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Abstract

Recent work has shown fine-tuning neural
coreference models can produce strong per-
formance when adapting to different domains.
However, at the same time, this can require
a large amount of annotated target examples.
In this work, we focus on supervised domain
adaptation for clinical notes, proposing the use
of concept knowledge to more efficiently adapt
coreference models to a new domain. We de-
velop methods to improve the span representa-
tions via (1) a retrofitting loss to incentivize
span representations to satisfy a knowledge-
based distance function and (2) a scaffolding
loss to guide the recovery of knowledge from
the span representation. By integrating these
losses, our model is able to improve our base-
line precision and F-1 score. In particular, we
show that incorporating knowledge with end-
to-end coreference models results in better per-
formance on the most challenging, domain-
specific spans1.

1 Introduction

Recent work has achieved high performance on
coreference resolution in standard benchmark
datasets like OntoNotes (Kirstain et al., 2021; Joshi
et al., 2020; Weischedel et al., 2013). However, in
many real world settings where coreference reso-
lution would be valuable, text differs greatly from
these standard datasets. For example, coreference
resolution over clinical notes can enable tracking a
patient’s progress and treatment history. However,
clinical notes contain acronyms and medical termi-
nology. Annotating new training data for every do-
main of interest is expensive and time-consuming,
and coreference models trained on existing bench-
mark datasets perform worse on other domains
(Srivastava et al., 2020; Xu and Choi, 2020; Joshi
et al., 2020). In this work, we develop a domain-
adaptation model for coreference resolution that

1Code publicly available at https://github.com/
nupoorgandhi/i2b2-coref-public

requires only a small number of target training ex-
amples and target domain knowledge.

Our primary approach involves incorporating
domain-knowledge into the span representations
learned by an end-to-end neural system (Lee et al.,
2017). A span representation is a vector representa-
tion of a contiguous set of tokens. When determin-
ing if a given mention refers to an antecedent, span
representations are used by the model to (1.) select
a set of candidate mentions and (2.) select an an-
tecedent from the candidates for the given mention.
Thus, a high-quality span representation encodes
the semantic meaning of the span tokens and their
local context. Joshi et al. (2020) introduced Span-
BERT, a pre-training method extending BERT, de-
signed to improve performance on span-selection
tasks that involves masking contiguous spans rather
than tokens. Span representations are derived by
concatenating the pre-trained transformer outputs
at the boundary tokens with an attention-weighted
vector over the span tokens. These representations
are fed into a coreference resolution model, thus
integrating SpanBERT into an end-to-end corefer-
ence resolution system.

SpanBERT is able to capture coreference struc-
ture implicitly in rich span representations. The
expressiveness of the SpanBERT representation is
apparent from extrinsic coreference performance,
but also through probing tasks that have shown
that span representations can capture headedness,
coreference arcs, and other linguistic features of
coreference (Kahardipraja et al., 2020). The best
coreference performance and span representations
are obtained by training the end-to-end model with
SpanBERT using labeled coreference data.

When adapting a coreference model to a new do-
main, fine-tuning or continued training can greatly
improve performance, but this approach can be
computationally expensive and requires a large
amount of labelled documents from the target do-
main (Gururangan et al., 2020; Xia and Van Durme,

https://github.com/nupoorgandhi/i2b2-coref-public
https://github.com/nupoorgandhi/i2b2-coref-public


122

2021). Neural models have also been criticized for
largely relying on shallow heuristics in the text, sug-
gesting this data-driven learning method requires
many target examples to learn a new target distri-
bution (Lu and Ng, 2020; Rosenman et al., 2020).

The presence of out-of-vocabulary words in a
new domain can create additional challenges. Span-
BERT uses wordpiece tokenization, which can lead
to misleading meaning representation for spans
when a single wordpiece belongs to spans with dif-
ferent meanings (Joshi et al., 2020; Poerner et al.,
2020b). Consider for example, the spans euthmyia
and dementia, both of which are common medical
terminology but out-of-vocabulary words for Span-
BERT, which tokenizes them to contain a common
wordpiece: “##ia”. As described by Poerner et al.
(2020b), this can lead to a coreference model in-
correctly predicting the spans coreferent, since the
suffix “##ia” is commonly associated with diseases.
A coreference model could correct this by learning
a more meaningful representation for the prefix to-
kens and downweighting the suffix “##ia” token,
but this would take many target domain training
examples.

Instead, we propose a more efficient method
for integrating domain-specific knowledge into
SpanBERT-based span representations, which re-
quires only a small number of target training sam-
ples and leverages domain-specific concept knowl-
edge.

We take a set of spans with some similarity in
meaning to be a concept, and we use concepts of
varying granularity (e.g., problem, headache).

First, we introduce a retrofitting loss (§2.4)
which guides the representation learning of span
pairs to satisfy a knowledge-based distance func-
tion. This distance function reflects pairwise span
relationships from our concept knowledge. As a
result, we are able to align the target domain coref-
erence structure encoded in the span representation
with the global meanings of the spans. This al-
lows the end-to-end model to more efficiently build
more meaningful span representations for the target
domain.

We also introduce an auxiliary scaffolding loss
(§2.5) for a concept prediction task in order to en-
sure that knowledge relevant to the coreference
task can be recovered from the span representation.
This usage of an auxiliary task to produce a useful
inductive bias was introduced in Swayamdipta et al.
(2018) to add a syntactic labeling loss for coref-

erence resolution since syntactic constituents are
often coreferent. Spans belonging to the same con-
cept within our concept knowledge usually core-
fer, so we generalize this technique to a broad,
knowledge-based lexicon in our domain adaptation
setting. While our retrofitting loss integrates rel-
ative knowledge into the span representation, we
are able to supplement the span representation with
global meaning using the scaffolding loss.

To evaluate our models, we take OntoNotes as
our source domain and the i2b2/VA corpus of clini-
cal notes as our target domain. We train our model
on the source domain and 200 examples from the
target domain, we evaluate model performance on
the target domain. Our knowledge concepts are
from the i2b2/VA dataset and the UMLS Metathe-
saurus.

First, we describe our methodology and intro-
duce our retrofitting and scaffolding loss functions
in §2. Then, we describe our experiments to quan-
tify model performance on our target domain in
§3, and finally we demonstrate the performance
improvement over our baseline and on rare/OOV
spans §4.

The main contribution of this work is in devel-
oping methods to integrate concept knowledge into
coreference resolution systems to improve domain
adaptation. We outperform our baseline primarily
by improving precision, and in doing so, we demon-
strate the utility of a set of knowledge concepts for
adapting span representations to a new domain. We
show that our model’s performance does not deteri-
orate on highly domain-specific spans containing
OOD frequently subdivided vocabulary.

2 Model

The objective of coreference resolution is to iden-
tify a set of coreference clusters from a document
containing entities, where each coreference clus-
ter contains mentions referencing a single entity.
The set of mention candidates are referred to as
spans, where a span is any contiguous set of to-
kens in the document. We can use the corefer-
ence clusters {C1, C2, . . . , Cm} to define an un-
connected graph where the set of spans are the
vertices V = {s1, s2, . . . , sn}, and there are edges
only between spans that belong to the same clus-
ter. First, we describe the basic model setup for a
neural coreference resolution system, and we then
describe our proposed approach, that involves two
new losses.
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Figure 1: Span representations produced by SpanBERT
for mentions “euthymia” and “dementia” are fed into
a co-reference resolution model. The baseline (Joshi
et al., 2020), which uses a single coreference loss,
CL, produces similar span representations for “euthymia”
and “dementia” (top). When we incorporate knowl-
edge concepts, Ck

1 = {euthymia, pyrexia, . . .}, Ck
2 =

{dementia, polymyalgia}, . . ., into the span representation us-
ing our proposed losses SL and RL, the span representations
for “euthmyia” and “dementia” are further apart (bottom),
accurately reflecting that “euthmyia” is a symptom, while
“dementia”is a disease, even though they share a wordpiece
“ia”.

2.1 End-to-end Coreference Model

For the set of possible spans, we first produce span
representations. The span representation is learned
as a part of the neural end-to-end framework intro-
duced in Lee et al. (2017). Given span represen-
tations, each span representation hi is assigned a
unary mention score. The mention score reflects
the likelihood that a given span is in fact a mention.
This score is used to obtain a set of candidate men-
tions. Each span pair hi,hj is assigned a pairwise
antecedent score reflecting the likelihood that hi is
the antecedent of hj . For an arbitrary span pair, the
overall score is composed of the antecedent score
and the mention scores for each span. The scoring

functions are learned using standard feed-forward
neural networks, allowing us to derive a distribu-
tion over all possible antecedents for a given span
x.

P(y) =
es(x,y)∑

y′∈Y e
s(x,y′)

where s is the scoring function as defined in Joshi
et al. (2020). We maximize the likelihood of the
correct antecedents from the set of gold mentions,
giving us a coreference loss (CL):

CL = log
N∏

i=1

∑
ŷ∈Y(i)∩GOLD(i)

P(ŷ)

GOLD(i) denotes the set of spans in the gold clus-
ter containing span i. Our baseline span representa-
tion is produced using SpanBERT with the single
objective of minimizing the coreference loss (CL).

2.2 SpanBERT representation
SpanBERT is a pre-training method extending
BERT that masks contiguous spans and also trains
the span boundary representations to predict the
masked span. The span representation hi is the
concatenation of the two SpanBERT transformer
states of the span endpoints (first and last word
pieces) xSTART(i),xEND(i) and an attention vector
x̂i computed over all the word pieces in the span
(Joshi et al., 2019, 2020).

hi =
[
xSTART(i),xEND(i), x̂i, φ(i)

]
The attention vector x̂i is intended to best represent
the internal span itself (e.g. head word), whereas
the endpoints better represent the context (Lee et al.,
2017). This suggests that the x̂i component of the
overall span representation is the most natural part
of the span to align with global, non-contextual
knowledge.

2.3 Integrating Knowledge into Span
Representation

We aim to create a span representation such that
knowledge can be easily aligned with the corefer-
ence structure. Then, we can learn a span repre-
sentation geometry such that connected spans are
close and disconnected spans are far. In construct-
ing such a vector space, we gain some flexibility
to integrate any type of knowledge that shares the
same structure as the coreference clusters. We can
represent knowledge sources with concept clusters
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{Ck
1 , C

k
2 , . . . C

k
m} to resemble coreference clusters,

so that we can impose that the coreference cluster
graph is consistent with the concept cluster graph
via two additional losses.

We propose two complementary approaches to
integrating knowledge. A pairwise retrofitting loss
is intended to encode relative knowledge and a
unary “scaffold” loss is intended to encode global
knowledge into the span representation.

2.4 Retrofitting with Concept Knowledge

We want the span representation x̂i to be close to
coreferring spans x̂j. Similarly span representa-
tions belonging to the same cluster should be close.
Similar to Faruqui et al. (2015), we enforce this
objective by defining a custom distance function.
But unlike Faruqui et al. (2015), our custom dis-
tance function is task specific and instead of using
a lexicon, we are using broad concepts.

Concept Knowledge Distance metric We de-
fine our distance function to be composed of two
elements: coreference information and concept
knowledge.

dT(si, sj) = αcdc(si, sj) + αkdk(si, sj)

Variables αc, αk each denote weights that we tune,
and T references the document from which valid
span pairs are passed into the function.

Coreference information To capture the corefer-
ence graph, we recreate the distance between span
pairs that do not corefer (dc). Note that this dis-
tance does not discriminate between span pairs that
belong to separate coreference clusters and span
pairs where one span does not belong to any coref-
erence cluster at all. We define dc(si, sj) = 1 if
the spans do not corefer, otherwise 0.

Knowledge From our knowledge, we can
obtain concepts, or sets of spans with some
level of similarity of non-contextual meaning:
{Ck

1 , C
k
2 , . . . , C

k
m}. Coreferent spans refer to the

same entity, and as a result, the concept type (e.g.
person) must be consistent for any pair of coref-
erent spans. Thus, given a set of concepts, we
want spans belonging to the same concept to have
similar representations. Accordingly, we define
dk(si, sj) = 0 if both spans belong to the same
concept type, otherwise 1.

Retrofitting Loss (RL) We want to create a
span representation with a geometry defined by
our custom distance function. We can optimize the
end-to-end model to satisfy a loss applied to the x̂i

component of the span representation:

RL =
∑
`

1

|r`|
∑
i,j

|dT `(s`i , s
`
j)− d(x̂`

i , x̂
`
j)|

Here |r`| denotes the number of span pairs internal
to one document, which we use to normalize, `
identifies the document that span si, sj belongs to,
and the function d is cosine distance.

2.5 Concept Identification as an Auxiliary
Task

We introduce a concept identification auxiliary task
to guide the model to construct a span represen-
tation from which the concept can be recovered.
Swayamdipta et al. (2018) introduces the notion of
a “scaffold” or auxiliary supervised loss function
that is related to the primary task. Since coreferring
spans nearly always belong to the same concept in
our concept knowledge, concepts are a good choice
for a scaffold. By sharing SpanBERT parameters
optimizing for the scaffold loss and the overall
coreference loss, we are able to encode the concept
type in the span representation.

Auxiliary Scaffolding Loss (SL) Following
from Swayamdipta et al. (2018), we assign a distri-
bution over the set of concepts

p(si ∈ C | x̂i) = softmaxcwc · x̂i

where wc is a parameter vector associated with a
concept C. This gives us the loss:

SL =
∑
`

1

|r`|
∑
i

log p
(
cki | x̂i

)
where cki is the concept associated with span si.
Finally, we optimize a summation of these losses,

weighting each loss with a hyperparameter that we
tune.

L = β1CL + β2RL + β3SL

3 Experiments

3.1 Datasets
Our target corpus is a medical notes dataset, re-
leased as a part of the i2b2/VA Shared-Task and
Workshop in 2011 (Uzuner et al., 2011). The
dataset contains 251 train documents, 51 of which
we have randomly selected for development and
173 test documents. Our dev set is used to select
some model parameters (e.g., loss function weights
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β1, β2, β3). The average length of these documents
is 962.62 tokens with average coreference chain
containing 4.48 spans. For our source domain cor-
pus, we use OntoNotes, with documents on average
half as long as the clinical notes and similar average
chain length 4.21.

3.1.1 Knowledge Lexicons
i2b2 Concepts (i2b2): In addition to coreference
chains, the i2b2/VA dataset includes broad concept
labels for spans. We focus on four concepts: person
(e.g. the patient, Dr. X), treatment (e.g. abdom-
inal hysterectomy, the procedure), problem (e.g.
coronary artery disease, slurred speech), test (e.g.
MRI, echocardiogram). The i2b2 dataset annotates
coreference chains s.t. corefering spans must be-
long to the same concept. In Table 1, we report
how these i2b2 concepts are distributed among the
coreference chains.

i2b2 Concept
Avg. Chain length # of Chains
Train Test Train Test

Problem 2.96 2.9 1704 1186
Test 2.31 2.51 568 360

Person 14.16 12.54 754 571
Treatment 2.66 2.63 1262 1063

Table 1: Breakdown of i2b2 concepts in coreference chains

Unified Medical Language System Concepts
(UMLS): The Unified Medical Language System
(UMLS) defines concept unique identifier (CUI)
codes in the UMLS Metathesuarus tool (Boden-
reider, 2004). Each UMLS concept links synony-
mous spans, so the UMLS concepts are much more
fine-grained than those defined in the i2b2 dataset.
For example, a CUI for headache would map to
{headaches, cranial pain, head pain cephalgia}. We
used string match to assign a UMLS concept to
spans in the training set. This resulted in the identi-
fication of 3,500 unique CUI’s for the spans. We
also experimented with using a partial string match
to assign UMLS concepts to spans which we refer
to as “UMLS overlap”.

3.2 Baseline
For our supervised domain adaptation approach,
we use a familiar approach of training a model on
a source domain and tuning this model on a target
domain. We take the current state of the art end-to-
end coreference model from Joshi et al. (2020) for
our baseline.

First, we train this SpanBERT-based end-to-end
model on OntoNotes using the hyperparameters
from Joshi et al. (2020). Then, we continue training

this model using the target i2b2 training dataset.
Continued training has been shown to be effective
for coreference resolution in out-of-domain settings
(Xia and Van Durme, 2021).

3.3 Model Setup

In order to improve the SpanBERT-based span rep-
resentation, we introduce the i2b2 and UMLS con-
cept knowledge in two ways: we retrofit the span
representation to the concept knowledge (§2.4) and
introduce an auxiliary task of concept identification
as a scaffold (§2.5).

In our implementation, we add the correspond-
ing retrofitting loss (RL) and scaffolding loss (SL)
from these two objectives to the coreference loss
(CL) to produce an overall loss which we optimize
for. Aside from the difference in the loss func-
tion, the training process for our model resembles
that of our baseline. We train our model first with
the source domain OntoNotes and then continue
training on the i2b2 dataset.

For the retrofitting loss, we experiment with the
knowledge lexicons i2b2 and UMLS individually
and together. Recall that the knowledge lexicon dis-
tance metric relies on two main components: coref-
erence clusters C1, C2, . . . and knowledge clusters
Ck
1 , C

k
2 , . . .. When using i2b2 or UMLS knowl-

edge concepts individually, we experiment with
αk, αc values between (0, 1] at intervals of .1, and
we found that αk = .2 and αc = 1.0 performs
best over the dev set. When using i2b2 and UMLS
concepts together, we found that assigning more
weight (αk = .5) to the broader i2b2 concepts
than the UMLS concepts (αk = .2) performs best
over the dev set. When training our model on
OntoNotes, we do not have the same knowledge
lexicon available, so effectively, we have αk = 0
until we begin training on the i2b2 data.

For the concept identification auxiliary task, we
use only i2b2 concepts for our knowledge lexi-
con, since using the fine-grained UMLS concepts
would induce 3,500 class labels. Additionally,
since the i2b2 knowledge lexicon is not available
for OntoNotes, we ignore SL (β3 = 0).

For our model, we choose max_seq_length of
512, BERT learning rate of 2e−5, and task specific
learning rates of 1e − 4. Similar to Joshi et al.
(2020), we fine-tune 20 epochs for OntoNotes and
the i2b2 training examples.
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4 Results

For successful domain adaptation, our model aims
to demonstrate the value of incorporating concept
knowledge. We evaluate overall coreference per-
formance improvement as a result of the span
retrofitting and auxiliary concept identification task
in §4.1. Then, we inspect whether representations
for highly domain-specific spans are better for the
coreference resolution task in our model than in the
baseline (§4.2).

4.1 Coreference Performance

In Table 2, we see that combining both of the losses
we introduce in this work (CL + RL + SL) im-
proves the model precision by 2.23% resulting in a
.8% improvement in the F-1 score.

Combining the retrofitting loss and the auxiliary
scaffolding loss performs better than using each
individually. It is possible that adding the scaffold-
ing loss alone is not as helpful because it does not
contain the UMLS knowledge.

While our model does improve precision and
the overall F-1 score, recall largely remains con-
stant. The retrofitting loss pushes unrelated spans
belonging to different concepts further apart, and
consequently we penalize the detection of any valid
mention that does not appear in our concept knowl-
edge. Incompleteness of our concept knowledge
may be a contributing factor to the lack of recall
improvement.

It is expected that precision should be affected
most by the additional losses SL and RL, since
both are designed to integrate knowledge in the
pairwise relationships between spans.

The scaffolding loss guides the model to be able
to distinguish spans belonging to different concepts
from the span representation, and the retrofitting
loss enforces a knowledge-based distance function
between spans. Model recall is partly determined
by a unary mention score used to identify candidate
mentions from spans in our model. This mention
score is impacted by our losses, since span repre-
sentation is taken as input to the scoring function.
However, the pairwise knowledge integrated into
the span representation is much more useful for
selecting an antecedent among a set of candidates
for a given span. Consequently, since our loss
functions have a bigger impact on the antecedent
scoring function, then they will also have a bigger
impact on model precision.

4.2 Performance on Domain-specific Spans

In addition to overall performance, we are inter-
ested in comparing performance on rare spans that
do not occur or occur infrequently in the source do-
main. Specifically, we are interested in addressing
performance degradation that can occur as a result
of wordpiece tokenization.

For example, consider a coreference cluster con-
taining spans that are on average subdivided many
times. This is an indication that the vocabulary of
spans in the cluster is out of domain. The atten-
tion weighted vector over the tokens in the spans
may be a misleading representation since the token
embeddings correspond to shorter, less meaningful
subwords. We report in Table 6 some examples
of span pairs that the baseline model incorrectly
predicts as coreferent.

Consider the spans “open laparoscopy” and “ex-
ploratory laporotomy”. Their tokenizations would
include the subwords ["lap", "##aro", "##tom",
"##y"] and ["lap", "##aro", "##sco", "##py"]. This
overlap of the first few subwords might lead the
baseline to conclude that the spans are similar in
non-contextual meaning and consequently coref-
erent. From our fine-grained UMLS knowledge,
we know that laparoscopy and laparotomy belong
to distinct concepts. Our loss functions RL,SL
guide the model to produce disparate span repre-
sentations since the spans map to distinct concepts.
Our model uses knowledge to learn to upweight
the wordpieces that are meaningful in context of
the target domain (e.g., the suffix tokens in this
example). We report examples of challenging span
pairs that our model identifies and the baseline fails
to identify in Table 5.

To collect quantitative evidence for our model’s
performance on the most challenging spans, we
evaluate how model performance changes as the
average number of wordpieces per span increases in
Table 4. We can observe that as the average number
of wordpieces per span increases beyond 3.4, we
start to see an increasing F-1 performance over the
baseline. Similar to the overall results for the entire
test set, we see that performance improvements in
precision are largely responsible.

Beyond average number of wordpieces per span,
we can also use the concept labels annotated in the
i2b2 dataset to verify the performance of our model
on domain-specific spans. We verified that con-
cepts person and treatment are respectively domi-
nated by spans like “doctor”, “patient” “surgery”,
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Model Losses Knowledge
Model Performance

MUC B-cubed CEAFE averages
R P F-1 R P F-1 R P F-1 R P F-1

Baseline (CL) NA 70.93 72.51 71.71 64.91 66.48 65.69 54.57 58.44 56.44 63.47 65.81 64.61
CL + RL + SL i2b2, UMLS 71.15 73.64 72.37 65.03 67.59 66.28 54.77 60.64 57.56 63.65 68.04 65.41

CL + RL i2b2, UMLS 70.66 73.88 72.23 64.36 67.89 66.06 54.39 60.38 57.22 63.14 67.28 65.17
CL + SL i2b2 70.28 74.14 72.16 64.22 68.27 66.18 54.69 60.43 57.41 63.43 67.17 65.24

Table 2: Overall coreference performance for various combinations of loss functions and knowledge resources. Our model sur-
passes our Baseline (CL) largely as a result of an improvement in precision (scores averaged over 6 random seed initializations).

Model Losses Metric
i2b2 Concepts

Person Problem Treatment Test

Baseline (CL)
Avg. R 63.47 50.92 54.85 48.08
Avg. P 83.76 79.98 82.98 84.43

Avg. F-1 69.92 58.0 62.24 54.74

CL + RL + SL
Avg. R 62.66 51.98 53.17 48.67
Avg. P 86.23 83.20 86.22 86.67

Avg. F-1 69.98 59.56 61.84 55.62

Table 3: Performance on coreference chains belonging to a
specific concept. Our model outperforms the baseline on more
domain-specific spans indicating our model improves domain
adaptation problem and test coreference clusters

and “procedure”, which are more likely to appear
in the source domain than spans like “afebrile”,
“basal cell carcinoma”, “asculation” from the prob-
lem and test concepts. Therefore, the performance
improvement in Table 3 for concepts problem and
test suggests that our model can outperform the
baseline on domain-specific spans.

4.3 Visualization

We want to visualize how the span representation
captures the mention-antecedent relationship for
different types of concepts – specifically how con-
sistently information is extracted from the men-
tion span representation to arrive at a predicted
antecedent. We randomly select 200 span pairs
with a mention-antecedent relationship. For each
span pair, we extract the attention weighted vector
over the span tokens, which is the same piece of
the span used to compute SL, RL. For these 768-
dimensional vectors, we take the projection vectors
from the mention to the antecedent vector. Then,
in Figure 2 we transform these projections into a
2-dimensional space using PCA and plot them in
R2 similar to Faruqui et al. (2015).

For the baseline model (top), most of the
mention-antecedent vectors share a similar direc-
tion regardless of concept type. However, for the
CF + RL + SL model (bottom), there is a clear
distinction in mention-antecedent vectors for each
concept. This suggests that our model is able to
construct a span representation that can capture the
mention-antecedent relationship in a way that is

(1) specific to the concept (2) consistent across all
mention-antecedent pairs belonging to the concept.

Figure 2: Two-dimensional PCA projections of attention-
weighted span tokens for vector pairs holding the mention-
antecedent relation for the baseline (top) and our model CL
+ SL + RL (bottom). Our model uses concept knowledge to
construct a span representation that more consistently captures
the mention-antecedent relationship specific to each concept.

5 Related Work

Prior to the introduction of end-to-end neural mod-
els in Lee et al. (2017), coreference resolution for
the clinical domain used pipelined approaches, al-
lowing for the propagation of errors from other core
NLU tasks and relying on hand-crafted rules for
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Model Losses Metric
Avg. # of wordpieces/span range

[0.0,1.7) [1.7,3.4) [3.4,5.1) [5.1,6.8) [6.8,8.5)

Baseline (CL)
Avg. R 47.19 31.46 35.33 27.77 26.49
Avg. P 79.94 64.55 60.63 54.32 49.28

Avg. F-1 54.64 38.40 41.16 35.10 29.81

CL + RL + SL
Avg. R 47.18 29.41 36.88 30.76 27.93
Avg. P 83.04 67.42 65.31 54.74 60.17

Avg. F-1 55.19 37.39 43.57 37.28 33.78

CL + RL + SL (Overlap UMLS)
Avg. R 48.68 31.73 38.03 31.73 29.59
Avg. P 79.22 63.06 57.89 52.26 51.65

Avg. F-1 55.50 38.25 41.86 37.22 33.103

CL + RL (Overlap UMLS)
Avg. R 47.32 29.71 34.67 29.74 36.82
Avg. P 80.63 64.58 65.58 55.67 56.89

Avg. F-1 54.92 37.03 42.03 37.07 38.11

Table 4: We take the set of coreference chains s.t. the average number of wordpieces per span falls withing the range, and evaluate
model of the subset. We observe that our model outperforms the baseline coreference chains with spans that are subdivided more
frequently

TP Coreferent Span Pair Examples
Hereafter, wife noted development of left sided weakness,
facial droop, slurring of speech . . . with past medical his-
tory of atrial fibrillation on coumadin, coronary artery
disease, hyperlipidemia, dementia with sudden onset left
sided weakness, dysarthria
evaluation and treatment of adenocarcinoma involving the
transverse colon and gallbladder . . . DISCHARGE DIAG-
NOSIS: 1. Metastatic gallbladder cancer
He is status post a hemiarthroplasty on
10/17/97 . . . decreased hematocrit prior to his
humeral fixation surgery
An angiogram was done which disclosed possi-
ble subsegmental pulmonary emboli of the upper lobes as
well . . . patient was bolused with intravenous heparin due
to concern for pulmonary embolism

Table 5: Examples of coreferent span pairs missed by Baseline
(CL), identified by our model (CL + RL + SL). In these cases,
we can see that wordpiece tokenization is likely misleading
the baseline model, since the spans in each pair have few
wordpieces in common.

FP Non-coreferent Span Pair Examples
She underwent an open laparoscopy . . . The patient is now
admitted for exploratory laparotomy
Right heart catheterization and coronary angiography on
October 15 . . . urgently transferred by Dr. Lenni Factor for
possible angioplasty
78-yo male with atrial fibrillation. . . Mechanical mitral
valve: Anticoagulation was reversed
He had a cardiac catheterization performed which revealed
. . . management after this hospitalization and has done
very well

Table 6: Examples of non-coreferent span pairs correctly
missed our model (CL + RL + SL), but identified by Baseline
(CL). In these cases, we can see that wordpiece tokenization is
likely misleading the baseline model, since the spans in each
pair have wordpieces in common.

resolving each type of entity in the domain (Jindal
et al., 2014). Feature-based methods like (Jindal
et al., 2014) using knowledge in the coreference
model rely on the availability of knowledge at test
time. We are focused instead on the case where

there may be no concept knowledge available when
our model is deployed.

There has been some limited work in domain
adaptation for coreference resolution. Yang et al.
(2012) adapts a model trained on the MUC-6 and
ACE 2005 datasets to the biomedical domain using
an active learning approach, applying data augmen-
tation and pruning techniques. Zhao and Ng (2014)
propose a feature-based active learning method
to learn cross-domain knowledge. Unlike these
works, we take advantage of the modern expres-
sive power of the SpanBERT representation. With
the introduction of SpanBERT, there was a marked
performance improvement for several NLU tasks
including coreference resolution. Joshi et al. (2020)
showed that SpanBERT could be fine-tuned to per-
form well on several datasets, e.g., GLU and ACE
(Wang et al., 2018; Doddington et al., 2004).

However, Lu and Ng (2020) found that Span-
BERT coreference resolvers generally rely more
on mentions than context, so they are suscepti-
ble to small perturbations (e.g., changing all the
names/nominal mentions in the test set). More gen-
erally, for NLU tasks several studies have found
that neural models rely heavily on shallow heuris-
tics in the text rather than learning the underlying
structure of the linguistic phenomenon (Peng et al.,
2020; Rosenman et al., 2020), leading to the misin-
terpretation of context (Alt et al., 2020).

This poses a challenge for adapting a corefer-
ence model to noisy domains like clinical text and
mostly OOD spans. With the recent success of fine-
tuning for domain adaptation, a natural approach
would be to fine-tune the SpanBERT representa-
tion, the coreference model, or both (Gururangan
et al., 2020). Fine-tuning the pretrained SpanBERT
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method alone can be expensive – Gururangan et al.
(2020) showed that the best performing scheme
requires 180K documents. In settings where there
are fewer documents available in the target domain,
it is still possible to fine-tune a coreference model
with SpanBERT (Joshi et al., 2020).

However, a persisting challenge with adapting
the span representation is associated with the word-
piece tokenization employed by SpanBERT. For
highly technical domain-specific language, it is
natural that there is a higher average number of
subwords per span, since it is unlikely that many
spans or spans split only once belong to the limited
300,000 word SpanBERT vocabulary. Poerner et al.
(2020a) show that wordpiece tokenization in the
biomedical domain can lead to misleading span rep-
resentations. Purely fine-tuning approaches fail to
address this issue, since the SpanBERT vocabulary
is constant.

At the same time, SpanBERT implicitly learns a
geometry that encodes rich information related to
the coreference task. Hewitt and Manning (2019)
show that it is possible to learn a linear projection
space from BERT embeddings to capture linguistic
phenomena like syntactic dependencies. In Ka-
hardipraja et al. (2020), the authors use a Feedfor-
ward Neural Network (FFNN) to probe for proper-
ties of coreference structure, finding evidence that
the SpanBERT representation can be used to pre-
dict coreference arcs and the head word of the span
with >90% F1. Therefore, it is likely that overall
performance greatly depends on the quality of span
representation.

In our work, we develop multiple techniques
to adapt the span representation to a new domain
with concept knowledge, allowing the model to
be fine-tuned with fewer target domain examples
and perform better on highly domain-specific en-
tities. In particular, by incorporating knowledge
into the span representation, we are able to restore
a global, non-contextual meaning to excessively
subtokenized spans.

6 Conclusion

We present methods to efficiently adapt coreference
resolution models to a new domain using domain-
specific concept knowledge. We demonstrate that
we can integrate knowledge into the span repre-
sentation using two losses to (1) retrofit the span
representation to the concept knowledge and (2)
ensure that knowledge can be recovered from the

span representation using an auxiliary concept iden-
tification task. Using these methods, we are able
to improve the performance of our baseline, espe-
cially for highly domain-specific spans.
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