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Abstract

When a NLU model is updated, new utter-
ances must be annotated to be included for
training. However, manual annotation is very
costly. We evaluate a semi-supervised learning
workflow with a human in the loop in a produc-
tion environment. The previous NLU model
predicts the annotation of the new utterances,
a human then reviews the predicted annotation.
Only when the NLU prediction is assessed as
incorrect the utterance is sent for human anno-
tation. Experimental results show that the pro-
posed workflow boosts the performance of the
NLU model while significantly reducing the
annotation volume. Specifically, in our setup,
we see improvements of up to 14.16% for a
recall-based metric and up to 9.57% for a F1-
score based metric, while reducing the annota-
tion volume by 97% and overall cost by 60%
for each iteration.

1 Introduction

Natural Language Understanding (NLU) models
are a key component of task-oriented dialog sys-
tems such as as Amazon Alexa or Google Assistant
which have gained more popularity in recent years.
To improve their performance and extend their func-
tionalities, new versions of the NLU model are
released to customers on a regular basis. In the
classical supervised learning approach, new train-
ing data between model updates is acquired by
sampling utterances from live traffic and have them
annotated by humans. The main drawback is the
high cost of manual annotation. We refer to this
conventional workflow as human annotation work-
flow. In this paper, we propose a new workflow
with the aim to reduce the annotation cost while
still maintaining high quality NLU models. We
refer to it as the human verification workflow. The
proposed workflow uses the previous (current) ver-
sion of the NLU model to annotate the new training
data before each model update. The predicted an-
notation produced by the NLU model, which we
refer to as NLU hypothesis or interpretation, is then

reviewed by humans. If the NLU hypothesis is as-
sessed as correct, the NLU hypothesis is used as
the ground-truth annotation of the utterance dur-
ing training. If the NLU hypothesis is assessed as
incorrect, the utterance is sent for human annota-
tion before being ingested for training. With the
proposed workflow, only utterances for which the
hypothesis of the NLU model was assessed as in-
correct are annotated by humans, thereby reducing
the annotation volume drastically. Since verifying
is faster and cheaper than annotating, a cost reduc-
tion is achieved. We investigate the adoption of
this workflow once the system has reached a cer-
tain maturity, not from the start. While these two
workflows would provide the same annotation for
any utterance in an ideal world, the results may
differ in the real world depending on the presence
of annotation or verification errors. In this paper,
we would like to answer the following fundamen-
tal question: in terms of human annotation errors,
human verification errors and model performance,
is it better to manually verify or annotate in order
to iteratively update NLU systems?

To answer this question, we investigate the im-
pact of human annotation vs. verification in a large
scale NLU system. To this end, we consider two
model architectures utilized for NLU models in the
current production systems, a Conditional Random
Field (CRF) (Lafferty et al., 2001; Okazaki, 2007)
for slot filling and a Maximum Entropy (MaxEnt)
classifier (Berger et al., 1996) for intent classifi-
cation as well as a transformer based BERT ar-
chitecture (Devlin et al., 2018). We evaluate the
proposed workflow both explicitly by measuring
annotation quality as well as implicitly by compar-
ing the resulting model performance. Our exper-
imental results show that the human verification
workflow boosts the model performance while re-
ducing human annotation volumes. In addition, we
show that human annotation resources are better
spent on utterances selected through Active Learn-
ing (Cohn et al., 1996; Settles, 2009; Konyushkova
et al., 2017).
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2 Related Work

Using a model to label data instead of humans
is an approach that has been studied extensively
since human labelling is costly while unlabelled
data can be acquired easily. Under the term Semi-
supervised learning (SSL) (Zhou and Belkin, 2014;
Zhu, 2005) many different approaches to leverage
unlabelled data emerged in the literature. SSL aims
at exploiting unlabelled data based on a small set
of labelled data. One approach is self-training, also
referred to as self-teaching or bootstrapping (Zhu,
2005; Triguero et al., 2015). In self-training la-
bels are generated by feeding the unlabelled data
in a model trained on the the available labelled
data. Typically, the predicted labels for instances
with high confidence are then used to retrain the
model and the procedure is repeated. For neural
networks, Lee (2013) suggested pseudo-labelling
which optimizes a combination of supervised and
unsupervised loss instead of retraining the model
on pseudo-labels. Self-training has been applied to
several natural language processing tasks. To name
only a few examples, Yarowsky (1995) uses self-
training for word sense disambiguation, Riloff et al.
(2003) to identify subjective nouns. In McClosky
et al. (2006) self learning is used for parsing.
The two main drawbacks of self-training are that
instances with low confidence scores cannot be
labelled and that prediction errors with high con-
fidence can reinforce itself. To mitigate the latter
issue strategies to identify mis-labeled instances
have been discussed. An exhaustive review is be-
yond the scope of this paper, we just name a few
examples. Li and Zhou (2005) use local informa-
tion in a neighborhood graph to identify unreliable
labels, Shi et al. (2018) add a distance based un-
certainty weight for each sample and propose Min-
Max features for better between-class separability
and within-class compactness.
In this paper we suggest to use human verification
to ensure the ingested predicted labels are reliable.
In addition, we rely on human annotation for those
utterances that the model cannot interpret correctly.
The goal is to mitigate the two afore-mentioned
problems of self-training.

A so called human-in-the-loop approach has
been investigated for different applications. Zhang
et al. (2020) investigate a human-in-the-loop ap-
proach for image segmentation and annotation.
Schulz et al. (2019) examine the use of sugges-
tion models to support human experts with seg-

mentation and classification of epistemic activities
in diagnostic reasoning texts. Zhang and Chaud-
huri (2015) suggest active learning from weak and
strong labelers where these labelers can be humans
with different levels of expertise in the labelling
task. Shivaswamy and Joachims (2015) show that
a human expert is not always needed but that user
behavior is valuable feedback that can be collected
more easily.

The contribution of this paper is two-fold: First,
we propose a SSL approach with a human in
the loop for large-scale NLU models. Second,
we show this workflow boosts the performance
in a production system while reducing human
annotation significantly.

Active Learning (AL) (Cohn et al., 1996; Set-
tles, 2009; Konyushkova et al., 2017) proposes to
label those instances that promise the highest learn-
ing effect for the model instead of blindly labelling
data. Since the proposed workflow reduces the hu-
man annotation volume, we spend some of these
freed up resources on annotation of AL data.

3 Setup and Approach

In this section, we briefly discuss the NLU model,
the used metrics, the concept of iterative model
updates and evaluation.

3.1 NLU task

A common approach to NLU is dividing the recog-
nition task into two subtasks. Predicting the in-
tent and the slots of a user’s utterance constitutes
a way to map the utterance on a semantic space.
Accordingly, our NLU model consists of two mod-
els, each performing one of these subtasks. Intent
classification (IC) predicts the user’s specific in-
tent, e.g. play music or turn on a light. Slot fill-
ing (SF), finally extracts the semantic constituents
from the utterance. Taking the example “Where
is MCO?” from the ATIS data (Tur et al., 2010)
(Do and Gaspers, 2019), should be labelled as
where−[O] is−[O] MCO−[B−airport_code]
by slot filling. The intent should be recognized as
city. When an utterance is humanly annotated for
training, the annotator performs the same operation
of the NLU model by mapping the utterance to a
specific intent and slots in order to be ingested for
training.
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3.2 Metrics
We report results considering two metrics utilized
to evaluate the performance of NLU models in
production systems, Semantic Error Rate (SemER)
and Intent Classification Error rate (ICER). SemER
takes into consideration both intent and slot classi-
fication errors, while ICER only takes intent errors
into consideration. SemER is computed as follows:

SemER =
#(slot + intent errors)

#(slots + intents in reference)
(1)

ICER simply is the percentage of utterances with
mis-classified intent, only intent classification
counts while slot errors are ignored.

ICER =
#(intent errors)

#(total utterances)
(2)

Note that both SemER and ICER are error met-
rics, i.e. a metric reduction reflects an improve-
ment. Both are one-sided metrics that do not take
precision into account. Therefore, we also report
F-metrics for SemER and ICER, which are referred
to as F-SemER and F-ICER, respectively. They are
defined as the harmonic mean of the recall-based
metric and the precision. We report macro-averages
over intents for all metrics.

3.3 Iterative Model Updates
NLU models need to be regularly updated to im-
prove their capability to understand new customer
requests and extend the functionalities of the virtual
assistant. Therefore new models trained on recent
customer data are released on a regular basis. New
data is sampled from live traffic between two NLU
model releases and annotated. A part of the legacy
training data is then discarded and replaced by the
new annotated data for two reasons: 1) practical
constraints to the building time of the new release
model, 2) using too old and therefore unrepresen-
tative data could degrade model performance. As
a consequence, each NLU model is trained on an
almost constant number of training utterances. For
example, assuming that the overall training size is
constrained to 400.000 utterances, then, if in a new
release 10.000 new utterances are added, the oldest
10.000 will be removed.

3.4 Maturity and workflow evaluation
When NLU models are released for the first time,
only human annotated data are used for training

as previous versions of the NLU model are not
available. This means in theory, the two workflows
can be implemented from the second release on-
ward. This implies that during the first few releases
the majority of the training data is human anno-
tated data. However, due to the data elimination
procedure described in Section 3.3, after a certain
number of releases with the verification workflow
the manually annotated data from the first release
will be fully removed from the training set. Here
we assume to be in that maturity stage, where the
full training dataset is derived from either the verifi-
cation or annotation workflow, and hence no mixed
training set between the two workflows is consid-
ered. For evaluation of the proposed workflows,
we simulate the described updates and consider a
specific model update for evaluation. A schematic
timeline is shown in Figure 1. As we are con-
sidering a mature NLU model, this evaluation is
representative of other model updates.

Figure 1: Schematic depiction of the NLU model up-
dates timeline. Each dash represents a release. Results
are reported for Evaluation point.

4 Proposed workflow

Figure 2: Schematic depiction of the proposed verifi-
cation workflow. Note that the NLU model is updated
periodically.

4.1 Detailed Workflow Description

This section describes the two workflows in de-
tail. Throughout this paper we denote the human
annotation workflow as the benchmark.
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1. Human annotation workflow - benchmark:
In each model update, the new training utter-
ances are sent for manual annotation. Hence,
the whole training dataset on which the NLU
model is retrained (or-fine-tuned) periodically
is human annotated, including the recently
added utterances. The annotator only has ac-
cess to the annotation guideline, but cannot
see any kind of hypothesized annotation of
the utterance.

2. Human verification workflow - proposed:
Before each model update, the new training
instances are first fed into the previous NLU
model. The NLU hypothesis is then sent for
human verification to assess if the NLU hy-
pothesis is correct or not. If the annotation
is evaluated as correct, the NLU hypothesis
is ingested as ground-truth in the new NLU
model training dataset. If the annotation is
evaluated as incorrect, the utterance is sent
for human annotation before being ingested.
In this workflow, the evaluator has access to
both the annotation guideline as well as the
NLU annotation hypothesis of the utterance.
Figure 2 depicts the proposed workflow. The
training dataset on which the NLU model is re-
trained (or fine-tuned) only partially consists
of human-annotated data.

With the proposed workflow, the cost is dramat-
ically reduced as verifying is faster and cheaper
than annotating. However, the question is if the ver-
ification workflow is also favorable in terms of data
quality and model performance. In our experiments
we therefore evaluate which of the two workflows
is able to generate higher quality training data and
enhance the NLU model performance. Results are
discussed in Section 7.

5 Datasets

For training, we start with a dataset of unlabelled
utterances representative of the user engagement
with a dialog system. The dataset spans over a
large number of intent and slots representative of
multiple functionalities. High level statistics are
listed in Table 5.

In order to have the same annotation and ver-
ification quality as in the production system, we
requested the support from professional annota-
tors. Trained and experienced annotators mimicked
both workflows. For each utterance, one annotator

of the team followed the human annotation work-
flow, while another followed the human verification
workflow. For each training utterance, we also have
the corresponding NLU hypothesis from the pro-
duction model when the utterance was sampled. As
a result two labelled training datasets were gener-
ated from one unlabelled dataset following each
workflow. The overall training dataset has been
built over multiple NLU releases as explained in
Section 3.3.
The two training sets are then used to re-train or
fine-tune each of the considered architecture. As
a test set, we also consider a dataset of utterances
representative of the engagement of the users with
a voice assistant (see Table 5), also sampled as ex-
plained in Section 3.3. In order to have a correct
and unbiased test set, test data are annotated follow-
ing a different pipeline than the ones for training.
For each test utterances three annotators need to
produce the same annotation (100% agreement).
This allows us to assume that the annotation of the
test data is almost surely correct. The updated mod-
els are then evaluated on the test set to compare
performance.

6 Experiments

This section describes the conducted experiments
to evaluate both workflows and provides more de-
tails about how we selected utterances for annota-
tion through AL.

6.1 Considered Model Architectures

To evaluate the proposed verification workflow, we
consider two NLU architectures:

• CRF+MaxEnt classifier architecture:
We use a Conditional Random Field (CRF)
(Lafferty et al., 2001; Okazaki, 2007) for slot
filling and a Maximum Entropy (MaxEnt)
classifier (Berger et al., 1996) for intent clas-
sification. The new NLU model is obtained
by re-training from scratch on the updated
training dataset.

• BERT architecture:
We use a transformer based BERT model (De-
vlin et al., 2018) that jointly solves the task of
intent classification and NER. Hidden states
are fed into a softmax layer to solve the two
tasks. We use pre-trained mono-lingual BERT
for German trained on unsupervised data from
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# utterances # distinct intents # distinct slots
training set 400 000 316 282
test set 100 000 316 282

Table 1: High level statistics for training and test set.

Wikipedia pages. We tokenize the input sen-
tence, feed it to BERT, get the last layer’s ac-
tivations, and pass them through a final layer
to make intent and NER predictions. In this
case the updated NLU model is obtained by
fine-tuning the initial NLU model on the new
training dataset.

For both approaches we keep the set of features,
hyperparameters and configuration constant for our
experiments. All experiments are conducted for
German. For each architecture, the models are
trained by using the annotated data from the anno-
tation vs verification workflows, respectively. For
the BERT models, this step is preceeded by pre-
training both models on unsupervised Wikipedia
data. We then compare the performance of the
resulting models.

6.2 Active Learning

We perform AL in two steps considering a corpus
of millions of unlabelled utterances initially:

1. For each domain, select through a binary clas-
sifier which utterances from the unsupervised
corpus are relevant to the domain.

2. Out of the candidate pool, select those with the
lowest confidence score product of MaxEnt
classifier (IC) and CRF (NER) and send them
for annotation.

Note that a low product of IC and NER score indi-
cates that the utterance is difficult to label for the
model. We selected a total of 30.000 utterances
through AL for human annotation.

7 Results

This section discusses all obtained results. We first
evaluate the annotation quality for both workflows
and quantify the possible cost reduction for the pro-
posed workflow, see Sections 7.1 and 7.2. Second,
we compare the performance of the NLU models
when trained on data labeled through the respective
workflow. Results are shown in Section 7.3.

7.1 Annotation reduction with the proposed
workflow

To investigate by how much human annotation
could be reduced through the proposed workflow,
we calculate the percentage of utterances for which
the NLU hypothesis of the previous model was as-
sessed as correct between each update. We find
that 97% of the annotation from the NLU model
are assessed as correct. This means that only 3% of
the utterances would be manually annotated consti-
tuting a significant reduction in annotation volume.
Annotating an utterance takes about 2.5 the time of
verification. Note that time is proportional to cost
as we assume that human annotation specialists are
paid a certain wage per hour and are able to pro-
cess a certain amount of utterances depending on
the task, annotation vs. verification. Let N denote
the number of sampled utterances, tA the annota-
tion time per utterance and tV the verification time
per utterance in minutes. Then tA = 2.5 · tV or
tV = 0.4 · tA. The total cost for the verification
workflow can then be written as:

totalV = N · tV + 0.03 ·N · tA (3)

Substituting tV = 0.4 · tA into 3 gives totalV =
0.43 ·N · tA. Note that N · tA denotes the total cost
of the annotation workflow totalA, so

totalV = 0.43 · totalA. (4)

Thus the verification workflow leads to an overall
cost reduction of almost 60 %.

7.2 Quality of evaluation vs annotation
To compare the frequency of human errors in an-
notation and verification workflow, we requested
an assessment by specialized annotators for the an-
notations from each workflow for one sample of
utterances. For each utterance, three specialists had
to agree in their assessment. Note that we took a
sample of utterances assessed as correct in the hu-
man verification workflow as we wanted to estimate
the percentage of incorrect training data that might
be ingested through the verification workflow.

Table 3 shows the human errors in the verifica-
tion workflow relative to the annotation workflow.
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ICER SemER F-ICER F-SemER Annotation Reduction
1 MaxEnt+CRF -3.85% -2.62% -6.81% -3.45% -97%
2 MaxEnt+CRF+AL -24.58% -20.44% -26.04% -17.26% -90%
3 BERT -14.16% -8.77% -9.47% -1.80% -97%

Table 2: Rel. difference in error metrics for verification vs annotation (baseline) workflow for all experiments.

An annotation or verification is treated as incorrect
if the intent or at least one of the slots is incor-
rect. We can see the verification workflow reduces
overall human errors by 66% compared to the an-
notation workflow. Note that this large human error
reduction is mostly driven by fewer intent errors,
which are reduced by 80% for the verification work-
flow relative to the annotation workflow. Overall,
the frequency of verification human errors is signif-
icantly lower than the frequency of annotation hu-
man errors. This means that looking at an already
annotated utterance helps to reduce the number of
low-quality training data compared to annotating
an utterance from scratch, where the person has no
indication.

To evaluate the annotation consistency in each
training dataset generated through the respective
workflow, we calculate the average entropy across
each dataset on token level in Table 4. Entropy will
be lower the fewer interpretations we see for the
same token and the more consistent the annotation
is. The entropy of the training set from the verifica-
tion workflow is 5% lower than for the annotation
workflow.

Rel. human error
Intent Errors -80%
Slot Errors -50%
Overall Errors -66%

Table 3: Human error frequencies for verfication vs an-
notation on a sample of utterances.

Avg. entropy
annotation workflow 0.5677
verification workflow 0.5378
relative -5.3%

Table 4: Average entropy on token level for each train-
ing dataset generated through the respective workflow.

7.3 Experiment Results

Table 2 displays all the experimental results to mea-
sure the impact of the verification workflow vs an-

notation workflow on model performance. Specifi-
cally, we show the relative percentage change of the
metric values considering the verification workflow
relative to the metric values considering the annota-
tion workflow as a baseline. As SemER and ICER
are error based metrics, a “-” means an improve-
ment of the performance for verification compared
to annotation, while “+” means a degradation.

It is evident that the verification workflow out-
performs the annotation workflow, often even by a
substantial margin, for all experiments and metrics
while drastically reducing manual annotation vol-
ume for each iteration. This is in line with the previ-
ous observation of a lower error rate and higher con-
sistency in the training data from the verification
annotation workflow, see Section 7.2. Moreover,
the gain in terms of ICER is higher than SemER for
all experiments, which is driven by the greater re-
duction of intent errors in the verification workflow.
We assume the display of the NLU hypothesis in-
fluences verifiers and results in a more consistent
annotation when it comes to ambiguous utterances
that have multiple valid interpretations. This again
leads to more consistency in the training data by
reducing the number of utterances for which the
model sees two different annotations.

The gains for BERT are larger than for Max-
Ent+CRF, except for F-SemER. This suggests that
BERT is more sensitive to contradictory training
data which is why the proposed workflow yields
even higher performance gains compared to the
MaxEnt+CRF architecture.

Given the high reduction in annotation volume
through the proposed workflow, we used some of
the freed up capacities instead to have AL data
annotated. We added an additional 30.000 AL ut-
terances for the most confused intents and slots to
the training dataset of each workflow. As shown in
Table 2, adding comparatively few AL data boosts
model performance of the verification vs annota-
tion models by more than 20% for almost all met-
rics while increasing the annotation volume by less
than 10%. The great relative difference in per-
formance for verification vs annotation suggests
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that AL is even more beneficial for the verification
workflow.

8 Conclusion

With the aim of reducing annotation costs, we test
a methodology where mature NLU models are it-
eratively updated by ingesting labelled data via a
human verification instead of a human annotation
workflow. Our findings show that the proposed ver-
ification workflow not only cuts annotation costs by
almost 60 %, but it also boosts the performance of
the NLU system for both considered architectures.
This is in line with the annotation quality evalua-
tion we performed, where we found that the human
error rate for verification is lower than the human
error rate for annotation yielding more consistent
training data in the former. Our findings have an
important practical implication: verifying is better
than annotating for mature systems. Moreover, a
fraction of the annotation savings should be utilized
to annotate more impactful data, for instance AL
data, which generated a large performance gain in
the proposed workflow with a minimal increase in
annotation volume.
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