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Abstract

Despite significant recent progress in corefer-
ence resolution, the quality of current state-
of-the-art systems still considerably trails be-
hind human-level performance. Using the
CoNLL-2012 and PreCo datasets, we dissect
the best instantiation of the mainstream end-to-
end coreference resolution model that under-
lies most current best-performing coreference
systems, and empirically analyze the behav-
ior of its two components: mention detector
and mention linker. While the detector tradi-
tionally focuses heavily on recall as a design
decision, we demonstrate the importance of
precision, calling for their balance. However,
we point out the difficulty in building a pre-
cise detector due to its inability to make impor-
tant anaphoricity decisions. We also highlight
the enormous room for improving the linker
and show that the rest of its errors mainly in-
volve pronoun resolution. We propose promis-
ing next steps and hope our findings will help
future research in coreference resolution.

1 Introduction

Coreference resolution identifies mentions in a doc-
ument that co-refer to the same entity. It is an
important task facilitating many applications such
as reading comprehension (Dasigi et al., 2019) and
text summarization (Azzam et al., 1999).

Lee et al. (2017) proposed the first neural end-to-
end architecture for coreference resolution. Most
recent systems use it as a backbone and employ bet-
ter scoring functions (Zhang et al., 2018), pruning
procedures (Lee et al., 2018), or token represen-
tations (Joshi et al., 2019, 2020).1 Despite this
usage, little in-depth analysis has been done to
better understand the inner workings of such an
influential system. Xu and Choi (2020) analyzed
the effect of the high-order inference, while Sub-
ramanian and Roth (2019) and Zhao et al. (2018)

1Except Wu et al. (2020) which has not seen wide adoption.

respectively examined its generalizability and gen-
der bias. Few work has inspected the interaction
between its components. Lu and Ng (2020) con-
ducted oracle experiments that are related to ours,
but without fine-grained control over confounding
factors affecting oracle mentions. Such an under-
standing is important: for example, Kummerfeld
and Klein (2013)’s dissection of the then-best clas-
sical coreference systems inspired many important
follow-up works (Peng et al., 2015; Martschat and
Strube, 2015; Wiseman et al., 2016, inter alia).
However, it is unknown if observations on such
classical feature-based and often pipelined systems
extend to current neural end-to-end models.

We consider the best instantiation of this model
family, SpanBERT (Joshi et al., 2020) + c2f-
coref (Lee et al., 2018), and investigate the interac-
tion between its two components: mention detector
and mention linker. We study how their errors in-
dependently or jointly affect the final clustering.

Using the CoNLL-2012 (Pradhan et al., 2012)
and PreCo (Chen et al., 2018) datasets, we high-
light the low-precision, high-recall nature of the
detector. While traditionally only recall is empha-
sized for the detector as a design decision (Lee
et al., 2011; Lee et al., 2017), we show huge degra-
dation from noisy mentions and, perhaps surpris-
ingly, increasing the number of candidates consid-
ered by the baseline linker only deteriorates the
performance. While some classical coreference
pipelines focused on detector precision (Uryupina,
2009), it is rarely emphasized for current end-to-
end systems. We hence stress the importance of a
precision-recall balance for the detector and demon-
strate how pruning hyperparameters, in addition to
reducing computational complexity, control this
trade-off. However, we show the difficulty of ob-
taining a precise detector by demonstrating the im-
portance of anaphoricity decisions and the inability
of the detector to make them. Finally, we high-
light the high potential of the linker and that the
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remaining errors mainly involve pronoun resolu-
tion. We hope this work sheds light on the internals
of the mainstream coreference system and, with
our proposed next steps, catalyze future research.
We believe some of our findings may also transfer
to other tasks with a similar joint span detection
and span (pair) classification architecture, such as
SRL (He et al., 2018), IE (Luan et al., 2019), and
entity linking (Kolitsas et al., 2018). See Jiang et al.
(2020) which subsumes many other tasks under
such a span-based framework.

2 Background

Model We study the coarse-to-fine coreference
system (c2f-coref; Lee et al. 2018). It assigns an
antecedent for every span in a document of length
T , including a dummy that indicates non-mentions
or non-anaphoric mentions. The final clustering is
the transitive closure of connected spans. The sys-
tem consists of a mention detector and a mention
linker. The detector scores all O(T 2) spans up to
length L and outputs the λT highest-scoring spans
as possibly anaphoric mentions. The linker links
each mention candidate with the highest-scoring
antecedent among K ones. Hyperparameters L, λ,
and K control the number of considered spans and
antecedents, reducing computational complexity.

Data CoNLL-2012 is the most common dataset
to test coreference models. However, it lacks sin-
gleton mention annotation (Pradhan et al., 2012).

Singleton, or non-anaphoric, mentions do not
co-refer with other spans, e.g. “The dog” in “[The
dog] barks.” However, they may become anaphoric
in another context, e.g. “[The dog] barks at [itself].”
Being a mention is a span’s inherent property, while
anaphoricity, whether or not a mention co-refers, is
context-dependent. We use “all mentions” to refer
to the union of singleton and anaphoric mentions.

To understand the effect of singleton mentions,
we heuristically generate all mentions for CoNLL-
12 (§B) for relevant experiments. We also exper-
iment with PreCo, a coreference dataset with an-
notated singleton mentions. We do all analyses on
development sets and report dataset statistics in §A.

3 Experiments

Settings We embed tokens with SpanBERT-
large, a pre-trained transformer (Vaswani et al.,
2017) with state-of-the-art performance in corefer-
ence resolution. We choose L = 30, λ = 0.4,K =

CoNLL-12 PreCo
Coref F1 79.17 85.04
ANA. P 28.37 39.23
ANA. R 96.42 98.40
ALL P 82.04 76.55
ALL R 57.35 95.98

Table 1: Original system coreference F1 and precision
/ recall for anaphoric mentions (ANA.) and all mentions
(ALL) on CoNLL-12 and PreCo development sets.

50. We only keep the first 110 sentences per docu-
ment during training. To reduce confounding fac-
tors, we do not use speaker and genre metadata.

“Original” System refers to a standard Span-
BERT + c2f-coref trained baseline. Its F1 score2 is
reported in Table 1, similar to the results in Joshi
et al. (2020) considering we disregard metadata.

Oracles We build oracle detectors where, start-
ing from the original system’s mention candidates
(its detector output), we either remove all non-gold
mentions (prefect precision), add all missing gold
mentions (perfect recall), or both (perfect precision
& recall). We give the altered, rather than the origi-
nal, mention candidates to the linker. We consider
both anaphoric mentions and all mentions as gold
mentions and modify either in a post-hoc manner or
re-train the system with the altered candidates. To
control for a non-trainable detector, we train only
a linker reusing the original system’s mention can-
didates, dubbed Fixed Detector. We consider this
baseline as the comparison target for the oracles.
Besides oracle detectors, we also build an oracle
linker that assigns the correct antecedent (including
dummy) to each of the λT mention candidates.

4 Precision-Recall Trade-Off for the
Mention Detector

Traditionally, coreference systems heavily favor
recall over precision for the detector (Lee et al.,
2011) as the linker cannot recover missed men-
tions. Similarly, our c2f-coref system gets >96%
anaphoric mention recall yet only <40% precision
(Table 1). We therefore explore if detector recall is
always more important than its precision. If more
spans are considered by increasing the max span
width L or the number of spans considered per
word λ, will the system performance necessarily
improve? In the extreme case, if we hypothetically

2We use coreference F1 to refer to the average F1 of MUC,
B3, and CEAFφ4 , the most common coreference metric.
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Span Conflated Extra Extra Divided Missing Missing
Error Entities Mention Entity Entity Mention Entity

Original 1.6 3.1 1.3 3.1 2.6 2.1 4.5
Fixed Detector 1.7 3.1 1.7 3.3 2.8 2.1 4.7

ANA. Perfect P 0.0 2.4 0.0 0.0 2.0 2.6 5.7
Post-hoc Perfect R 1.6 3.1 1.4 3.1 2.6 2.0 4.4
Oracle Perfect P&R 0.0 2.3 0.0 0.0 1.9 2.5 5.5
ANA. Perfect P 0.0 3.4 0.0 0.0 0.9 1.5 1.4

Re-train Perfect R 0.7 3.1 2.0 3.4 2.6 1.5 4.4
Oracle Perfect P&R 0.0 3.0 0.0 0.0 1.0 0.4 0.3

Table 2: The F1 score improvement after fixing different types of errors on the CoNLL-12 development set. The
errors are independently fixed after span errors are fixed. The categorization is from Kummerfeld and Klein (2013).

CoNLL-12 PreCo
Fixed Detector 78.28 84.64

ANA. Perfect P 86.02 90.31
Post-hoc Perfect R 79.37 85.17
Oracle Perfect P&R 86.28 90.45
ANA. Perfect P 89.98 95.09

Re-train Perfect R 79.65 85.22
Oracle Perfect P&R 92.39 96.50
ALL Perfect P 79.48 88.37

Re-train Perfect R 78.52 85.23
Oracle Perfect P&R 80.05 89.13

Oracle Linker 97.07 98.69

Table 3: Baseline and oracle coreference F1 for
anaphoric mentions (ANA.) and all mentions (ALL) on
CoNLL-12 and PreCo development sets. “Fixed Detec-
tor” is the baseline with a non-trainable detector. The
middle three sections are oracle detectors with perfect
candidate precision/recall. The last row is an oracle
linker that always makes correct antecedent decisions.

had enough compute that allows the linker to con-
sider all O(T 4) span-antecedent pairs, should we
simply remove the pruning in the detector?

The Aggregated Importance of Precision For
all oracles in Table 3, fixing precision yields a
larger improvement than recall, especially with
anaphoric mentions. This highlights the impor-
tance of detector precision and the extent to which
the linker suffers from noisy mention candidates. In
Table 2, we present the F1 improvement after inde-
pendently fixing categorized errors following Kum-
merfeld and Klein (2013).3 Noisy candidates re-
sult in extra mention and extra entity errors, fixing
which accounts for more than half of the ≈8 F1 gap
between the post-hoc perfect precision oracle and

3Span (boundary) errors are fixed before independently fix-
ing all others. The numbers do not add up to the performance
gap due to error type interactions.

the baseline for CoNLL-12 (Table 3). Furthermore,
re-training the system to leverage the distributional
shift of the absence of noise leads to another ≈4
and 5 F1 increase (CoNLL-12/PreCo).

To analyze how higher detector precision helps
the linker, we examine the coreference score the
linker assigns to every span-antecedent pair. The
anaphoric mention re-trained perfect precision or-
acle has an average score of –13.0 on CoNLL-12,
higher than –15.1 with perfect recall. Among only
correct span-antecedent pairs, these scores are 11.7
and 7.1, with the same pattern. This indicates that
the noise with perfect recall prevents the linker
from reliably assigning high coreference scores,
even for correct links. The effect of higher coref-
erence scores also shows in that, compared with
perfect recall, the perfect precision oracle produces
on average larger (4.44 vs. 4.26 entities) and longer-
distance (154 vs. 152 tokens spanned) clusters.

We also see this effect by examining the amount
of improvement with reduced noise in Table 2.
In the anaphoric mention post-hoc oracles, as ex-
pected, fixing precision results in fewer extra men-
tion/entity errors and more missing errors, while
the perfect recall oracle behaves conversely. How-
ever, when re-trained, the perfect precision oracle
has much fewer missing entities, even fewer than
with perfect recall. This is surprising as the latter
considers more candidates. The reason is likely
that the linker learns to leverage the absence of
noise and reliably assigns high coreference scores.
Despite some incorrect links leading to more con-
flated entities, the many correct ones drastically
reduce missing mention/entity errors. On the other
hand, the noise in the perfect recall or the original
system prevents consistent high scores, resulting
in more missing mentions and entities. Hence, the
improvement with perfect precision partly stems
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CoNLL-12 PreCo
# Op Op effect # Op Op effect

ANA.; P 135.9 0.086 79.2 0.132
ANA.; R 1.9 0.715 0.8 0.709
ALL; P 34.1 0.035 30.6 0.122
ALL; R 115.3 0.002 4.1 0.143

Table 4: The number of addition/removal operations
needed for the oracle candidates, and the oracle perfor-
mance increase, in F1, amortized over each operation.
Boldface indicates the higher per-operation effect be-
tween perfect precision and recall in each category.

L 30 32 34 36 38 40
F1 79.17 78.76 78.86 79.03 78.88 78.85

λ 0.4 0.45 0.5 0.55 0.6 0.65
F1 79.17 78.99 79.15 78.35 79.05 78.85

Table 5: CoNLL-12 development F1 with increased
max span width L or the number of spans considered
per word λ. The first column is the original setting.
Boldface indicates the best performance.

from the linker’s increased confidence in assigning
coreference scores when not tasked with ignoring
non-mentions (and singletons) in noisy candidates.

The Average Importance of Recall The large
improvement from fixing precision may be due to
its larger original headroom than recall (Table 1).
We compute the number of operations (span addi-
tion/removal) needed for each oracle and the av-
erage F1 improvement per operation in Table 4.
For anaphoric mentions, recall has 5-8× the aver-
age effect of precision.4 If we control the number
of operations by re-training an anaphoric mention
(semi-)perfect precision oracle removing only as
many top-scoring extra spans as the number of
missing correct spans (rather than removing all ex-
tra spans), it gets 79.08 and 85.01 F1 on CoNLL-12
and PreCo, lower than the perfect recall oracle with
79.65 and 85.22. It is therefore only due to the low-
precision high-recall nature of the original detector
that precision is more important in aggregate.

Precision-Recall Trade-Off We return to the
original question: if we had more compute, is it
always beneficial to consider more spans in the
detector? From our results, while recall is impor-
tant, an imprecise detector has substantial adverse
effects by increasing the linker’s learning burden.
Indeed, Table 5 shows that increasing the max span
width by up to 33% or the spans considered per

4CoNLL-12 with all mentions has a different pattern as we
noisily generated singletons in a recall-oriented way.

word by up to 38% only degrades the performance.
As the extra low-scoring spans are mostly noise, we
slightly increase recall but more heavily decrease
precision, causing more harm than benefit. Hence,
besides saving computation, these hyperparameters
also balance the precision-recall trade-off. Future
work should hence put more emphasis on precision
which is often overlooked in end-to-end systems.

5 Difficulties Facing Each Component

5.1 The Detector’s Difficulty With
Anaphoricity Decisions

Despite its large aggregated improvement, i.e.
≈11.7 and 10.5 F1 for CoNLL-12 and PreCo, per-
fect anaphoric mention precision requires perfectly
distinguishing anaphoric from singleton mentions.
These anaphoricity decisions in fact account for
most of the improvement, ≈10.5 and 6.7 F1 (Ta-
ble 3, anaphoric v.s. all mentions perfect preci-
sion).5 However, the detector, as a span classifier,
does not explicitly model inter-span anaphoric re-
lationships. To test this architecture’s ability to
distinguish anaphoric from singleton mentions, we
build two span classifiers with the same structure
as the detector, supervised with sigmoid loss, that
recognize all mentions and anaphoric mentions in
PreCo. The former achieves 79.89 classification F1

while the latter only 54.32, showing the inability of
a span classifier to make anaphoricity decisions.

To better understand this difficulty, we define
a confusion index as singleton recall divided by
anaphoric mention recall. It correlates with the
classifier’s inability to identify anaphoricity. Ide-
ally, this value should be close to 0, recalling more
anaphoric mentions and fewer singletons. A ran-
dom classifier incapable of distinguishing between
the two has an expected confusion index of 1.

The anaphoric mention classifier above has a
confusion index of 0.81, showing its inability to
make anaphoricity decisions even when explicitly
trained with the signal. If we only consider text ap-
pearing as both singleton and anaphoric mentions
in the same document, demanding contextual rea-
soning by disregarding obvious anaphoric mentions
such as pronouns, the confusion index degrades to
0.997. Hence, the classifier is poor at leveraging
self-attentive contextual cues to make anaphoric-

5Chen et al. (2018) observed a similar pattern on an LSTM
architecture that less directly receives global information
which is important for anaphoricity decisions. We confirm that
this still holds on transformers with a larger receptive field.
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Error Type Example(#)

Pronoun
(109)

... a cross-sea bridge connecting Hong Kong,
Zhuhai, and Macao .
... after their return, Macao, and Hong Kong,
the two special administrative regions ...

Exact
Match

(6)

The most important thing about Disney is
that it is a global brand .
The subway to Disney has already been con-
structed .

Head
Match
(11)

Ten landmark buildings located on Hong
Kong Island reveal themselves ...
... those private , er , buildings , that is , the
business community , ah , is willing to ...

Other And Dr. Andy Henry notices something else
Match (7) Dr. Mann says they ’ve narrowed it down ...

Semantic
Proximity

(12)

... Hong Kong cinema has nurtured many
internationally renowned directors ...
... memorializing Hong Kong ’s 100 - year
film history .

Others
(5)

But [Paul Kelly] [Steve Sodbury] and Mel
Anderson ... had no idea ...

Table 6: Examples of categorized conflated entity
errors in the CoNLL-12 development set with a per-
fect detector. Following past studies (Kummerfeld and
Klein, 2013; Joshi et al., 2019), we consider all deictic
terms as pronouns. Each example contains two incor-
rectly linked entities in bold. Square brackets are added
to separate mentions.

ity decisions without explicit inter-span relational
modeling. In §C we also show the degradation of
the confusion index with shorter spans.

Given the importance of anaphoric mention pre-
cision (§4), more research in improving anaphoric-
ity decisions in the detector would be fruitful, for
example, by more explicitly attending to neighbor-
ing spans. Alternatively, as Zhong and Chen (2021)
showed the benefit of disentangling the span repre-
sentations for entity detection and relation extrac-
tion in information extraction based on the intuition
that they are disparate tasks, one may split the task
of anaphoricity decision from mention linking and
introduce a separately parameterized anaphoric-
ity module, similarly considering the discrepancy
between the two tasks. Recasens et al. (2013);
Moosavi and Strube (2016); inter alia have pur-
sued similar ideas in the pre-neural era, but it has
still not yet been explored with deep models.

5.2 The Linker’s Errors

While the detector struggles with anaphoricity de-
cisions, the linker explicitly models anaphoricity
by assigning the dummy to extra mentions. It is
hence also viable to determine anaphoricity in the
linker. Indeed, the current detector would suffice

with a stronger linker: in Table 3, the oracle linker
gets near-perfect scores with the original mentions
(not perfect since the candidates are not gold).6

To analyze the remaining non-anaphoricity
linker errors, we assume a perfect anaphoric men-
tion detector. Here, conflated entities is the single
major error source (last row of Table 2). Table 6
shows 150 manually categorized conflated entities
in the CoNLL-12 development set.7 Suboptimal
pronoun resolution is the biggest issue, and the
linker also tends to link spans with various degrees
of text match or semantic proximity. Within pro-
noun errors, the most common case is a pronoun
linked to an incorrect nominal (in Table 6), occur-
ring 43 times. Sometimes two pronouns, often
identical, are incorrectly linked, a case that neces-
sitates better higher-order inference. Third person
pronouns with different referents are conflated 29
times. Errors with first or second person pronouns
occur 37 times, usually due to speaker switching.

Similar to §5.1, separately parameterizing the
linker’s encoder may help reduce conflation: intu-
itively, the span representation for mention detec-
tion may promote homogeneity. Meanwhile, the
lack of discerning span-internal content for certain
error types including pronoun resolution and exact
match, combined with current systems’ trend to
rely on such cues (Lu and Ng, 2020), calls for more
focus on improving their contextual reasoning.

6 Conclusion

We analyzed the complex interaction between the
mention detector and linker in the mainstream
coarse-to-fine coreference system. Using oracle
experiments, we showed that, while detector re-
call is important, higher anaphoric mention preci-
sion would lead to dramatically better linker perfor-
mance, though achieving this is difficult. We also
demonstrated that the oracle linker performance is
near perfect and that the vast majority of remain-
ing linker errors besides anaphoricity decisions are
about pronoun resolution. We hope these discover-
ies will help future coreference research.

6A modified oracle linker that only considers coarse-
pruned antecedents (Lee et al., 2018) still gets 96.61 and 98.65
F1 on CoNLL-12 and PreCo. The small difference compared
to considering all antecedents also shows that, with a strong
linker, coarse-to-fine pruning has only negligible performance
impact while substantially reducing the decision space.

7Joshi et al. (2019) and Lu and Ng (2020) conducted sim-
ilar analyses but we study in a more controlled setting by
excluding detector errors and focusing on entity conflation,
the largest remaining error source.
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Figure 1: The PreCo anaphoric mention classifier con-
fusion index (§5.1) on spans with different widths.

A Dataset Statistics

We use the English portion of the CoNLL-
12 shared task (Pradhan et al., 2012) and the
PreCo (Chen et al., 2018) dataset. The former con-
tains 2,802/343/348 training/development/testing
documents and the latter has 36.6K training docu-
ments and 500 each for development and testing.

B Heuristically Generated CoNLL-12
All Mentions

We heuristically generate the set of all mentions
for CoNLL-12 in a recall-oriented manner. We
use the gold syntactic information as a proxy and
consider the union of all phrases tagged with NP or
NML and all words tagged with PRP, PRP$, WP,
WDT, WRB, NNP, VB, VBD, VBN, VBG, VBZ, or
VBP. This set includes 99.63% anaphoric mentions
which constitute 20.89% of this set. We obtain the
set of all mentions by merging this set with the
non-singleton mentions to ensure all mentions are
a superset of anaphoric mentions.

C The Confusion Index’s Variation With
Span Width

In Figure 1, we plot how the confusion index of the
PreCo anaphoric mention classifier (§5.1) changes
with span widths. The classifier’s inability to make
anaphoricity decisions is the most pronounced for
short phrases, possibly because these phrases are
also more likely to appear as both singleton and
anaphoric mentions whose anaphoricity status is
especially hard to determine, discussed in §5.1.


