATTN
significantly improves over all other models for
both tasks, indicating the effeteness of our mecha-
nism.

In addition, Table 4 shows that for the need task,
while both types of concepts help the prediction,
UMLS concepts help slightly more. This suggests
that choosing the right knowledge resource, espe-
cially for domain specific tasks, is critical for pre-
diction performance.

To see the effect of data size on the model, we
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compare KW-ATTN and ATTN across different
data sizes of Yahoo reviews (Table 5). KW-ATTN
models significantly outperform ATTN models con-
sistently. However, as the data size becomes larger,
performance gains, while still significant, diminish,
showing that, in this domain, our method is more
effective when the data is smaller.

1L 2L
Data size ATTN KW-ATTN ATTN KW-ATTN

2,500 .460 .523* (+.063) .479 .516* (+.037)
5,000 .527 .561* (+.034) .539 .555* (+.016)

10,000 .557 .605* (+.048) .574 .585* (+.011)
20,000 .611 .634* (+.023) .618 .621* (+.003)
30,000 .624 .645* (+.021) .631 .635* (+.004)

Table 5: F1 macro scores by data size in Yahoo an-
swers. * indicates statistically significant improvement
over corresponding ATTN model via t-test (p < 0.05).

Table 6 shows the comparison between BERT
and KW-BERT. We can see that additional con-
cept information substantially improves the perfor-
mances on both datasets in case of frozen models
whereas it only improves the performance on the
need dataset when fine-tuned. The results from
the frozen models indicate that the encoded con-
cepts provide complementary information to BERT.
However, when fine-tuned, KW-BERT outperforms
BERT only on the Need dataset. This could be be-
cause a BERT model itself is learnt on Wikipedia,
which may lack knowledge on medicine. Although
BERT learns task-specific knowledge during fine-
tuning, but the data is small and additional high-
level concept information still helps. This may sug-
gest that KW-BERT could be more beneficial for
small data problems in domains that require more
expert knowledge than Wikipedia can provide.

We can also notice that the frozen models poorly
perform on the Need dataset compared with RNN
models (Table 4) whereas they drastically outper-
form on the Yahoo dataset. This could be because
the documents in the Need dataset are conversa-
tional coming from an online forum, which are
markedly different from the Wikipedia dataset on
which BERT is trained. We can see that when fine-
tuned, both BERT and KW-BERT beat RNN mod-
els, which suggests that finetuning allows learning
task/domain specific information.

Attention Analysis: To better understand why
UMLS concepts help more on the need dataset,
we draw the distributions of concept attentions in
models with both annotations in Figure 2. Inter-
estingly, for the average attention of each concept,

Yahoo answers Need UMLS
Model Frozen Finetuned Frozen Finetuned
BERT .652 .698 .585 .735

KW-BERT .701* .695 .652* .744*

Table 6: Comparison of BERT baseline and BERT with
KW-ATTN (KW-BERT), in terms of F1 macro scores.
*: indicates statistically significant improvement over
the corresponding BERT baseline via t-test (p < 0.05).

the attention for the model using BabelNet annota-
tions is greater than the model using UMLS annota-
tions. However, the max attention of each concept
is greater for UMLS annotations than for BabelNet
annotations, which indicates that UMLS concepts
are more actively used. Additionally, attentions
from the model using UMLS concepts show lower
variance. This result indicates that the model us-
ing UMLS concepts assigns a similar attention to
each concept whereas the model using BabelNet
concepts sometimes assigns small or large atten-
tions to concept. In other words, the model using
UMLS concepts consistently select a concept to
attend whereas the model using BabelNet concepts
is less consistent. Intuitively, this makes sense as
the UMLS concepts are domain specific to the task
of health information need detection.

5 Human Evaluation on Interpretability

We use human evaluation to see whether addi-
tional high-level concept information given by KW-
ATTN can be beneficial for interpretation. We com-
pare top-ranked attended words/concepts by KW-
ATTN with top-ranked attended words by ATTN.
We use Amazon Mechanical Turk (MTurk). Since
we use crowdsourcing, we conduct evaluation only
on the Yahoo reviews dataset for topic classifica-
tion, which covers general domains.

5.1 Experiment Design

For each Human Intelligence Task (HIT) in MTurk,
we provide a prediction and its explanation for a
text, generated from either KW-ATTN 1L or ATTN
1L.2 We use 1L because one attention layer is sim-
pler to interpret. Then, we ask whether MTurkers
would assign the given topic to the text based on
the given explanation. Only one explanation is ran-
domly given, and which model the explanations is
from is not shown to MTurkers. Additionally, we
ask them to rate their confidence in their answer.

2The screenshot of the MTurk user interface can be found
in the Appendix.
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Figure 2: Distributions of concept attentions for the two annotations for patient need detection: UMLS and Ba-
belNet (BN). For each concept, average (left), maximum (middle), variance (right) of attention values from all
occurrences are used.

Explanation Type Example
No concept “java, yields, best, language, results, built”
KW same number “java as a(n) object-oriented_programming_language, ide as a(n) application,

php as a(n) free_software, swing, best, looking”
KW same length “java as a(n) object-oriented_programming_language, ide as a(n) application,

php as a(n) free_software”
KW replacement “object-oriented_programming_language, application, free_software, swing,

best, looking”

Table 7: Examples of different types of explanations used for human evaluation.

We assume that attention can be used for predic-
tion explanations based on (Wiegreffe and Pinter,
2019; Serrano and Smith, 2019). We choose to
ask about the validity of a given prediction unlike
prior work that asked to guess a model’s predic-
tion based on an explanation (Nguyen, 2018; Chen
et al., 2020). Although we acknowledge that the
model’s prediction may bias the annotators, we
choose this approach since humans have high-level
concepts as background knowledge. Humans do
not require external additional concept information
for guessing a correct topic label among multiple
topic options especially when the given topic op-
tions are distinct from each other. For example,
although the high-level concept “athletics” is not
given for the word “baseball” in an explanation,
humans would not have a problem with classifying
it into the sports category when given topic options
are sports and music. However, high-level concepts
may help users to have more confidence when inter-
preting the explanation for a given topic. Therefore,
we evaluate users’ trusts about the system indirectly
by requesting them to assess a given topic based on
an explanation and rate their confidence.

The top 6 ranked features (words and concepts)
with the highest attention weights are selected as an
explanation. The high-level concept of a word is in-
cluded in the explanation as the format of “[word]
as a(n) [concept]” only when the balancing weight,
p, for the concept is non-zero (See Section 3.2).

We remove stopwords and punctuations from ex-
planations.

Four different types of explanations are given to
MTurkers and compared in our analysis as shown
in Table 7. A no-concept explanation consists of
6 words. A KW-same-number explanation also
contains 6 words and their corresponding concepts
if they exist. A KW-same-length is composed of
3 words and their corresponding concepts if they
exist. A KW-replacement consists of 6 words or
concept. When a word has a lower attention value
than its corresponding concept according to the
p attention value, it is replaced by its concept in
the explanation. Note that KW- explanations are
all from the same model using KW-ATTN, and
no-concept explanations are from a model using
ATTN.

We randomly pick 200 samples that have cor-
rect predicted labels made by both systems. To
make the 200 samples, we draw 100 samples with
the prediction probability higher than .90 for their
predicted labels, and 100 samples with the predic-
tion probability between .80 and .90. To balance
topics, we pick equal number of samples for each
topic. We do not perform the same MTurk task
for incorrectly predicted samples because when a
system makes an incorrect prediction, assessing
interpretability is not straightfoward. There can be
multiple different reasons about the wrong predic-
tion.
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For MTurk, each HIT asks questions about an
explanation generated by a system for one sample,
as shown in Figure 3. For each HIT, 5 MTurk-
ers participate. We hire North American Master
MTurkers with HIT acceptance rates above 98% in
order to ensure high quality of the evaluation. We
pay $0.03–$0.05 for each HIT.

5.2 Human Evaluation Results

As shown in Table 8, KW-same-number and KW-
same-length explanations resulted in a significantly
higher confidence in assigning given topics to ex-
planations compared to no-concept explanations.
This indicates that the additional high-level concept
information from KW-ATTN is beneficial for im-
proving interpretability. We can also observe that
KW-replacement explanations improve confidence
although the gain is not significant.

Explanation Type Pred Conf Time
No-concept 4.70 4.15 11.31

KW-same-number 4.82 4.40* 11.64
KW-same-length 4.77 4.31* 11.37
KW-replacement 4.74 4.22 12.34

Table 8: Human evaluation results on interpretation.
Pred: average # of "yes" on predicted topics, Conf: av-
erage confidence score, Time: average time taken for
each HIT, *: indicates statistically significant differ-
ence over no-concept via t-test (p < 0.05).

It is important to note that KW-same-length and
KW-replacement explanations both improve inter-
pretability over no-concept explanations as well as
KW-same-number. While KW-same-number expla-
nations provide more information (12 at maximum
in total including both words and concepts), KW-
same-length and KW-replacement give the same or
less amount of information compare to no-concept
(6 at maximum in total). This indicates that the
high-level concept information really helps.

6 Conclusion

We presented a new attention mechanism, KW-
ATTN, which extends a NN model by incorporat-
ing high-level concepts. Our experiments showed
that using high-level concept information improves
predictive power by helping the data sparseness
problem in small data. Furthermore, in our crowd-
sourcing experiments, we found significant im-
provement on the confidence of human evaluators
on predictions, suggesting that our new attention

mechanism provides benefits in explaining the pre-
dictions. High-level concepts provide an additional
layer of information above raw words that can as-
sist in understanding predictions. Additionally, our
attention mechanism can distinguish between the
importance of words vs. concepts, providing fur-
ther information. We are optimistic that KW-ATTN
can be applied widely.
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A Appendices

Figure 3 shows a screenshot of the Amazon Mechanical Turk user interface in our human evaluation.

Figure 3: Our MTurk interface for human evaluation about interpretability.


