
Human-understandable and Machine-processable Explanations
for Sub-symbolic Predictions

Abdus Salam and Rolf Schwitter and Mehmet A. Orgun
Macquarie University, Sydney, Australia

{abdus.salam, rolf.schwitter, mehmet.orgun}@mq.edu.au

Abstract
HESIP is a hybrid machine learning system in
which a sub-symbolic machine learning com-
ponent makes a prediction for an image clas-
sification and afterwards a symbolic machine
learning component learns probabilistic rules
that are used to explain that prediction. In this
paper, we present an extension to HESIP that
generates human-understandable and machine-
processable explanations in a controlled natu-
ral language for the learned probabilistic rules.
In order to achieve this, the literals of the
probabilistic rules are first reordered, and then
aggregated and disambiguated according to
linguistic principles so that the rules can be
verbalised with a bi-directional grammar. A
human-in-the-loop can modify incorrect expla-
nations and the same bi-directional grammar
can be used to process these explanations to
improve the decision process of the machine.

1 Introduction

The recent success of machine learning (ML) mod-
els is remarkable, especially the success of sub-
symbolic ML models in problem domains that are
computationally expensive, such as natural lan-
guage processing and image processing (Zhang
et al., 2020; LeCun et al., 2015). Sub-symbolic
ML models mostly learn functions that map the
input data to the output data to find the correlations
between them (Ilkou and Koutraki, 2020). When
a ML model selects one or more class labels as an
output for a given input, the output is known as a
prediction of the model. These sub-symbolic mod-
els are used in intelligent systems to make better
decisions based on their predictions. Since most
of these sub-symbolic ML models are black-box
models that are not immediately interpretable, it is
difficult to explain to a user of an intelligent sys-
tem how the machine learning algorithm came to
a particular decision. This is why eXplainable AI
(XAI) has recently gained momentum, since this
discipline aims to produce explainable models that

humans can understand, manage and trust (Gun-
ning, 2017).

Most systems that can explain a prediction, such
as Lime (Ribeiro et al., 2016) and Anchor (Ribeiro
et al., 2018), explain the prediction based on fea-
tures that exist in the dataset. For example, Lime
selects super-pixels to explain an image predic-
tion. This explanation may be helpful for a do-
main expert, but it may be difficult to understand
for a non-expert user. Alternatively, researchers
have tried to employ symbolic ML models to ex-
plain predictions, since these models are directly
interpretable (Rabold et al., 2019). Symbolic ML
models learn symbolic rules which are then pre-
sented to the user as an explanation for a prediction.
Although these symbolic rules are easier to inter-
pret as shown in several studies (Muggleton et al.,
2018), they are sometimes difficult to understand
by a user who does not have a background in for-
mal methods. Therefore, it is important to study
alternative ways of generating explanations that are
human-understandable (and as we will argue later
at the same time machine-processable).

In this paper, we present a linguistic extension
to HESIP, a hybrid explanation system for image
prediction. The extended implementation of the
system uses a bi-directional grammar to generate
explanations in a controlled natural language.

2 HESIP: System Description

HESIP combines sub-symbolic and symbolic rep-
resentations in two separate components of the sys-
tem to construct symbolic explanations for image
predictions. According to Kautz’s classification,
HESIP is a hybrid system of Type-3 where a sub-
symbolic component is used to work on a task, and
then a symbolic component is used to finalise that
task (Garcez and Lamb, 2020). HESIP is moti-
vated by LIME-Aleph (Rabold et al., 2019) that is
an explanation system where an image prediction
is explained from the learned rules. The LIME-



Aleph system relies on two datasets that contain
synthetic images. HESIP extends the architecture
of the LIME-Aleph system and uses a more gen-
eralised approach so that it can be applied to real-
world datasets. The architecture of the HESIP sys-
tem is illustrated in Figure 1.

Figure 1: Architecture of HESIP

2.1 The Sub-symbolic Component
HESIP takes an image as input and makes a pre-
diction with a probability using an artificial neural
network (ANN) (Krizhevsky et al., 2012) as a sub-
symbolic ML model. Based on the similarity to
the input image, HESIP selects positive and nega-
tive instances of sample images. The probability
of each of these sample images is predicted by
the ANN. If the prediction probability of a sam-
ple image is greater than or equal to the prediction
probability of the input image, then the sample im-
age is a positive instance; otherwise, it is a negative
instance. HESIP extracts the image information for
all the positive and negative image instances. This
image information is then used as observed data
in the symbolic component of HESIP for learning
probabilistic rules that explain a prediction.

Let us illustrate these steps in more detail using
a motivating example from our own dataset that
contains images of a particular shape. The task is
then to determine if an image represents the con-
cept of a house. Each image consists of two objects
and each object has either the shape of a square
or a triangle. The colour of these objects is either
green or blue. We say that an image represents
the concept of a house, if the image contains an
object of type triangle that is located on the top of
an (adjacent) object of type square. In any other
case, the image does not represent the concept of a
house (see Figure 2).

Figure 2: Examples of house concept learning. (a) rep-
resents the concept of a house, while (b) and (c) do not.

HESIP extracts the information from the image
that will be used for the explanation; for example,

information about the location of objects (e.g., po-
sition), about their properties (e.g., colour), and the
relation between the objects, (e.g., on top of or left
of). HESIP employs Detectron2 (Wu et al., 2019),
a PyTorch-based object detection library that sup-
ports the Mask R-CNN method (He et al., 2017)
to detect objects and their location information in
an image. The location information is then used to
extract the colour of the objects and to determine
the relations between two objects in an image.

In our case, two objects can stand in the follow-
ing relations: left of, right of, top of, bottom of,
on, under and contain. Note that the relation on
holds if an object is on the top of another object
and these two objects are adjacent; similarly, the
relation under holds if an object is beneath another
object and these two objects are adjacent.

2.2 The Symbolic Component

HESIP employs a probabilistic logic programming
framework called cplint (Riguzzi and Azzolini,
2020) as the symbolic component to learn prob-
abilistic rules from data about positive and negative
instances of sample images. The decision about
whether an image is a positive or negative instance
is provided by the sub-symbolic component. The
probabilistic rules are then used to explain the pre-
diction of an input image. These probabilistic rules
have the following abstract form (Vennekens et al.,
2004):

h1:a1 ;...; hn:an :- b1,..., bm.

where hi are atoms, bi are literals (incl. negation
as failure), and ai is the probability, a real number
between 0 and 1. The set of elements hi:ai forms
the head of a rule and the set of elements bi the
body; the head and the body are separated by an
if-symbol (:-). A disjunction in the head of a rule
is represented with a semicolon (;) and atoms are
separated by a colon (:) from probabilities.

Once the sample image information is available,
HESIP represents the image using a simple ontol-
ogy so that we can also generate explanations for
other application domains using the same method.
The ontology employed in HESIP consists of four
predicates: (1) object/1 represents an object; (2)
type/2 represents an object type; (3) property/3
represents an object property; and (4) relation/3
represents a relation between two objects. The
probabilistic rules in HESIP contain only those
predicates (atoms and literals) that are available in
the ontology. In our case, the head of a rule may



contain the predicate relation/3 or type/2 and
the body may contain any predicate of the ontology.

In our context, HESIP generates a probabilistic
rule as shown in Listing 1 which states that an ob-
ject A is of type house if all the conditions in the
body of the rule are satisfied and the probability
is 1. Once a probabilistic rule is available, HESIP
verbalises that rule in a controlled natural language
(CNL) (Kuhn, 2014) and displays it together with
the corresponding probability to explain the predic-
tion of an input image.

Listing 1: A sample rule for house concept learning
type(A, house) : 1.0 :-

type(B, triangle),
object(B),
type(C, square),
object(C),
relation(B, C, on),
property(C, green, colour),
property(B, blue, colour),
relation(A, C, contain),
relation(A, B, contain),
object(A).

3 Generating Explanations

The rule in Listing 1 cannot be immediately ver-
balised, since the literals are not in an order that
follows a linguistically motivated pattern. Our goal
is to generate an explanation of the following form:

If an object contains a blue object of type
triangle and contains a green object of
type square and the blue object is located
on the green object then the object is of
type house.

In order to achieve this, we use a bi-directional
definite clause grammar similar to the one proposed
by Schwitter (2018) that takes a set of reconstructed
rules as input and generates explanations in a CNL
as output. The same bi-directional grammar can
be used to process a (modified) explanation and
translate it into a rule as long as we stick to the
syntax of the CNL. That means the CNL serves as a
high-level interface language to the HESIP system
and the user can modify and refine explanations
and feed them back to the system.

3.1 Order of Content

Before we can verbalise the content of a rule, we
need to identify those literals that introduce new
content and distinguish them from literals that link
to previously introduced content, and then reorder

these literals according to a linguistic pattern. This
process leads to a reconstruction of the rule where
some literals are repeated so that they correspond to
the underlying linguistic pattern. After reordering,
the reconstructed rule looks as shown in Listing 2:

Listing 2: A sample rule after reconstruction
class(A, object), type(A, house) :-

class(A, object),
relation(A, B, contain),
property(B, blue, colour),
class(B, object),
type(B, triangle),

class(A, object),
relation(A, C, contain),
property(C, green, colour),
class(C, object),
type(C, square),

property(B, blue, colour),
class(B, object),
type(B, triangle),
relation(B, C, on),
property(C, green, colour),
class(C, object),
type(C, square).

The body of this rule consists of three implicit
linguistic patterns. The reordered literals in these
patterns follow now a subject-verb-complement
structure. The first two patterns use the same se-
quence of literal types and introduce new content;
the subject position is occupied by a class, the verb
position by a relation, and the complement posi-
tion by a property, followed by a class and a type.
The third pattern only uses new content in the verb
position but previously introduced content in the
subject and complement positions. The head of the
rule consists of a pattern with a similar structure
of the form subject-copula-complement where the
subject position holds a class, the copula position
is not filled, and the complement position holds
a type. For this reconstructed rule, our grammar
generates the following verbalisation:

If an object contains a blue object of type
triangle and the object contains a green
object of type square and the blue object
of type triangle is located on the green
object of type square then the object is of
type house.

This verbalisation is very explicit and can be
improved using a number of micro-planning strate-
gies (Reiter and Dale, 2000). However, since our
goal is to generate explanations that are human-
understandable as well as machine-processable, we



need to make sure that we do not introduce any
ambiguities during micro-planning.

3.2 Aggregation of Content

Aggregation is the process of removing redun-
dant information in a sentence (Dalianis and Hovy,
1993). In our case, we can use subject grouping
to combine clauses and drop type information that
has already been introduced to reduce redundancy
(see Listing 3).

Listing 3: A sample rule after performing aggregation
class(A, object), type(A, house) :-

class(A, object),
relation(A, B, contain),
property(B, blue, colour),
class(B, object),
type(B, triangle),
relation(A, C, contain),
property(C, green, colour),
class(C, object),
type(C, square),

property(B, blue, colour),
class(B, object),
relation(B, C, on),
property(C, green, colour),
class(C, object).

Subject grouping results in verb phrase coordi-
nation and removing type information results in
more compact definite descriptions as shown in our
target explanation at the beginning of Section 3.
Note that reprocessing of this explanation by our
bi-directional grammar results in a semantically
equivalent rule.

3.3 Generating Definite Descriptions

During generation, the bi-directional grammar
stores all the accessible antecedents and generates
minimal definite descriptions on the fly. However,
the grammar would generate an ambiguous verbali-
sation if we had a rule where the object in the head
does not have a unique object in the body to link
to after reconstruction and aggregation. To avoid
this kind of an ambiguity, we add a variable to such
an underspecified rule that allows us to distinguish
between objects in an explicit way on the surface
level of an explanation. For the learning of a house
concept, this kind of an ambiguity occurs if we do
not use type information for objects. Therefore,
we add a variable to resolve the ambiguity (see
Listing 4).

Now the following unambiguous verbalisation
can be generated that introduces an indefinite noun
phrase with a variable an object A as antecedent for

the definite description the object A that occurs in
the consequent of the sentence:

If an object A contains a blue object and
contains a green object and the blue ob-
ject is located on the green object then
the object A is of type house.

Listing 4: A sample rule after adding variables
class(A, object), variable(A, 'A'),
type(A, house) :-

class(A, object),
variable(A, 'A'), ...

4 Evaluation

We evaluate our explanation generation method in
two ways: (1) we check if a generated explana-
tion corresponds to a minimal and correct descrip-
tion of the image information, and (2) we check
if the bi-directional grammar correctly works in
both directions. For the first evaluation, we check
whether an explanation is minimal or not by test-
ing if the explanation meets our aggregation cri-
teria. We check the correctness of an explanation
by matching the literals used for the verbalisation
with the corresponding literals for the image. For
the second evaluation, we check the bi-directional
grammar via a technique that is known as seman-
tic round-tripping (Hossain and Schwitter, 2020);
basically, we keep the formal representation R1 for
an explanation, feed that explanation again to the
bi-directional grammar, generate a formal repre-
sentation R2, and then compare if R1 and R2 are
semantically equivalent.

In addition to our house concept dataset, we have
employed the tower concept dataset and used sin-
gle relation learning to evaluate our explanation
generation method. This additional dataset is also
used in the LIME-Aleph system to illustrate their
method. For the learning of a tower concept, an
image consists of three square objects of differ-
ent colours and we say that the image represents
a tower concept if one square is on the top of an-
other square without the repetition of objects with
the same colour. For single relation learning, we
say that an image represents the left of relation if
a green square is on the left side of a blue square.
We used 1000 images from each dataset for the
evaluation. For each image, the explanation is gen-
erated and evaluated using the above-mentioned
technique. We have found that all the explanations
for tower concept and for single relation learning



are correct while for house concept learning 999
explanations are correct. This gives us an accuracy
of 100%, 100% and 99.9%, respectively.

5 Conclusion

In this paper, we have introduced a linguistic exten-
sion to HESIP, a hybrid explanation system, that
combines sub-symbolic and symbolic representa-
tions for image predictions. This linguistic exten-
sion uses a bi-directional logic grammar to generate
explanations in a CNL. The sub-symbolic compo-
nent of HESIP makes a prediction that results in a
probabilistic rule in the symbolic component of the
system. The resulting rule is reordered according
to linguistic principles, redundant information is
aggregated, and possible ambiguities are resolved,
before the rule is processed by the grammar. The
output of the grammar is an unambiguous expla-
nation of the prediction. If this explanation is not
correct, then the user can modify the explanation
and feed it back to HESIP.

The advantage of HESIP over the LIME-Aleph
system is that it employs an object detection model
to find objects in the images and uses an ontology
to represent image information. The novelty of
our hybrid approach to machine learning is that it
allows us to generate explanations that are human-
understandable as well as machine-processable;
and it can be customised for other prediction tasks.
HESIP can be used in any real-world application of
image prediction where the images in the dataset
have relations between objects. These relations can
then be used in the probabilistic rules to explain
the image predictions. Currently, we are investigat-
ing how HESIP can be extended and used to learn
concepts from different parts of objects using the
PASCAL-Part (Chen et al., 2014) dataset.

References

Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja
Fidler, Raquel Urtasun, and Alan Yuille. 2014. De-
tect what you can: Detecting and representing ob-
jects using holistic models and body parts. In Proc.
CVPR’14, pages 1971–1978.

Hercules Dalianis and Eduard Hovy. 1993. Aggrega-
tion in natural language generation. In EWNLG’93,
pages 88–105. Springer.

Artur d’Avila Garcez and Luis C. Lamb. 2020. Neu-
rosymbolic AI: The 3rd Wave. arXiv preprint
arXiv:2012.05876.

David Gunning. 2017. Explainable artificial intelli-

gence (XAI). Defense Advanced Research Projects
Agency (DARPA).

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. 2017. Mask R-CNN. In IEEE ICCV’17,
pages 2980–2988.

Bayzid Ashik Hossain and Rolf Schwitter. 2020. Se-
mantic round-tripping in conceptual modelling us-
ing restricted natural language. In Australasian
Database Conference, pages 3–15. Springer.

Eleni Ilkou and Maria Koutraki. 2020. Symbolic Vs
Sub-symbolic AI Methods: Friends or Enemies? In
CIKM (Workshops).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. In NIPS’12, pages 1097–
1105.

Tobias Kuhn. 2014. A survey and classification of con-
trolled natural languages. Computational Linguis-
tics, 40(1):121–170.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436.

Stephen H. Muggleton, Ute Schmid, Christina Zeller,
Alireza Tamaddoni-Nezhad, and Tarek Besold. 2018.
Ultra-Strong Machine Learning: comprehensibility
of programs learned with ILP. Machine Learning,
107(7):1119–1140.

Johannes Rabold, Hannah Deininger, Michael Siebers,
and Ute Schmid. 2019. Enriching visual with ver-
bal explanations for relational concepts–combining
LIME with Aleph. In ECML PKDD’19, pages 180–
192. Springer.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Studies in Natural
Language Processing. Cambridge University Press.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should I trust you?: Ex-
plaining the predictions of any classifier. In ACM
SIGKDD ICKDD’16, pages 1135–1144. ACM.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Anchors: High-Precision Model-
Agnostic Explanations. In AAAI’18, 32(1).

Fabrizio Riguzzi and Damiano Azzolini. 2020. cplint
Manual. SWI-Prolog Version. Retrieved May 14,
2021 from http://friguzzi.github.io/
cplint/_build/latex/cplint.pdf.

Rolf Schwitter. 2018. Specifying and verbalising an-
swer set programs in controlled natural language.
Theory and Practice of Logic Programming, 18(3-
4):691–705.

Joost Vennekens, Sofie Verbaeten, and Maurice
Bruynooghe. 2004. Logic programs with annotated
disjunctions. In ICLP’04, pages 431–445. Springer.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-
Yen Lo, and Ross Girshick. 2019. Detectron2. Re-
trieved May 14, 2021 from https://github.
com/facebookresearch/detectron2.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep
Learning on Graphs: A Survey. IEEE Transac-
tions on Knowledge and Data Engineering. DOI:
10.1109/TKDE.2020.2981333.

https://doi.org/10.1017/CBO9780511519857
https://doi.org/10.1017/CBO9780511519857
https://ojs.aaai.org/index.php/AAAI/article/view/11491
https://ojs.aaai.org/index.php/AAAI/article/view/11491
http://friguzzi.github.io/cplint/_build/latex/cplint.pdf
http://friguzzi.github.io/cplint/_build/latex/cplint.pdf
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333

