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Abstract

This paper describes the submission of the
team KonTra to the CMCL 2021 Shared Task
on eye-tracking prediction. Our system com-
bines the embeddings extracted from a fine-
tuned BERT model with surface, linguistic and
behavioral features, resulting in an average
mean absolute error of 4.22 across all 5 eye-
tracking measures. We show that word length
and features representing the expectedness of a
word are consistently the strongest predictors
across all 5 eye-tracking measures.

1 Introduction

The corpora ZuCo 1.0 and ZuCo 2.0 by Hollen-
stein et al. (2018, 2019) contain eye-tracking data
collected in a series of reading tasks on English
materials. For each word of the sentences, five eye-
tracking measures are recorded: 1) the number of
fixations (nFix), 2) the first fixation duration (FFD),
3) the go-past time (GPT), 4) the total reading time
(TRT), and 5) the fixation proportion (fixProp). Pro-
viding a subset of the two corpora, the CMCL 2021
Shared Task (Hollenstein et al., 2021) requires the
prediction of these eye-tracking measures based on
any relevant feature.

To tackle the task, we conduct a series of experi-
ments using various combinations of BERT embed-
dings (Devlin et al., 2018) and a rich set of surface,
linguistic and behavioral features (SLB features).
Our experimental setting enables a comparison of
the potential of BERT and the SLB features, and al-
lows for the explainability of the system. The best
performance is achieved by the models combin-
ing word embeddings extracted from a fine-tuned
BERT model with a subset of the SLB features that
are the most predictive for each eye-tracking mea-
sure. Overall, our model was ranked 8th out of 13
models submitted to the shared task.

Our main contributions are the following: 1)
We show that training solely on SLB features pro-
vides better results than training solely on word

embeddings (both pre-trained and fine-tuned ones).
2) Among the SLB features, we show that word
length and linguistic features representing word ex-
pectedness consistently show the highest weight in
predicting all of the 5 measures.

2 Describing Eye-Tracking Measures

To explore the impact of linguistic and cognitive
information on eye-movements in reading tasks,
we extract a set of surface, linguistic, behavioral
and BERT features, as listed in Table 1.

Surface Features Given the common finding
that surface characteristics, particularly the length
of a word, influence fixation duration (Juhasz and
Rayner, 2003; New et al., 2006), we compute var-
ious surface features at word and sentence level
(e.g., word and sentence length).

Linguistic Features The linguistic characteris-
tics of the words co-occurring in a sentence have
an effect on eye movements (Clifton et al., 2007).
Thus, we experiment with features of syntactic
and semantic nature. The syntactic features are
extracted using the Stanza NLP kit (Qi et al., 2020).
For each word, we extract its part-of-speech (POS),
its word type (content vs. function word), its de-
pendency relation and its named entity type. Ac-
cording to Godfroid et al. (2018) and Williams
and Morris (2004), word familiarity (both local
and global) has an effect on the reader’s atten-
tion, i.e., readers may pay less attention on words
that already occurred in previous context. In this
study, we treat familiarity as word expectedness
and model it using three types of semantic sim-
ilarity: a) similarity of the current word wm to
the whole sentence (similaritywm,s), b) similarity
of the current word to its previous word (similar-
itywm,wm−1), and c) similarity of the current word
to all of its previous words within the current sen-
tence (similaritywm,w1...m−1). To compute these
similarity measures, we use the BERT (base) (De-
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Feature Category Feature Name

Surface Features
word length, sentence length in tokens, sentence length in characters,
word length-sentence length ratio

Linguistic Features
POS, word type, named entity type, dependency relation, surprisal score,
frequency score, similaritywm,s, similaritywm,wm−1 , similaritywm,w1...m−1

Behavioral Features
age of acquisition, prevalence score, valence score, arousal score, dominance score,
concretenesshuman, concretenessauto

BERT Features pre-trained BERT embedding, fine-tuned BERT embedding

Table 1: The complete set of surface, linguistic and behavioral (SLB) features and the BERT features.

vlin et al., 2018) pre-trained model1 and map each
word to its pre-trained embedding of layer 11. We
chose this layer because it mostly captures seman-
tic properties, while the last layer has been found
to be very close to the actual classification task and
thus less suitable for our purpose (Jawahar et al.,
2019; Lin et al., 2019). Based on these extracted
embeddings, we calculate the cosine similarities.
To measure the similarity of the current word to
the whole sentence (similaritywm,s), we take the
CLS token to represent the whole sentence; we also
experiment with the average token embeddings as
the sentence embedding, but we find that the CLS
token performs better. For measuring the similarity
of the current word to all of its previous words (sim-
ilaritywm,w1...m−1), we average the embeddings of
the previous words and find the cosine similarity be-
tween this average embedding and the embedding
of the current word.

Furthermore, semantic surprisal, i.e., the nega-
tive log-transformed conditional probability of a
word given its preceding context, provides a good
measure of predictability of words in context and
efficiently predicts reading times (Smith and Levy,
2013), N400 amplitude (Zhang et al., 2020) and
pupil dilation (Frank and Thompson, 2012). We
compute surprisal using a bigram language model
trained on the lemmatized version of the first slice
(roughly 31-million tokens) of the ENCOW14-AX
corpus (Schäfer and Bildhauer, 2012). As an ad-
ditional measure of word expectedness, we also
include frequency scores based on the US subtitle
corpus (SUBTLEX-US, Brysbaert and New, 2009).

Behavioral Features As discussed in Juhasz and
Rayner (2003) and Clifton et al. (2007), behavioral
measures highly affect eye-movements in reading

1https://github.com/google-research/
bert

tasks. For each word in the sentence, we extract be-
havioral features from large collections of human
generated values available online: age of acqui-
sition (Kuperman et al., 2012), prevalence (Brys-
baert et al., 2019), valence, arousal, dominance
(Warriner et al., 2013) and concreteness. For con-
creteness, we experiment both with human gener-
ated scores (concretenesshuman, Brysbaert et al.,
2014) and automatically generated ones (concrete-
nessauto, Köper and Schulte im Walde, 2017). All
behavioral measures have been centered (mean
equal to zero) and the missing values have been
set to the corresponding mean value.

BERT Features Given the success of current lan-
guage models for various NLP tasks, we investigate
their expressivity for human-centered tasks such as
eye-tracking: each word is mapped to two types
of contextualized embeddings. First, each word is
mapped to its BERT (Devlin et al., 2018) embed-
ding extracted from the pre-trained base model. To
extract the second type of contextualized embed-
ding, we fine-tune BERT on each of the five eye-
tracking measures. Specifically, the BERT base
model2 is fine-tuned separately 5 times, one for
each of the eye-tracking measures to be predicted.
Based on these fine-tuned models, we extract the
embedding of each word as a fixed feature vector
to be used for further experimentation. This means
that in this step each word is in fact mapped to five
distinct embeddings, one for each fine-tuned model.
In the later experimentation, we use the respective
embedding based on which measure is currently
predicted (e.g., the embedding extracted from the
model fine-tuned for nFix is used to predict nFix).

2We use the regression implementation from: https:
//github.com/fancyerii/bert

h ttps://github.com/google-research/bert
h ttps://github.com/google-research/bert
https://github.com/fancyerii/bert
https://github.com/fancyerii/bert
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Measure Feature Name

nFix
word length (0.81), frequency score (0.05), word length-sentence length ratio (0.01), similaritywm,wm−1 (0.01),
surprisal score (0.01), similaritywm,w1...m−1 (0.01)

FFD
word length (0.80), frequency score (0.06), similaritywm,wm−1 (0.02), word length-sentence length ratio (0.02),
similaritywm,w1...m−1 (0.02), surprisal score (0.01)

GPT
word length (0.40), surprisal score (0.27), word length-sentence length ratio (0.06), similaritywm,s (0.04),
similaritywm,wm−1 (0.02), frequency score (0.02), stop word (0.02), similaritywm,w1...m−1 (0.02), numeral token (0.02),
age of acquisition (0.01), dominance (0.01)

TRT
word length (0.70), frequency score (0.11), word length-sentence length ratio (0.03), numeral token (0.01),
similaritywm,wm−1 (0.01), similaritywm,s (0.01), sentence length in characters (0.01)

fixProp word length (0.84), similaritywm,wm−1 (0.04), frequency score (0.03), similaritywm,w1...m−1 (0.02)

Table 2: SLB features with importance ≥ 0.01. Features in each row are sorted by their importance in descending
order. Features that are strong predictors in all 5 measures are marked in bold.

3 Predicting Eye-Tracking Measures

We conduct three experiments using different fea-
ture combinations, and experiment with three
model architectures. The models’ parameters are
experimentally defined. First, we train a Linear Re-
gression model (LR). Second, we train a Decision
Tree Regressor (DT) with the mse (Mean Squared
Error) criterion and a maximum depth of 7. Last,
we train a Random Forest Regressor (RF) with the
mse criterion, 15 estimators and a maximum depth
of 7. Before training the models, all categorical
feature values are one-hot-encoded and all numeric
values are normalized within the range [0, 1].

3.1 Experiment 1: Using Only SLB Features
In Experiment 1, we train the aforementioned
model architectures on the full set of SLB features.
Among the three models, the Random Forest Re-
gressor achieves the best overall performance, with
an average MAE across all 5 eye-tracking measures
of MAERF = 4.059 , MAEDT = 4.187, MAELR =
4.322. To shed light on the most predictive features
for each of the eye-tracking measures, we perform
feature selection based on the features’ weight, i.e.,
the impurity-based feature importance (Gini impor-
tance) computed as the normalized total reduction
of the criterion brought by that feature – the higher,
the more important the feature. We select features
with importance higher than 0.01, resulting in a
reduced SLB feature set as shown in Table 2. This
selected set is further used for Experiment 3 (see
Section 3.3).

3.2 Experiment 2: Using Only BERT
Our second experiment aims at investigating the
expressivity of the contextualized BERT embed-
dings. We experiment with the two variants of

BERT embeddings (see Section 2). In the first
variant, the three models use the pre-trained BERT
embeddings, while in the second variant, the mod-
els use the fine-tuned BERT embeddings. The latter
means that for each of the 5 eye-tracking measures,
the extracted embeddings of the corresponding fine-
tuned model are used and 3 models are trained
for each measure, with a total of 15 models. We
also experiment with the predictions directly result-
ing from the fine-tuning tasks, but we observe that
these predictions show similar performance. This
finding is in line with what is reported in Devlin
et al. (2018).

3.3 Experiment 3: Enhancing BERT with
SLB Features

Extracting BERT embeddings as fixed-length fea-
tures instead of using the predictions directly out
of the fine-tuned model allows us to extend the
BERT vectors with further features. Thus, in the
last experiment, we train the 3 regression models
on an extended vector, comprising the extracted
768-dimensional BERT embedding and additional
dimensions for the reduced SLB feature set of Ex-
periment 1 (see Section 3.1). Again, two variants
are tested: one using the pre-trained embeddings
and the other one using the fine-tuned embeddings
of the corresponding model.

4 Results and Discussion

Table 3 reports the results from all experimental
settings on the development set and test set (80/20
split). Due to space limits, we only report the re-
sults of the best model in each configuration. Over-
all, combining the embeddings from the fine-tuned
version of BERT with the surface, linguistic and
behavioral features gives the best performance on
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nFix FFD GPT TRT fixProp

DEVELOPMENT SET

SLB 4.126 (RF) 0.675 (RF) 2.682 (RF) 1.615 (RF) 11.198 (RF)
Pre-trained BERT 4.925 (LR) 0.769 (LR) 2.967 (LR) 1.888 (LR) 13.530 (LR)
Fine-tuned BERT 4.694 (LR) 0.753 (LR) 2.811 (LR) 1.805 (LR) 13.140 (LR)
Pre-trained BERT + SLB 4.086 (LR) 0.676 (RF) 2.625 (RF) 1.597 (RF) 11.150 (RF)
Fine-tuned BERT + SLB 3.982 (LR) 0.676 (RF) 2.572 (RF) 1.555 (LR) 11.147 (RF)

TEST SET (PRE-EVALUATION)

Fine-tuned BERT + SLB 4.263 (LR) 0.698 (RF) 2.756 (RF) 1.682 (LR) 11.683 (RF)

TEST SET (POST-EVALUATION)

Fine-tuned BERT + SLB 4.233 (LR) 0.700 (RF) 2.751 (LR) 1.673 (LR) 11.760(RF)

Table 3: Mean absolute errors on the development and the test set. The pre-evaluation test set results are the ones
submitted to the competition. We obtained the post-evaluation results after further fine-tuning.

all 5 eye-tracking measures. When we compare the
predictive power of the models including only SLB
features against the models trained only on BERT,
we see that the embeddings are less informative
than the carefully selected set of SLB features.

A closer investigation of the selected SLB fea-
tures in Table 2 provides interesting insights about
the nature of the features and the task.

Surface Features Among all SLB features, word
length is consistently the predictor with the highest
weight across all 5 measures. Furthermore, word
length-sentence length ratio is among the most
important contributors in 4 of the 5 measures. This
confirms the observation in Hollenstein et al. (2018,
p. 10) that the probability of a word being skipped
reduces as word length increases.

Linguistic Features Two features for word ex-
pectedness, i.e., frequency score and similar-
itywm,wm−1 , also show a high predictive power for
all 5 measures. This confirms previous findings
by Godfroid et al. (2018) and Williams and Mor-
ris (2004). Likewise, similaritywm,w1...m−1 ranks
among the most important features for 4 of the 5
measures, and surprisal score for 3 of the 5 mea-
sures. Most importantly, surprisal score shows a
much higher importance in predicting GPT, which
indicates that encountering an unexpected word
may cause a regressive reading to re-inspect pre-
vious words and thus increases the go-past time.
On the other hand, the syntactic properties of a
word (e.g., POS, dependency relation and named

entity type) do not show any strong effect in our
results. The only exception is that numeral tokens
are among the most important features in predict-
ing GPT and TRT. After a closer look into the data,
we found that a majority of the numeral tokens are
information about date (e.g. November 28; 1826-
1905). The effect of such numeral tokens could
probably be explained by the nature of the data,
where a majority of the sentences are biographical
sentences from Wikipedia (Hollenstein et al., 2018,
2019). In such data, this numeral information is
highly relevant for the context.

Behavioral Features Dominance and age of ac-
quisition also play a significant role in predicting
GPT: as indicated in the literature (Juhasz and
Rayner, 2003), such behavioral measures have a
strong impact on the processing time of words in
context.

5 Conclusion

We presented a system of eye-tracking feature pre-
diction which combines BERT with a rich set of
surface, linguistic and behavioral (SLB) features.
Overall, our three studies indicate that including
not only semantic properties that can be directly
extracted from text, such as embeddings and sur-
prisal score, but also measures reflecting behavioral
(e.g., dominance and age of acquisition) and sur-
face properties (word and sentence length) has a
positive impact on the performance of our models
in predicting eye-tracking data.
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