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Abstract

Language models are trained only on text de-
spite the fact that humans learn their first lan-
guage in a highly interactive and multimodal
environment where the first set of learned
words are largely concrete, denoting physical
entities and embodied states. To enrich lan-
guage models with some of this missing ex-
perience, we leverage two sources of informa-
tion: (1) the Lancaster Sensorimotor norms,
which provide ratings (means and standard de-
viations) for over 40,000 English words along
several dimensions of embodiment, and which
capture the extent to which something is expe-
rienced across 11 different sensory modalities,
and (2) vectors from coefficients of binary clas-
sifiers trained on images for the BERT vocab-
ulary. We pre-trained the ELECTRA model
and fine-tuned the RoBERTa model with these
two sources of information then evaluate us-
ing the established GLUE benchmark and the
Visual Dialog benchmark. We find that en-
riching language models with the Lancaster
norms and image vectors improves results in
both tasks, with some implications for robust
language models that capture holistic linguis-
tic meaning in a language learning context.

1 Introduction

Children learn their first spoken language in a
highly interactive setting where generally the first
words children learn are concrete words that de-
note physical objects, which is an important devel-
opmental step in child first language acquisition
(Kuperman et al., 2012a; McCune, 2008; Clark,
2013). This is partly because handling the Symbol
Grounding Problem–the ablity to connect symbolic
knowledge of language with representations of the
physical world (Harnad, 1990)–must take place be-
fore children learn more abstract concepts later in
their cognitive development (Borghi et al., 2019;
Ponari et al., 2018). Importantly, the physical world
is not just the visual world; children learn that

words ground into proprioperceptive states (e.g.,
a hand grasp around an object has specific muscle
activations tied to the word grab), interoceptive
states (i.e., affect and valence), as well as all other
sensory modalities (e.g., the word stinky grounds
into olfactory, the word loud grounds into audi-
tory). These claims are evidenced in a large body of
child development and cognitive science literature.
Smith and Gasser (2005), for example, identified
that babies’ experience of the world is profoundly
multimodal: babies live in a physical world full
of rich regularities that organize perception, action
and thought; babies learn in a social world to learn
a shared linguistic communicative system that is
symbolic. Furthermore, a growing body of litera-
ture from linguistics and computational linguistics
makes a strong case that the process of language
learning (indeed, general human cognition) is em-
bodied, interactive, and enacted; i.e., movement in
the world is required (Pulvermüller, 1999; Lakoff
and Johnson, 1999; Barsalou, 2008; Johnson, 2008;
Smith and Samuelson, 2009; Di Paolo et al., 2018;
Bisk et al., 2020); see also the prior work in de-
velopmental robotics research; e.g., Cangelosi and
Schlesinger (2015), Chapter 7.1

Taken together, it is clear that aspects of the phys-
ical world are necessary for holistic knowledge of
semantic meaning, which has implications for how
language is modeled computationally. In particu-
lar, what does this mean for language models that
are trained purely on text (likely largely written
by adults), such as BERT (Devlin et al., 2018) or
GPT-3? These models have clearly led to impor-
tant advances for natural language processing tasks
and applications, but it is also clear that language
models trained only on text are missing critical
semantic information (Bender and Koller, 2020).

1Here we follow Dourish (2001) that emodiment is possess-
ing and acting through a physical manifestation in the world;
i.e., having sensory input is only part of emobodiment–the
ability to act in the world is essential.
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In this paper, we contribute to a growing body
of recent work that attempts to addresses these
limitations by (1) leveraging multimodal and sen-
sorimotor knowledge of the Lancaster Sensorimo-
tor Norms (Lynott et al., 2019) and (2) using vec-
torized representations of images by treating both
(1) and (2) as embeddings of language models for
GLUE and Visual Dialog benchmarks. In the fol-
lowing section, we explain related work–a growing
body of literature that is adding multimodal infor-
mation to language models, then we explain our
two embeddings that we will use. We explore how
these embeddings can be used to enrich the ELEC-
TRA language model’s pre-training and fine-tuning,
and evaluate on the GLUE benchmark (Experiment
1, Section 4), and how they can be used to re-
place input embeddings for a pre-trained RoBERTa
model for the Visual Dialog task (Experiment 2,
Section 5). Our experiments shed light on how use-
ful multimodal information can be in a task that is
text-only (Experiment 1) and a task that is multi-
modal (Experiment 2). Our results show that our
parsimonious method to unifying vision (and sen-
sorimotor knowledge) in existing language models
shows improvements in multimodal benchmarks
with accessible hardware (i.e., a single GPU) as a
step towards models that can be trained in settings
similar to that of child language learners.

2 Related Work

Language models are trained on text. Günther et al.
(2018) took up the question do words inherit senso-
rimotor activation from purely linguistic context?
and showed that experience is necessary for reac-
tivating experiential traces, but this reactivation is
not a necessary condition for understanding the cor-
responding aspects of word meaning. We take this
to mean that humans are very adept at learning new
concepts from language exposure alone (i.e., ab-
stract concepts); e.g., someone who has never seen
a zebra before, but hears them described as “horses
with vertical black and white stripes” can compose
a connotation of what zebra denotes without di-
rect visual exposure. However, this only works
if an agent that has learned the language has the
knowledge of horses, black, white, stripes, and ver-
tical concepts–i.e., via direct experience, not just
through linguistic exposure or encyclopedic defini-
tions. These claims are further backed up by neu-
roscience research that showed that neural assem-
blies encode concrete content words (i.e., words

that denote visual objects) and verbs (i.e., words
that denote actions) are learned and represented in
different brain regions (Pulvermüller, 1999; Borgh-
esani et al., 2019).

Rogers et al. (2020) provides a recent primer and
overview of research that has attempted to uncover
strengths and weaknesses of BERT and related
language models (so-called BERTology). While
our work does fit into that growing body of liter-
ature, our criticisms on current language models
specifically lies in the fact that they are only trained
on easy-to-obtain text. This criticism is born out
in Forbes et al. (2019) which showed that BERT
can guess affordances and properties of objects be-
cause that information can be found in text (e.g., a
typical chair has the affordance of being sittable,
and a property of having legs), but has no notion
of how objects are related semantically to each
other, and Da and Kasai (2019) further showed that
real-world perceptual properties are likely to be
assumed instead of inferred. Furthermore, Bender
and Koller (2020) make a strong case that BERT
learns form instead of meaning, and while the fact
that BERT performs so well on many tasks is diffi-
cult to dispute, models trained on text are missing
semantic information crucial for holistic language
understanding.

Since before BERT which has proven powerful
in many language processing tasks, efforts have
been made to encode multimodal (i.e., more than
just text as a learning modality) information into
embeddings and language models (Takano and
Utsumi, 2016; Kiros et al., 2014; Zellers et al.,
2021) and recent, continued efforts towards bridg-
ing grounded visual representations to distribu-
tional representations of word meanings give cre-
dence to the claim that text-only models like BERT
are missing crucial semantic information because
enriching BERT with visual information improves
performance in several known tasks (Kim et al.,
2019; Lu et al., 2019; Li et al., 2019). These mod-
els usually treat language and vision as separate
pipelines; our method directly endows the language
model with visual and sensorimotor knowledge.

3 Data

In this section, we motivate and introduce of multi-
modal information we will use in our experiments.

The Lancaster Sensorimotor Norms The Lan-
caster Sensorimotor norms (Lynott et al., 2019)
provide ratings (means and standard deviations) for
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40,000 English words along dimensions of embodi-
ment which capture the extent to which a concept is
experienced across 11 different sensory modalities,
and measures derived from those categories, listed
below (each has an example word that rates highly
for that modalitiy):

• Auditory - sound; ping
• Gustatory - having to do with eating; cream
• Haptic - muscle movement; handshake
• Interoceptive - having to do with affect or emo-

tion; headache
• Olfactory - smell; incense
• Visual - visual; barcode
• Foot-leg - haptics for foot/leg; run
• Hand-arm - haptics for hand/arm; pointing
• Head - having to do with the head; eye
• Mouth - haptics for mouth; kiss
• Torso - haptics for torso; breath
• Max-strength.perceptual - the highest rating

across the 11 sensorimotor dimensions
• Minkowski3.perceptual - treating the 11

modalities as a vector, this represents the dis-
tance of the vector from the origin with influ-
ence of weaker dimensions attenuated

• Exclusivity.perceptual - the extent to which a
concept (out of the 11) which is experienced
through a single perceptual modalitiy

The last three can be seen as aggregates from
the 11 modalities; they also have .action values
representing the extent to which a concept is ex-
perienced as an action (as opposed to .perceptual),
and .sensorimotor values representing the extent
a concept is experience as sensorimotor. As these
norms were derived from surveys given to adults,
these norms represent the degree to which the sur-
vey participants assigned those words to those cat-
egories. Though this does not represent a neuro-
physiological grounding of words to those modali-
ties learned through interaction and embodiment,
this serves as a useful approximation. The final
set is a vocabulary of 39,707 words (after remov-
ing rows which had null values), each represented
as a vector of length 39 (i.e., 11 mean, 11 stdev
columns; Max-strength, Minkowski, and Exclusiv-
ity columns for different ways of aggregating the
modalities). We normalize each value in the vector
independently to a value between 0-1 by dividing
each value over its max value. We call this the
Lancaster vectors.

We performed t-SNE on the Lancaster vectors
(mapping to 2 dimensions) to determine if clus-

ters would reveal any intuitions about the kinds
of semantic relatedness that the words might have
with each other. Some clusters emerged such as
foods (presumably because they have similar gusta-
tory ratings), leg-movement verbs (e.g., walk, jump,
sit), colors with eye-related words (e.g., purple,
green, blue, dark, see, eyes), soft things (e.g., hug,
tummy, pillow, clothes), audio-related words (e.g.,
talk, story, sound, music, lie, say), among others.

Figure 1: The red WAC classifiers are trained on pos-
itive and negative examples of images from Google
Images for the word red; each image is then passed
through the CLIP model. We train a binary logistic re-
gression classifier, then extract the coefficients for the
red vector.

Words-as-Classifiers Image Vectors The
Words-as-Classifiers (WAC) approach to grounded
semantics is quite simple: train a binary classifier
for each word in a corpus where the features to that
classifier are derived from images (Kennington and
Schlangen, 2015). Each classifier is given positive
and negative examples of visual denotations of
each word by the images and learns a “fitness”
score by the classifier. For example, the red
classifier is given images of objects that are
referred to as red in a corpus, and randomly
assigned negative examples of things that are not
referred to as red, as depicted in Figure 1. We
follow Kiros et al. (2018) and use Google Image
Search to find images using the BERT vocabulary,
resulting in 27,152 words and corresponding
images (some words did not result in images, and
we did not download images for filler words).
For each word, we perform an image search and
download the top 100 images. We then follow
Schlangen et al. (2016) and process each image
by passing them through the recent CLIP (Jia
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et al., 2021) convolutional neural network (trained
on ImageNet, using CLIP’s ViT-B/32 model),
yielding a vector of size 512 for each image. We
use the 100 images as positive examples for each
term in our vocabulary and randomly select three
negative examples for each positive example. We
then use a logistic regression classifier (C=0.25,
max iterations=1000), one for each word, trained
on the images for each word. After training, we
then follow Moro et al. (2019) and extract the
coefficients to arrive at a vector of size 513 (all
coefficients plus the bias term) which we use in our
evaluations below. We call these the WAC vectors.

The WAC model is useful because, as explained
in Kennington and Schlangen (2015), the classi-
fiers can actually identify objects (something that
language models cannot do on their own), the coef-
ficients represent a computed word intension, new
words in a vocabulary can easily be added without
retraining all other classifiers including adjectives
like red which are often missing from pre-trained
object classifiers, and the classifiers are effectively
learned with only a few examples, making it ef-
fective for fast learning of concrete, grounded con-
cepts. However, the WAC model suffers from two
assumptions: first, that all words have concrete, vi-
sual denotations even though many abstract words
like utopia clearly do not, and that all words are
independent of each other in terms of linguistic con-
text. We hypothesize in both experiments below
that these coefficients used as vectorized embed-
dings will be useful to a text-only language model
because they add necessary visual information; the
language model complements WAC by using lin-
guistic context (i.e., text) for training, overcoming
WAC’s assumptions.

4 Experiment 1: Tying embedding
weights and pre-training ELECTRA,
fine-tuning on GLUE

In this experiment, and crucially for our ongoing
work that aligns with child-inspired language ac-
quisition, we use ELECTRA (Clark et al., 2020) as
a language model because it has been shown to be
trainable with smaller amounts of data than other
language models, yet yield respectable results and
can be trained using a single GPU.

Task & Procedure Wang et al. (2018) intro-
duced the GLUE benchmark which consists of
nine English sentence understanding tasks covering
several domains (e.g., movie reviews and online

Figure 2: Image regions (objects) represented as CLIP
vectors are positive and negative train examples for
WAC classifier. WAC classifier weights are tied to
the embedding layer for the Generator and Discrimi-
nator for ELECTRA. Dimensionality Reduction (DR)
maps higher dimensional vectors to lower dimensions
as needed. Lancaster vectors are represented directly.

question answering). We opt for this benchmark
because of its coverage over several domains and to
show that adding multimodal knowledge improves
tasks that are based on text.2 Our aim is to achieve
improved results over the text-only baseline with a
specified number of training steps using the open-
webtext data for training.3 We report results on the
development set, as done in Wu et al. (2021). We
only report the results for the MRPC (a paraphrase
task that uses accuracy and f1 metrics), COLA (a
grammatical acceptibility task; uses Matthew’s Cor-
relation), and WNLI (ambiguity resolution; uses an
accuracy metric) tasks because they are sufficient to
illustrate the utility of our method when applied to
ELECTRA. To give ELECTRA knowledge about
additional modalities from the Lancaster and WAC

vectors, we tie the vectors to the the weights of the
generator and discriminator of ELECTRA depicted
in Figure 2, and vary whether the embeddings are

2GLUE has a public leader board found at https://
gluebenchmark.com/leaderboard

3We build off of the implementation of https://
github.com/lucidrains/electra-pytorch

https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard
https://github.com/lucidrains/electra-pytorch
https://github.com/lucidrains/electra-pytorch
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frozen or not during pre-training, then train for
100,000 steps.4 We then fine-tune the resulting
ELECTRA model on the GLUE tasks using the
multimodal vectors following standard fine-tuning
protocols; that is, we add a linear layer with a soft-
max to the pre-trained model and use the ADAM
solver with a learning rate of 2e-5 for 3 epochs. As
the WAC vectors were larger than ELECTRA’s ex-
pected embedding size of 128, we applied UMAP
to reduce the dimensionality to 128; similarly for
the WAC and Lancaster concatenated embeddings.
For cases where there was no vector for a word
(e.g., the [unmapped] words or words outside of
the vocabulary of the Lancaster vectors), we simply
used zero vectors. For Lancaster vectors, we set
the ELECTRA embedding size to 39. We explored
freezing the embeddings; our hypothesis is that not
freezing the embeddings will lead to better results
because the training regime can overpower the em-
beddings, but retain the multimodal knowledge.

For a broader comparison, we also compared
to GloVE (Pennington et al., 2014) and several
ablations where we concatenate multimodal vec-
tors with the GloVe vectors (we used the evalu-
ation script for GloVE provided by Wang et al.
(2018)). We also use the same training and evalua-
tion regime for the WAC and Lancaster vectors, and
a concatenation of the two, on their own treating
them as word-level embeddings similar to GloVe.

Results Table 1 shows the results on the GLUE
benchmark. The word-level embeddings of GloVe,
WAC, and Lancaster are shown in the top 5 rows
of the table. As expected, these word-level embed-
dings are not state-of-the-art, but we notice that
both Lancaster and WAC vectors perform compa-
rably against the GloVE vectors despite only be-
ing trained on images (WAC) or derived from the
Lancaster norms. Of note is a significant advan-
tage of using the Lancaster vectors alone compared
to using any other embedding or combination for
the WNLI task which is co-reference and natural
language inference for fiction books. This sug-
gests that inference on fiction is helped by knowing
which modalities affect each word. Interestingly,
the best performing model for COLA was GloVE
and Lancaster word-level embeddings; COLA is

4This takes about 12 hours of training on our 12GB GPU,
which we opted for because it represents more data and train
time than ELECTRA-small, but still a small enough amount of
time to establish using this model in a co-located, interactive
learning setting similar to the setting where children learn
their first language.

MRPC MRPC COLA WNLI
acc f1 corr acc

GloVE 0.745 0.807 0.691 0.563
GloVE+lan 0.735 0.799 0.449 0.563
lan 0.711 0.778 0.691 0.596
wac 0.748 0.812 0.313 0.563
lan+wac 0.619 0.670 0.382 0.535
ELECTRA 0.730 0.835 0.449 0.563
EL-wac 0.730 0.835 0.440 0.563
EL-wacf 0.760 0.833 0.0 0.563
EL-lan 0.708 0.819 0.39 0.535
EL-lan-wacf 0.792 0.859 0.459 0.563

Table 1: GLUE development set results with GloVe,
ELECTRA, Lancaster (lan), WAC models and several
combinations, with (f and without weight freezing dur-
ing ELECTRA pre-training.

a grammaticality test, which is important in lan-
guage understanding, but arguably less critical in
early-stage child language acquisition.

All other rows show the ELECTRA baseline
and ELECTRA that uses some variation of WAC,
Lancaster, or both as embeddings (denoted with
the EL- prefix). The bottom part of the table com-
pares ELECTRA with a variant of ELECTRA that
uses WAC embeddings (both with and without freez-
ing the embedding weights), ELECTRA with lan-
caster embeddings and ELECTRA with WAC em-
beddings concatenated with the Lancaster embed-
dings (where the length of the WAC embeddings
plus the size of ELECTRA is 128). Contrary to our
hypothesis, we observe that when ELECTRA uses
WAC with frozen weights, the performance on the
benchmark performs better than all others, includ-
ing the ELECTRA baseline. This could suggest
that ELECTRA can make effective use of the visual
and Lancaster embeddings by adjusting weights in
the other layers of the model. The EL-lan-wac
variant performed well above the ELECTRA base-
line, substantiating the hypothesis that enriching
the model with multimodal knowledge can improve
results. Taken together, we find the results encour-
aging because the relatively short training regime
still yielded respectable results, suggesting that
ELECTRA with a visual or other multimodal em-
bedding can be useful with less training as is the
case when children learn language.
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5 Experiment 2: Replacing RoBERTa
embeddings, fine-tuninng on Visual
Dialog

The evaluation in Experiment 1 was made up of
text-based tasks. In this experiment, we use an eval-
uation that requires knowledge of the visual world
by evaluating the Lancaster and WAC vectors on the
Visual Dialog task (Das et al., 2019), termed vis-
dial. Moreover, Experiment 1 used pre-training on
a subset of the data for only 100,000 steps. In this
experiment, we evaluate using a fully pre-trained
RoBERTa model by replacing its embeddings with
the WAC and Lancaster vectors.

Task Following Murahari et al. (2019), given
an image, dialogue history consisting of question-
answer pairs, and a follow-up question about the
image, the task of visdial is to predict a free-form
natural language answer to the question. The vis-
dial dataset introduced in Das et al. (2019) also
includes evaluation metrics and human-annotated
answers to the natural language queries about the
image. Five human annotators identified which re-
sponses out of 100 candidates could be considered
correct. This allows multiple answers to be correct
(e.g., yes and yeah are semantically identical).

Metrics We report the following metrics:

• R@1 Rate of times the top-ranked answer is
a correct one; i.e., accuracy.

• R@5 Rate of times correct answers are in the
top-five ranked answers.

• MRR Mean Reciprocal Rank is the multi-
plicative inverse of the rank of the first correct
answer.

• NDCG Normalized Discount Accumulative
Gain is a measure of ranking quality that takes
the top K ranked options, where K is the num-
ber of answers marked as correct by a least
one annotator; in this measure, the fraction of
annotators that marked a particular answer as
correct is taken into account.

Baseline and Procedure We report the values
for the model described in Murahari et al. (2019)
for our baseline–work which builds on VilBERT
(Lu et al., 2019), a parallel model of vision and
language used for the visual dialogue task–and
leverage their model with our custom, multimodal
embeddings. Their model uses two transformers,
one for the language modality and one for the vi-
sual modality. As explained in Lu et al. (2019),

the interaction between the two transformers is me-
diated by two co-attention layers where attention
in one modality is conditioned on inputs from the
other modality. Murahari et al. (2019) adapted
the VilBERT model for the visdial task by using
a pre-trained language model trained on English
Wikipedia and the BooksCorpus (Zhu et al., 2015)
using masked language modeling and next sentence
prediction losses. They then frame the task as a
next-sentence prediction task (whereas the origi-
nal VilBERT was modeled to generate descriptions
of images). They then use the Conceptual Cap-
tions (Sharma et al., 2018) and Visual Question
Answering (VQA) (Antol et al., 2015) datasets
(using masked image region, masked language
modeling, and next sentence prediction losses) to
train the two transformers. They then fine-tune
on the visdial task (also using masked image re-
gion, masked language modeling, and next sen-
tence prediction losses). The underlying architec-
ture uses a pre-trained BERT language model (i.e.,
bert-base-uncased) as a starting point before train-
ing on the Wikipedia, BooksCorpus, Conceptual
Captions, and VQA datasets. This constitutes our
baseline. We don’t consider the dense representa-
tions from Murahari et al. (2019) due to hardware
limitations.

We altered their architecture by replacing the
RoBERTa pre-trained embedding layer with the
Lancaster and WAC vectors, as depicted in Figure 3.
We then fine-tuned on the visdial task using their
training regime.5 We explain how we made vectors
compatible with their architecture.

Vocabulary: RoBERTa & AoA Abstract words
do not have concrete, visual denotations, such as
utopia or justice, so it does not make theoretical
sense to include a WAC embedding for words that
are clearly abstract because whatever set of images
represents those concepts may not have useful se-
mantic information. Moreover, children learning
their first language learn concrete concepts before
they learn more abstract concepts (Borghi et al.,
2019; Ponari et al., 2018). To explore if RoBERTa
could make use of a WAC embedding that uses
words that are more aimed at a child vocabulary,
we report results of filtering out words not in the
the Age-of-Acquisition (AoA) list (Kuperman et al.,
2012b). AoA a list of 30,000 English words rated
for the average age when children first speak those
words (avg 11 years; std 3.0, most common words

5https://github.com/vmurahari3/visdial-bert



154

Figure 3: Adapted from Murahari et al. (2019). Our approach uses the same pre-training datasets, architecture,
and losses. During the final fine-tuning on the Visual Dialog data, however, we replace the RoBERTa embeddings
with the Lancaster and WAC embeddings.

are for ages 2-14). This resulted in 9,627 remaining
words in the vocabulary; all other words were set
to an embedding of zeros.

Lancaster vectors Similar to AoA, the Lan-
caster Norms has a predefined vocabulary, which,
when compared to the RoBERTa vocabulary re-
sults in 11,402 words in both. For each word in the
RoBERTa vocabulary that was also in the Lancaster
norms, we replaced the RoBERTa embedding with
the Lancaster vector for that word; otherwise words
retained the original RoBERTa embedding. As
their model expects vectors of size 768 (the embed-
ding size for RoBERTa), but the Lancaster vectors
are only size 39, we padded the rest of the vector
with zeros.

WAC vectors We use the vocabulary from the
RoBERTa tokenizer as with the Lancaster Vectors,
which results in a a 27,152-word overlap with the
WAC vectors. As the WAC vectors have a dimen-
sionality of 513, smaller than the required size of
RoBERTa’s 768, we padded zeros after each vector.
All vectors that did not exist in the WAC set were
zero vectors of size 768. We followed a training
regime for two settings:

• no-freeze The embedding layer was not
frozen so as to allow weight changes during

training.
• 2-freeze The embedding layer was frozen for

two epochs, then the weights were unfrozen
for the rest of training; prior work has shown
that freezing layers after a certain number of
epochs can improve results (Liu et al., 2021);
we opt for two because it still allows the fine-
tuning to overpower the exiting embeddings
if needed and preliminary results showed that
freezing the weights for all epochs resulted in
poor model performance.

We trained each model for 20 epochs in total,
which is the default training setting for this task.
We used the settings that were used to train the
baseline model (i.e., learning rate of 2e-5). We re-
port the results of the baseline model and the vari-
ants of our above changes.6 Compared to Experi-
ment 1 with the GLUE benchmark, the approach
taken in this section fundamentally changes how
the Lancaster and WAC embeddings are applied
to RoBERTa; here the Lancaster and WAC embed-
dings are used on a pre-trained model. We hy-

6Note that the baseline we are comparing to
here is lower than what is reported on the leader-
board https://eval.ai/web/challenges/
challenge-page/518/leaderboard. This is
partially due to the fact that our training regime was altered
due to hardware limitations (i.e., we could only use a batch
size of 8 on a single 12GB GPU).

https://eval.ai/web/challenges/challenge-page/518/leaderboard
https://eval.ai/web/challenges/challenge-page/518/leaderboard
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no freeze MRR R@1 R@5 NDCG
baseline 64.92 50.52 82.98 56.82

lan 64.61 49.98 82.6 58.10
2-freeze MRR R@1 R@5 NDCG

lan 63.77 49.03 81.63 57.53
wac 66.38 52.25 83.8 61.47

lanwac 63.93 49.025 82.65 57.73
wac-aoa 66.79 52.75 84.05 60.44

Table 2: Experiment 2 results for the visdial task: base-
line RoBERTa embedding, Lancaster norms (lan), WAC
vectors, and concatenated (lanwac), not frozen, and
only frozen for 2 epochs (bottom section).

pothesize that RoBERTa will improve with WAC

embeddings, as well as the Lancaster concatenated
to WAC (denoted lanwac), though the Lancaster
embedding on its own may be too small to make a
difference. As words that are learned earlier in a
child’s life are generally more concrete, we hypoth-
esize that RoBERTa will improve when WAC only
uses words from the AoA data as more abstract
terms are represented by zero vectors.

Results Table 2 shows the results for the visdial
task. Though it is clear that RoBERTa is doing the
heavy lifting, when added to RoBERTa, the Lan-
caster and WAC vectors show improvements over
the RoBERTa baseline for some metrics. As noted
in Murahari et al. (2019), the NDCG metric is ac-
tually counter to MRR, but is important because it
takes multiple dialogue response annotations into
account. For cases where the Lancaster and WAC

models yield better performance, these results sug-
gest that a pre-trained language model can make
use of adding multimodal knowledge in the form of
vectors derived from multimodal knowledge (Lan-
caster) and visual (WAC) for the visdial task.

RoBERTA that uses the WAC embedding espe-
cially shows respectable results in the visdial task,
particularly when the embedding uses the AoA
vocabulary (we only considered AoA for WAC be-
cause WAC peformed better than lanwac in this ex-
periment). The WAC vectors were trained on very
noisy data, yet despite the noise and the parsimo-
nious model, there is some information about the
visual world that enriches the baseline model. The
variant trained with frozen weights for 2 epochs,
then unfrozen for the remaining 18 epochs had re-
spectable performance across all metrics.7

7As a sanity check, we also evaluated using randomly
generated embeddings which performed only slightly worse

6 Conclusion

The main contribution of this paper is to explore
using the Lancaster Sensorimotor Norms and the
Words-as-Classifiers model as vectorized knowl-
edge from the physical world on the GLUE and
Visual Dialog tasks. Lancaster norms performed
well on their own in one GLUE task compared
to other word embeddings like GloVe, and cou-
pled with the WAC vectors as the embedding in
an ELECTRA model, they performed respectably
on the GLUE task. The WAC vectors, when used
as embeddings in the RoBERTa model performed
well on the Visual Dialog task, particularly when
the vocabulary was more restricted to the Age of
Acquisition vocabulary. Crucially, this work differs
from other visually grounded models because the
grounded knowledge is part of the language model
itself (i.e., the embeddings) rather than computed
in parallel and added for a task-specific purpose.
Moreover, standard language models cannot actu-
ally identify denotations when they are present; i.e.,
ELECTRA and RoBERTa are not actually capable
of determining if an object is red or soft from ob-
serving that object–a basic ability for a language
learning child–simply because those models cannot
observe the world outside of text, though the pur-
pose of the WAC (and models like VilBERT) model
is to do just that: identify denotations; by coupling
WAC with ELECTRA and RoBERTa, both models
can make use of that capability.

This work is critical in our ongoing efforts to-
wards a model that learns language in a co-located
setting in an embodied platform. In particular,
our knowledge from this paper informs us that the
ELECTRA model with embeddings tied to WAC

classifier weights is a good candidate for live in-
teraction of a robot that is learning words from a
human collaborator because the ELECTRA-WAC

model can function with small amounts of data and
the embedding layer can successfully be tied to
weights of the WAC classifiers. We leave imple-
mentation and evaluation of this model on a robotic
platform for future work.

Acknowledgements Thanks to the anony-
mous reviewers whose comments really helped
strengthen the paper. Also thanks to NVIDIA
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experiments.

than baseline when frozen for 2 epochs, but the results of
wac-aoa are significantly better.



156

References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision.

Lawrence W Barsalou. 2008. Grounded Cognition.
Annual Review of Psychology, (59):617–645.

Emily M Bender and Alexander Koller. 2020. Climb-
ing towards NLU: On Meaning, Form, and Under-
standing in the Age of Data. In Association for Com-
putational Linguistics, pages 5185–5198.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, Nicolas Pinto, and Joseph Turian. 2020.
Experience Grounds Language. arXiv.

Valentina Borghesani, Marco Buiatti, Evelyn Eger, and
Manuela Piazza. 2019. Conceptual and Percep-
tual Dimensions of Word Meaning Are Recovered
Rapidly and in Parallel during Reading. Journal of
Cognitive Neuroscience, 31(1):95–108.

Anna M Borghi, Laura Barca, Ferdinand Binkofski,
Cristiano Castelfranchi, Giovanni Pezzulo, and Luca
Tummolini. 2019. Words as social tools: Language,
sociality and inner grounding in abstract concepts.
Phys. Life Rev., 29:120–153.

Angelo Cangelosi and Matthew Schlesinger. 2015. De-
velopmental robotics: From babies to robots. MIT
press.

Eve V Clark. 2013. First language acquisition. Cam-
bridge University Press.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators.

Jeff Da and Jungo Kasai. 2019. Cracking the Contex-
tual Commonsense Code: Understanding Common-
sense Reasoning Aptitude of Deep Contextual Rep-
resentations. In Proceedings of the First Workshop
on Commonsense Inference in Natural Language
Processing. Association for Computational Linguis-
tics.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, Stefan Lee, Jose M.F. Moura,
Devi Parikh, and Dhruv Batra. 2019. Visual Dialog.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(5).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding.

Ezequiel A Di Paolo, Elena Clare Cuffari, and Hanne
De Jaegher. 2018. Linguistic bodies: The continuity
between life and language. Mit Press.

Paul Dourish. 2001. Where the Action Is: The Founda-
tions of Embodied Interaction. Where the action is
the foundations of embodied interaction.

Maxwell Forbes, Ari Holtzman, Yejin Choi, and
G Allen. 2019. Do Neural Language Representa-
tions Learn Physical Commonsense? arXiv.

Fritz Günther, Carolin Dudschig, and Barbara Kaup.
2018. Symbol Grounding Without Direct Experi-
ence: Do Words Inherit Sensorimotor Activation
From Purely Linguistic Context? Cognitive Science,
42:336–374.

Stevan Harnad. 1990. The symbol grounding prob-
lem. Physica D: Nonlinear Phenomena, 42(1-
3):335–346.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V Le, Yunhsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up visual
and Vision-Language representation learning with
noisy text supervision.

Mark Johnson. 2008. The meaning of the body: Aes-
thetics of human understanding. University of
Chicago Press.

Casey Kennington and David Schlangen. 2015. Sim-
ple Learning and Compositional Application of Per-
ceptually Grounded Word Meanings for Incremen-
tal Reference Resolution. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 292–301, Beijing,
China. Association for Computational Linguistics.

Donghyun Kim, Kuniaki Saito, Kate Saenko, Stan
Sclaroff, and Bryan A. Plummer. 2019. MULE:
Multimodal Universal Language Embedding.

Jamie Ryan Kiros, William Chan, and Geoffrey E Hin-
ton. 2018. Illustrative Language Understanding:
Large-Scale Visual Grounding with Image Search.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Long Pa-
pers), pages 922–933, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S
Zemel. 2014. Unifying Visual-Semantic Embed-
dings with Multimodal Neural Language Models. In
arXiv preprint arXiv:1411.2539, pages 1–13.

Victor Kuperman, Hans Stadthagen-Gonzalez, and
Marc Brysbaert. 2012a. Age-of-acquisition ratings
for 30,000 English words. Behavior Research Meth-
ods, 44(4):978–990.

https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.1146/annurev.psych.59.103006.093639
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
http://arxiv.org/abs/2004.10151
https://doi.org/10.1162/jocn_a_01328
https://doi.org/10.1162/jocn_a_01328
https://doi.org/10.1162/jocn_a_01328
http://arxiv.org/abs/1910.01157
http://arxiv.org/abs/1910.01157
http://arxiv.org/abs/1910.01157
http://arxiv.org/abs/1910.01157
https://doi.org/10.1109/TPAMI.2018.2828437
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1162/leon.2003.36.5.412
https://doi.org/10.1162/leon.2003.36.5.412
http://arxiv.org/abs/1908.02899v1
http://arxiv.org/abs/1908.02899v1
https://doi.org/10.1111/cogs.12549
https://doi.org/10.1111/cogs.12549
https://doi.org/10.1111/cogs.12549
https://doi.org/10.1016/0167-2789(90)90087-6
https://doi.org/10.1016/0167-2789(90)90087-6
http://arxiv.org/abs/2102.05918
http://arxiv.org/abs/2102.05918
http://arxiv.org/abs/2102.05918
http://www.aclweb.org/anthology/P15-1029
http://www.aclweb.org/anthology/P15-1029
http://www.aclweb.org/anthology/P15-1029
http://www.aclweb.org/anthology/P15-1029
https://doi.org/10.1609/aaai.v34i07.6785
https://doi.org/10.1609/aaai.v34i07.6785
http://www.aclweb.org/anthology/P18-1085
http://www.aclweb.org/anthology/P18-1085
http://arxiv.org/abs/arXiv:1411.2539v1
http://arxiv.org/abs/arXiv:1411.2539v1
https://doi.org/10.3758/s13428-012-0210-4
https://doi.org/10.3758/s13428-012-0210-4


157

Victor Kuperman, Hans Stadthagen-Gonzalez, and
Marc Brysbaert. 2012b. Age-of-acquisition ratings
for 30,000 english words. Behav. Res. Methods,
44(4):978–990.

George Lakoff and Mark Johnson. 1999. Philosophy
in the flesh: The embodied mind and its challenge
to western thought, volume 640. Basic books New
York.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho Jui
Hsieh, and Kai Wei Chang. 2019. Visualbert: A sim-
ple and performant baseline for vision and language.
arXiv.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkatara-
man. 2021. AutoFreeze: Automatically freezing
model blocks to accelerate fine-tuning.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Ste-
fan Lee. 2019. ViLBERT: Pretraining Task-
Agnostic Visiolinguistic Representations for Vision-
and-Language Tasks.

Dermot Lynott, Louise Connell, Marc Brysbaert,
James Brand, and James Carney. 2019. The Lan-
caster Sensorimotor Norms: multidimensional mea-
sures of perceptual and action strength for 40,000
English words. Behavior Research Methods, pages
1–21.

Lorraine McCune. 2008. How Children Learn to Learn
Language. Oxford University Press.

Daniele Moro, Stacy Black, and Casey Kennington.
2019. Composing and embedding the words-as-
classifiers model of grounded semantics.

Vishvak Murahari, Dhruv Batra, Devi Parikh, and Ab-
hishek Das. 2019. Large-scale pretraining for visual
dialog: A simple state-of-the-art baseline. arXiv
preprint arXiv:1912.02379.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543.

Marta Ponari, Courtenay Frazier Norbury, and
Gabriella Vigliocco. 2018. Acquisition of abstract
concepts is influenced by emotional valence. Dev.
Sci., 21(2).

Friedemann Pulvermüller. 1999. Words in the brain’s
language. Behavioral and Brain Sciences.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A Primer in BERTology: What we know
about how BERT works. arXiv.

David Schlangen, Sina Zarriess, and Casey Kenning-
ton. 2016. Resolving References to Objects in Pho-
tographs using the Words-As-Classifiers Model. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1213–
1223.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for auto-
matic image captioning. In ACL 2018 - 56th Annual
Meeting of the Association for Computational Lin-
guistics, Proceedings of the Conference (Long Pa-
pers).

L B Smith and L Samuelson. 2009. Objects in Space
and Mind: From Reaching to Words. In The Spatial
Foundations of Language and Cognition.

Linda Smith and Michael Gasser. 2005. The Devel-
opment of Embodied Cognition: Six Lessons from
Babies. Artificial Life, (11):13–29.

Katsumi Takano and Akira Utsumi. 2016. Grounded
Distributional Semantics for Abstract Words.
CogSci, pages 2171–2176.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355.

Zhaofeng Wu, Hao Peng, Noah A Smith, and Paul G
Allen. 2021. Infusing Finetuning with Semantic De-
pendencies. Transactions of ACL.

Rowan Zellers, Ari Holtzman, Matthew Peters,
Roozbeh Mottaghi, Aniruddha Kembhavi, Ali
Farhadi, and Yejin Choi. 2021. PIGLeT: Language
grounding through Neuro-Symbolic interaction in a
3D world.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE In-
ternational Conference on Computer Vision.

http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/2102.01386
http://arxiv.org/abs/2102.01386
http://arxiv.org/abs/1908.02265
http://arxiv.org/abs/1908.02265
http://arxiv.org/abs/1908.02265
https://doi.org/10.3758/s13428-019-01316-z
https://doi.org/10.3758/s13428-019-01316-z
https://doi.org/10.3758/s13428-019-01316-z
https://doi.org/10.3758/s13428-019-01316-z
https://doi.org/10.1093/acprof:oso/9780195177879.001.0001
https://doi.org/10.1093/acprof:oso/9780195177879.001.0001
http://arxiv.org/abs/1911.03283
http://arxiv.org/abs/1911.03283
https://doi.org/10.1017/S0140525X9900182X
https://doi.org/10.1017/S0140525X9900182X
http://arxiv.org/abs/2002.12327
http://arxiv.org/abs/2002.12327
http://arxiv.org/abs/1510.02125
http://arxiv.org/abs/1510.02125
https://doi.org/10.18653/v1/p18-1238
https://doi.org/10.18653/v1/p18-1238
https://doi.org/10.18653/v1/p18-1238
https://pdfs.semanticscholar.org/2aa5/d9499df30a6a0961f450679d61df89e2a467.pdf
https://pdfs.semanticscholar.org/2aa5/d9499df30a6a0961f450679d61df89e2a467.pdf
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446
http://arxiv.org/abs/2012.05395v1
http://arxiv.org/abs/2012.05395v1
http://arxiv.org/abs/2106.00188
http://arxiv.org/abs/2106.00188
http://arxiv.org/abs/2106.00188
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11

