
Proceedings of the 25th Conference on Computational Natural Language Learning (CoNLL), pages 470–480
November 10–11, 2021. ©2021 Association for Computational Linguistics

470

Polar Embedding

Ran Iwamoto∗, Ryosuke Kohita†,Akifumi Wachi†
∗ Keio University, † IBM Research - Tokyo

raniwamoto@gmail.com, kohi@ibm.com, akifumi.wachi@ibm.com

Abstract

Hierarchical relationships are invaluable infor-
mation for many natural language processing
(NLP) tasks. Distributional representation has
become a fundamental approach for encoding
word relationships, particularly embeddings in
hyperbolic space showed great performance
in representing hierarchies by taking advan-
tage of their spatial properties. However, most
machine learning systems do not suppose to
use in such complex non-Euclidean geome-
tries. To achieve hierarchy representations in
commonly used Euclidean space, we propose
Polar Embedding that learns word embeddings
with the polar coordinate system. Utilizing
characteristics of polar coordinates, the hier-
archy of words is expressed with two inde-
pendent variables: radius (generality) and an-
gles (similarity), and their variables are op-
timized separately. Polar embedding shows
word hierarchies explicitly and allows us to
use beneficial resources such as word frequen-
cies or word generality annotations for com-
puting radiuses. We introduce an optimiza-
tion method for learning angles in limited
ranges of polar coordinates, which combin-
ing a loss function controlling gradient and
distribution uniformization. Experimental re-
sults on hypernymy datasets indicate that our
approach outperforms other embeddings in
low-dimensional Euclidean space and compet-
itively performs even with hyperbolic embed-
dings, which possess a geometric advantage.

1 Introduction

A hierarchy is structured information that enables
us to understand a specific object in a general sense
(e.g., dog is one instance of mammal). Such gen-
eralization capability is or will be a basis of in-
telligent systems such as comprehending causal-
ity (Hassanzadeh et al., 2019), common sense (Tal-
mor et al., 2019), and logic (Yang et al., 2017). For
example, species information (e.g., carnivora vs.
herbivore) will be useful when predicting behavior

Figure 1: Conceptual illustration representing struc-
tures of word hierarchies.

of animals. Another example is when developing
a question answering system. Hierarchical rela-
tions of words enable the system to cover diverse
inputs from a user (e.g., how many paw pads does a
(cat | kitten | tabby)→ (cat) have?). Therefore, to
deploy hierarchical information in such systems, it
is critical to represent word generality and meaning
efficiently in a machine-readable manner.

For encoding word relationships, distributional
representations are commonly used in natural lan-
guage processing. Word embeddings such as
Word2Vec (Mikolov et al., 2013), Glove (Penning-
ton et al., 2014), and FastText (Bojanowski et al.,
2017) express word similarities as continuous vec-
tors in Euclidean space, and have brought signif-
icant advances to various applications (Collobert
et al., 2011; Lample et al., 2016). Hierarchy-aware
representations in Euclidean space have also been
developed.

Gaussian embedding (Vilnis and McCallum,
2015) represents words as Gaussian distributions,
whose mean vectors (50–100 dimension) encode
word similarity, and whose variances encode word
generality. Mean vectors have a similar role to
existing word vectors, and word generalities are
expressed by adding variance. On the other hand,
order embedding (Vendrov et al., 2016) expresses
both generality and similarity using word vectors,
namely word positions. It models the partially or-
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dered structure of a hierarchy between objects as
inclusive relations of orthants in Euclidean space.

More recently, models using non-Euclidean
space – hyperbolic, spherical space, or space of
heterogeneous curvature have been gaining re-
searchers’ attention (Nickel and Kiela, 2017; Dhin-
gra et al., 2018; Tifrea et al., 2019; Vilnis et al.,
2018; Gu et al., 2019). Among them, hyperbolic
geometry has good compatibility with spreading-
out structures of hierarchies, since the volume of
hyperbolic space increases exponentially to the di-
rection of the radii (Sala et al., 2018).

For instance, Poincaré embedding (Nickel and
Kiela, 2017), Lorentz embedding (Nickel and
Kiela, 2018), and hyperbolic cone (Ganea et al.,
2018b) perform excellently even with low dimen-
sions by utilizing hyperbolic space. The idea of
Poincaré embedding representing a hierarchy with
a ball is intuitive and promising. The model learns
embeddings of which (i) the distance from the ori-
gin of the ball represents generality of objects (e.g.,
mammal and dog) and (ii) the difference of angles
represents similarity between objects (e.g., dog and
cat), as shown in Figure 1.

However, hyperbolic embeddings require other
components to also be developed under the same
hyperbolic geometry (Ganea et al., 2018a). It may
be challenging to apply the model to downstream
applications that are mostly developed in Euclidean
space (Du et al., 2018). Our goal is to achieve a
low-dimensional, intuitive representation of hierar-
chical structures, such as poincare embedding, in
commonly used Euclidean space.

In this paper, we propose polar embedding for
learning representations on the polar coordinate
system. Polar embedding can show word hierar-
chies explicitly using two independent variables:
word generality is expressed by radius, and word
similarity is expressed by angles. Radius and an-
gles can be optimized separately, which allows us
to use beneficial resources such as word frequen-
cies or word generality annotations for computing
radiuses. In short, polar coordinates provide us
with a useful system to achieve the intuitive distri-
bution of a hierarchy.

We also introduce techniques for learning
hierarchy-aware representations while efficiently
using an area in low-dimensional Euclidean space
with the polar coordinate system.

To sum up, the contributions of this paper are
threefold;

1. We introduce polar coordinates to learn
hierarchy-aware embedding in Euclidean
space.

2. We introduce two methods for distributing
word angles for fully using limited spaces,
i.e., Welsch loss function (Dennis and Welsch,
1978) and minimization of Kullback-Leibler
(KL) divergence with Stein variational gradi-
ent descent (SVGD; (Liu et al., 2016)).

3. We show polar embedding performs compet-
itively or better than other models learned
in low-dimensional Euclidean and hyperbolic
spaces on the link prediction benchmark.

2 Related Work

Popular word embeddings train word vectors by
minimizing the Euclidean distance between words
appearing in the same context (Mikolov et al., 2013;
Pennington et al., 2014). Word embeddings showed
significant progress in numerous NLP research;
however, those embeddings have two points to be
improved regarding the vector norm.

Meng et al. (2019) pointed out the first prob-
lem that there is a gap between training space and
usage space of word embedding. The distributed
representation is trained to minimize the distance
between vectors of similar words. Although, the
word vectors are normalized to the unit length
and measured word similarities using cosine dis-
tance (Mikolov et al., 2013; Levy et al., 2015). The
usage space is a ball, which is different from the
training space. To learn a distributed representation
in a space suitable for evaluation with cosine simi-
larity, Meng et al. (2019) proposed spherical text
embedding that use Riemannian manifold to learn
word vectors with unit-norm constraints. Their
model achieves high performance in the document
classification task by learning embeddings in the
same space as the usage space.

An other problem of popular word embeddings
is that there is no explicit modeling of hierarchical
relationships. Subsequent studies have shed light
on the issue and extended word embeddings to
be aware of hierarchical information. Gaussian
embedding (Vilnis and McCallum, 2015) considers
a hierarchy as an inclusion relation and represents
it as Gaussian distributions with different variances
so that general words have higher variance.

Word norms are frequently utilized to repre-
sent hierarchical structures, because in popular
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word embeddings such as glove, word vectors are
normalized and norms are not utilized effectively.
Nguyen et al. (2017) introduced a loss function
to reflect pairwise hypernymy relations in similar-
ity of word vectors, and Vulić and Mrkšić (2018)
proposed a post-processing method for adjusting
vector norms to enhance hierarchical relationships.
Order embedding (Vendrov et al., 2016) represents
a hierarchy by preserving the partial order between
words.

By learning similarity on the Euclidean sphere
and by expressing word generality in norm, it is
expected that the word hierarchy can be effectively
represented in Euclidean space.

3 Polar Embedding

We propose polar embedding that learns word rep-
resentations in the polar coordinate system. The
most essential feature of polar coordinates is that it
holds the radius and angles of a position vector as
separate parameters. Given that the intuitive distri-
bution of a hierarchical structure shown in Figure 1,
we can naturally associate the radius with word gen-
erality and the angles with word similarity. In this
section, we describe methods of optimizing the ra-
dius and angles towards the simple but efficient
representation of a hierarchy in low-dimensional
Euclidean space.

3.1 Angle Distributions in Polar Coordinates

First, we explain the characteristics of polar co-
ordinates using a three-dimensional sphere. Left
of Figure 2 illustrates three-dimensional polar co-
ordinates. Their angles have range limitations:
θ ∈ [0, 2π), ϕ ∈ (0, π), and the points of ϕ = 0, π
are called pole.

In cartesian coordinates, the volume of a differ-
ential cube does not depend on the value of each
coordinate (the position of the cube). On the other
hand, in polar coordinates, the differential cube is
smaller when ϕ is close to the poles. More specifi-
cally, if we put the samples at equal intervals along
θ and ϕ dimension (e.g. every π/180 radian), the
Euclidean distance between two samples near the
poles is closer than the distance between samples
near ϕ = π/2. These properties need to be consid-
ered when optimizing angles.

3.2 Preliminaries

First, let us introduce the notations throughout
the following sections. Let Wn = {w ∈ Rn |

Figure 2: Three-dimensional polar coordinates and an-
gle optimizations.

‖w‖ < rmax} be the open n-dimensional ball
where rmax ∈ R is the radius and ‖ · ‖ denotes
the Euclidean norm. In an n-dimensional ball
Wn, a word w is represented by a vector w =
(r, θ, ϕ1, ϕ2, ..., ϕn−2), where r ∈ (0, rmax), θ ∈
[0, 2π), ϕk ∈ (0, π), for k = 1, 2, ..., n− 2.

Given two words wi and wj , in the range of θ ∈
[0, 2π) which forms a circle by regarding θ = 2π
as θ = 0 (the center of Figure 2), the distance
between θwi and θwj is defined with an absolute
difference:

d(θwi , θwj )=min
(
2π−|θwi−θwj |, |θwi−θwj |

)
,

(1)

where min(·, ·) selects the shorter arc. In the range
of ϕk ∈ (0, π) which forms a half-circle (the right
of Figure 2), the distance between ϕkwi

and ϕkwj
is

defined as an absolute difference:

d(ϕkwi
, ϕkwj

) = |ϕkwi
− ϕkwj

|, (2)

where k ∈ {1, . . . , n− 2}.
Note that the maximum distance is bounded by

at most π in the θ dimension and less than π in the
ϕk dimensions according to the above definitions.

In representation learning, distances are opti-
mized so that semantically relevant words become
closer and irrelevant words become farther apart.
Let us define w(t) as a target word, w(+) as a rele-
vant word to w(t), and w(−) as an irrelevant word
to w(t). Common approaches such as Skip-gram
with negative sampling (Mikolov et al., 2013) mini-
mize a loss function L = Lpos−Lneg, where Lpos
is a cumulative loss of positive samples (a set of
relevant pairs), and Lneg is of negative samples (a
set of irrelevant pairs). Given a word hierarchical
tree, a word pair connected by an edge is a positive
sample, and a non-connected word pair is a nega-
tive sample. An example of the angle update with
these positive and negative samples is illustrated in
Figure 2.
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3.3 Radius
Radius (r) is expected to represent word generality.
Specifically, general words (e.g., mammal, furni-
ture) should have smaller values of r (i.e., near the
origin) and specific words (e.g., bulldog, wooden
chair) should have larger values (i.e., far from the
origin). The radius r can be defined in arbitrary
ways as long as it satisfies the above characteris-
tics. In the case of learning embeddings from word
pairs in a hierarchical tree, for example, the number
of edges of a target word (i.e., how many words
are connected to the target word) can be used as
a definition of r because a word at an upper level
in a hierarchy is likely to be connected to more
words. If a whole or partial hierarchical tree(s) is
available, information related to hierarchical levels
such as node height and number of descendants,
can represent generality more precisely.

3.4 Angles
Angles (θ, ϕk) are expected to represent the simi-
larity of words. We optimize them basically with
the same approach as most embeddings; making
angles closer for positive samples and far for neg-
ative samples as shown in Figure 2. However, the
polar coordinate system has limits with respect to
the value ranges in the optimization; a word can
move on the circle of θ and on the half-circle of ϕk.
Note that the learning of θ and ϕk is independent
from r, and we fix r to 1 during the process of
updating angles. Given the characteristics of polar
coordinates, we propose optimization methods to
utilize a whole sphere broadly for the effective use
of a limited space. More specifically, we embed the
similarity of words while maintaining a uniform
distribution on a sphere.

3.4.1 Optimization
We now introduce a method to optimize the angle
vectors. A conventional approach for optimizing
the embedding vectors is to use the squared loss
function. In polar coordinates, however, the con-
ventional approach results in a highly biased dis-
tribution over words in terms that majority of the
words is likely to accumulate near the limits of the
angle ranges. Specifically, words were likely to
gather at the positions at which the distance be-
comes near the maximum value (i.e., π). This is
because the squared loss function has large gradi-
ents for distantly separated samples but their angles
have value range limitations. We describe those de-
tails in Section 3.4.2.

Figure 3: Loss functions (left) and their gradients
(right) of Welsch loss (blue) and squared loss (black).

To address the above issue, we adopt two tech-
niques for optimizing angle vectors. First, we
train polar embedding using the Welsch loss func-
tion (Dennis and Welsch, 1978). This function
is characterized by the following fact; the gradi-
ent is bounded and takes small value with large d.
Hence, the Welsch loss function prevents words
from gathering at certain positions by decreasing
the gradient for negative samples. Second, we use
stein variational gradient descent (SVGD, Liu et al.
(2016)) algorithm to correct the embedding vectors
to the uniform distribution. Intuitively, SVGD is
used to reduce the KL divergence between the true
uniform distribution, p(·) and current distribution,
q(·). This uniformization by SVGD is conducted
during the training of the embedding vectors once
in every specific iterations. The pseudo code is
described in Algorithm 1.

3.4.2 Optimization by Welsch loss function

In this section, we explain why the squared loss
function does not work in polar coordinates and
how we overcome the issue with the Welsch loss
function.

Welsch loss function. The Welsch loss function
is defined as follows:

Lw(d) =
c2

2

[
1− exp

(
− d2

2c2

)]
, (3)

where d is the angle distance of two words de-
scribed in Equations (1) and (2), and c is a hyper-
parameter. The gradient is represented as:

∂Lw(d)

∂d
=
d

2
exp

(
− d2

2c2

)
. (4)

As seen in Figure 3, the gradient is bounded and
takes a small value with large d.
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Why does the squared loss function not work?
The issue stems from the two facts; (i) the gradient
of the squared loss function can be arbitrarily large
for negative samples, and (ii) the maximum dis-
tance between two points in each angle dimension
is bounded in the polar coordinate system. In the
squared loss function, the larger value (i.e., longer
distance) gives a large gradient (the black lines in
Figure 3). Therefore, pairs of negative samples
distribute farther and farther from each other dur-
ing learning. In the learning of standard Euclidean
embeddings, it is not problematic because they are
allowed to use the space infinitely (e.g., the vector
norm can be as large as needed). However, po-
lar coordinates has the limits in the value range:
θ ∈ [0, 2π) and ϕk ∈ (0, π), and the maximum
distance in each dimension is at most or less than π
(see Equations (1) and (2)). In other words, the an-
gles of negative samples cannot be apart more than
π, and their optimization will stop after reaching it.
The squared loss function particularly causes words
to be accumulated because it keeps negative sam-
ples away, as mentioned above, which results in the
biased distributions. Therefore, with the squared
loss function, it is difficult to obtain uniform dis-
tributions on a sphere or even learn appropriate
angles in polar coordinates.

How does the Welsch loss function solve the
issue? As discussed above, the policy of the
squared loss function for negative samples — far-
ther is better — causes a biased distribution. There-
fore, we need to modify it so that negative samples
are regarded as sufficiently distant if they are a
certain distance apart. Although it is possible to
take a heuristic approach, such as clipping squared
loss function, the Welsch loss function can nat-
urally satisfy this requirement because the gradi-
ent is bounded and takes a small value with large
d. The peak of the gradient can be considered a
threshold in which the gradient increases when ap-
proaching the boundary then decreases after pass-
ing it (blue lines in the right of Figure 3). In other
words, the Welsch loss function does not eagerly
move negative pairs of which distance is beyond
the threshold. Hence, we can suppress the accu-
mulation problem of words with the appropriate
threshold given by adjusting c. For example, we
can define ϕkw(t)

and ϕkw(−)
as sufficiently distant

when d(ϕkw(t)
, ϕkw(−)

) = 0.5π.

3.4.3 Uniformization by SVGD
To further mitigate the issue of word accumulation
discussed in the previous section, we use SVGD
for achieving a more uniform distribution of the
embedding vectors because the Welsch loss func-
tion does not directly take into account uniformity.
SVGD is a deterministic, gradient-based sampling
algorithm, which minimizes the KL divergence
between the target (uniform) distribution p and
trained distribution q. With SVGD, we define
the following Kernelized Stein Discrepancy (KSD)
S(·, ·) between the true posterior distribution p(x)
and approximated posterior distribution q(x), in a
reproducing kernel Hilbert space (RKHS)Hd.

S(q, p) = max
φ∈Hd

{Ex∼q [Apφ(x)] } , (5)

whereApφ(x) = φ(x)∇x log p(x)+∇xφ(x), and
φ(x) is a smooth vector function. The optimal
solution of (5) is given by

φ∗p(x
′)=Ex∼q

[
κ(x, x′)∇x log p(x′)+∇xκ(x, x′)

]
,

(6)
where κ : X × X → R is a positive def-
inite kernel satisfying a certain condition on
the expectation value of differential of κ (Stein,
1972), and the radial basis function κ(x, x′) =

exp
(
−γ ||x− x′||2

)
satisfies this condition. Liu

and Wang (2016) theoretically analyzed the re-
lationship between KSD and KL divergence and
proved that

∇εKL(qε || p) |ε=0 = −Ex∼q [Apφ(x)] ,

where ε is a perturbation and qε is the perturbed
density of the distribution x. This equation means
that φ∗p in (6) is the optimal perturbation direction
providing the largest descent of the KL divergence.

To use this optimization method for our purpose,
we need a mathematical representation of the prob-
ability density of the uniform distribution on the
sphere in the polar coordinate system. However,
because there is no such analytical expression to
our best knowledge, we approximate it by a Gaus-
sian Mixture model (GMM) with an appropriate
kernel function (e.g. a radial basis function).

4 Experiments

Following previous studies (Nickel and Kiela,
2017; Ganea et al., 2018b), we used the transitive
closure in WordNet (Miller, 1995) as our experi-
mental dataset and compared polar embedding with
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Algorithm 1 Learning procedure of angles
Input for the main loop: Iteration N , Dataset D, Vocabulary V , Learning rate α, Weight for negative
samples β, SVGD Interval S
Input for SVGD: Iteration M , Learning rate η, Early stopping criterion γ ∈ [0, 1]

1: pθ, pϕk ← approximate angle uniform distributions on a sphere with GMM
2: θ, ϕk ← Initialize vectors in Cartesian coordinates with a normal distribution, then convert them into

polar coordinates for starting with a uniform distribution on a sphere (Miller, 1995)
3: for n = 0 to N do
4: w(t), w(+), w(−) ← sample from D
5:

6: // Update of θ with the Welsch loss
7: θ̂w(t)

= θw(t)
+ α{L′w(d(θw(t)

, θw(+)
))− βL′w(d(θw(t)

, θw(−)
))}

8: θw(t)
← θ̂w(t)

mod 2π . mod2π for the update across 2π
9:

10: // Update of ϕk (∀k ∈ {1, . . . , n− 2}) with the Welsch loss
11: ϕ̂kw(t)

← ϕkw(t)
+ α{L′w(d(ϕkw(t)

, ϕkw(+)
))− βL′w(d(ϕkw(t)

, ϕkw(−)
))}

12: if ϕ̂kw(t)
∈ (0, π) then ϕkw(t)

← ϕ̂kw(t)
. No update if ϕ̂kw(t)

overflows from the range
13:

14: // Update of θ and ϕk (∀k ∈ {1, n− 2}) with SVGD
15: if n ≡ 0 mod S then
16: θ̂, ϕ̂k ← SVGD(θ, pθ),SVGD(ϕk, pϕ)
17: for wi ∈ V do . Update θ and ϕk for each word
18: θwi ← θ̂wi mod 2π
19: if ϕ̂kwi

∈ (0, π) then ϕkwi
← ϕ̂kwi

20:

21: procedure SVGD(x, p) . x is θ or ϕk

22: s← Compute a validation score before SVGD
23: X ← Create a set of batched samples from x
24: for m = 0 to M do
25: for x′ ∈ X do x′ ← x′ + ηφ∗p(x

′)
26: s′ ← Compute a validation score with the latest representation
27: if s′ < γs then break . Stop SVGD if the validation score drops much
28: return x′ . x′ denotes updated values of x

other hierarchy-aware embeddings. First, our em-
bedding trained on the WordNet mammal subtree
was shown to understand our method intuitively,
and then we evaluated polar embedding with a link
prediction task for quantitative evaluation.

4.1 Settings
Dataset and Task. WordNet is a directed acyclic
graph (DAG) consisting of edges that represent is-a
relations of words. Each wordwi in WordNet repre-
sents a single node in the DAG. An edge represents
a word pair (wi, wj) where wi is a hypernym of wj .
A model is expected to embed such hierarchical
relations in a latent space appropriately. In our ex-
periment, we used the preprocessed mammal/noun

hierarchy provided by (Ganea et al., 2018b). The
number of words in mammal hierarchy is 1180,
and in noun hierarchy is 82114.

On the WordNet noun hierarchy, we evaluated
models with the link prediction task, which is a
binary classification to predict if an hypernym-
hyponym edge exists between two words. We first
learned embeddings with the training set then clas-
sified edges in the validation/test set into existent or
non-existent edges by using the embeddings with
a scoring function as described in next paragraph.
We evaluated models with the F1 score.

Polar Embedding. We determined r in a deter-
ministic manner and trained angles as explained
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Figure 4: Two-dimensional polar embed-
ding trained on the mammal subtree.

Dimension = 5 Dimension = 10

Model Percentage of Available Edges in Training
(Space) 10% 25% 50% 10% 25% 50%

Polar rg (E) 78.5% 79.9% 81.8% 82.2% 81.6% 82.3%
Polar re (E) 77.6% 78.8% 78.8% 81.8% 81.2% 82.4%
Simple (E) 71.3% 73.8% 72.8% 75.4% 78.4% 78.1%
Order (E) 70.2% 75.9% 81.7% 69.7% 79.4% 84.1%
Cone (E) 69.7% 75.0% 77.4% 81.5% 84.5% 81.6%
Disk (E) 38.9% 42.5% 45.1% 54.0% 65.8% 72.0%

Poincare (H) 70.2% 78.2% 83.6% 71.4% 82.0% 85.3%
Cone (H) 80.1% 86.0% 92.8% 85.9% 91.0% 94.5%
Disk (H) 69.1% 81.3% 83.1% 79.7% 90.5% 94.2%

Table 1: Experimental results from link-prediction task on WordNet
noun hierarchy. (E) and (H) denote Euclidean and hyperbolic spaces.

in Section 3.4. We tested two types of r for sim-
ulating different scenarios; re for the situation in
which no hierarchical information is available and
only word pairs are given, and rg for the situation
in which hierarchical information is available. On
the training set of the WordNet noun hierarchy, re

is defined as rei = 1 − z(log(ei + 1)) where ei is
the number of edges of the i-th word. rg is defined
as rgi = 1− z(hi+ log(li+ 1)) where hi is a maxi-
mum height and li is the number of descendants of
the i-th word in the hierarchy. The notation z is a
min-max normalization function; hence, re ∈ [0, 1]
and rg ∈ [0, 1]. The intuitions of those definitions
are simple. For re, a word connected with many
words is likely to be placed at an upper level in
a hierarchy. For rg, a word with a larger height
and more descendants is likely to be placed at an
upper level in a hierarchy. The rg is expected to
be more precise with respect to word generality
because of the direct usage of hierarchical relation-
ships while re is only aware of local connections
between words. For practical use, we can set r
from reliable word generality resources.

Finally, we introduced the following two scoring
functions:

sa(wi, wj) =
f(wi) · f(wj)

‖f(wi)‖‖f(wj)‖
,

sr(wi, wj) = |ri − rj |,

where f is a conversion function from polar to
cartesian coordinates (Blumenson, 1960).

We then defined the criterion as:

s(wi, wj)=

{
1 if sa(wi, wj)>1−τsr(wi, wj)2

0 otherwise,

where τ is a hyperparameter tuned in the validation
set. This function detects an edge between wi and
wj when their angles are closer (i.e., higher simi-
larity) and their radii are different (i.e., one is more
general than the other). Considering the spreading-
out structure of a hierarchy, this scoring function
relaxes the condition for the angle similarity along
with the increase in the radius difference. We tested
all models with 5 or 10 dimensions as in a previous
study (Ganea et al., 2018b).

Baselines. We compared polar embedding with
four Euclidean (Simple, Order, Cone, Disk)
and three hyperbolic models (Poincaré, Cone,
Disk) (Vendrov et al., 2016; Nickel and Kiela, 2017;
Ganea et al., 2018b; Suzuki et al., 2019). The Eu-
clidean simple model learns embeddings by mini-
mizing Euclidean distance in Cartesian coordinates.
The results of compared methods are from (Ganea
et al., 2018b).

4.2 Results: Mammal Subtree

Figure 4 illustrates two-dimensional polar embed-
ding trained on the WordNet mammal subtree.
Thanks to our uniformization methods, words scat-
tered in the circle all around, and apparent hierar-
chies could be found. For example, cat and dog
are species of carnivore, the relationship was re-
flected with polar embedding. Also, it created a
sub-hierarchy; we could find hunting dog and ter-
rier at the outer of dog, and lion and wildcat at the
outer of cat. Such species hierarchies were well
embedded for others as well (e.g., aquatic mam-
mal→ cetacean→ seal, dolphin, and primate→
monkey→ gorilla, ape).

Practically, we can extract those hierarchical or-
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(a) Squared Loss (b) Welsch Loss (c) Welsch Loss + SVGD

Figure 5: Distributions of noun hierarchy with polar embedding.

ders with r; obtaining hypernyms by increasing r
and hyponyms by decreasing r. We can also ex-
tract similar words by using cosine similarity. For
example, we can collect similar words to dog such
as canine, toy dog, and fox regardless of the hier-
archical orders. In addition, by combining cosine
similarity with r, we can filter similar words with
the levels in a hierarchy.

4.3 Results: Noun Subtree

The F1 scores on the WordNet noun benchmark
are listed in Table 1. When the dimension was 5,
polar embedding exhibited superior performance in
most cases with both rg and re. It also performed
better than or competitively with hyperbolic mod-
els. When we increased the dimension to 10, how-
ever, the performance gain of polar embedding was
not large compared to the other Euclidean models
though it still showed competitive performance.

Table 2 shows the ablation study of the Welsch
loss function and SVGD. The Welsch loss function
significantly increased the score compared to the
squared loss function. In short, the gradient adjust-
ment for defining “sufficiently distant” was critical
for learning angles in the polar coordinates. As
expected, SVGD enhanced the performance for the
one using the Welsch loss function.

Figure 5 illustrates actual θ distributions of the
models used in our ablation study. First, if we
simply used the squared loss function, most words
gathered at either the left or right side (Figure 5a).
The distribution was highly biased, and the em-
bedding trained with squared loss function failed
to use the full space effectively. By changing the
loss function to the Welsch loss function, the bias
largely decreased, and the model used the broader

Loss - SVGD F1

Welsch - w/ 78.5%
Welsch - w/o 74.9%

Squared - w/ 69.1%
Squared - w/o 65.5%

Table 2: Ablation study of Welsch loss function and
SVGD. Settings were as follows: dimension = 5, per-
centage of training edges = 10, and r = rg .

area (Figure 5b). Finally, SVGD further improved
the biased distribution, and words distributed al-
most uniformly on the sphere (Figure 5c). While
the Welsch loss function implicitly prevents the
biased distribution, SVGD more explicitly forces
word angles to distribute in uniform on a sphere.
It enabled the model to use Euclidean space more
broadly, which resulted in better performance. We
also found the same trend for ϕk.

5 Conclusion

We proposed polar embedding, which represents hi-
erarchical structures in low-dimensional Euclidean
space. Word generalities and similarities are intu-
itively expressed using radius and angles in polar
coordinates. We introduced the Welsch loss func-
tion and SVGD for training embeddings in the an-
gle limit of polar coordinates, which keeps angle
distributions uniform and enables a model to lever-
age a whole space effectively. Experimental results
indicated that polar embedding outperformed other
embeddings in Euclidean space.
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A Appendix

A.1 Convert Polar Coordinates to Cartesian
Coordinates

We relate the definition of polar coordinates given
in Section 3.2 to the definition of Cartesian co-
ordinates. Polar coordinates can be converted to
Cartesian coordinates (Blumenson, 1960) and the
information expressed in embedding is not miss-
ing in the conversion. For example, it is easier
to use orthogonal coordinates to calculate cosine
similarity. Let w = (r, θ, ϕ1, ϕ2, ..., ϕn−2) be a
n-dimension vector in polar coordinates. Suppose
w̄ = {x1, x2, . . . , xn} is the corresponding vector
of w in Cartesian coordinates. Here, the angles
θ and ϕk in n-dimensional polar coordinates are
represented as follows:

θ = 2 arccot
xn−1 +

√
xn2 + x2n−1

xn
,

ϕk = arccos
xk√

xn2 + x2n−1 + · · ·+ x2k

.

A.2 Angle Distributions in Polar Coordinates
As mentioned in Section 3.4.3, achieving a uniform
distributions on a sphere with polar coordinates is
complicated. Figure 6 shows distributions of θ and
ϕk where samples uniformly distribute on a sphere
at r = 1. Whereas the distribution of the θ dimen-
sion is intuitive, samples do not equally distribute
in the ϕk dimensions; fewer samples around the
poles and more samples around the center. Also,
the distributions differ depending on the dimen-
sions. This is stem from the fact that volume around
the center and the poles is different on a sphere.

Figure 6: Angle distributions in five-dimensional
sphere.

A.3 Hyperparameters
We list hyperparameters in Table 3 and Table 4. In
the experiment, we reported the results with the

best one on the validation set for each model and
each dataset. Training time is 2–6 hours at 500000
iterationson a single NVIDIA GeForce GTX 1080
Ti. The score of the validation set was approxi-
mately same value as the score of the test set. We
used grid search to find the best parameters, and
performed one trial for each parameter.

Hyperparameter Searched values

General

Dimension - 5, 10
Batch size - 128, 1024
Iteration N 500000
Learning rate α 0.1, 0.3
Learning rate decay - 0.95, 0.99
Negative sampling rate β 0.1, 0.3, 0.5
Welsch loss parameter c 0.4

SVGD

Batch size - 128
Interval S 1000,2000, 5000
Iteration M 2, 5, 20
Learning rate η 1
Early stopping criterion γ 0.99

Table 3: Hyperparameters for the noun subtree models

Hyperparameter Searched values

General

Dimension - 2
Batch size - 128
Iteration N 10000
Learning rate α 0.1, 0.3, 0.5
Learning rate decay - 0.95, 0.99
Negative sampling rate β 0.1, 0.3, 0.5
Welsch loss parameter c 0.4

SVGD

Batch size - 128
Interval S 500
Iteration M 5
Learning rate η 1
Early stopping criterion γ 0.99

Table 4: Hyperparameters for the mammal subtree
models


