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Abstract

Eye-tracking psycholinguistic studies have re-
vealed that context-word semantic coherence
and predictability influence language process-
ing. In this paper we show our approach to
predict eye-tracking features from the ZuCo
dataset for the shared task of the Cogni-
tive Modeling and Computational Linguistics
(CMCL2021) workshop. Using both cosine
similarity and surprisal within a regression
model, we significantly improved the baseline
Mean Absolute Error computed among five
eye-tracking features.

1 Introduction

The shared task proposed by the organizers of the
Cognitive Modeling and Computational Linguis-
tics workshop (Hollenstein et al., 2021) requires
participant to create systems capable of predicting
eye-tracking data from the ZuCo dataset (Hollen-
stein et al., 2018). Creating systems to efficiently
predict biometrical data may be useful to make pre-
diction about linguistic materials for which we have
few or none experimental data, and to make new
hypothesis about the internal dynamics of cognitive
processes.

The approach we propose relies mainly on two
factors that have been proved to influence language
comprehension: i.) the semantic coherence of a
word with the previous ones (Ehrlich and Rayner,
1981) and ii.) its predictability from previous
context (Kliegl et al., 2004). We model the first
factor with the cosine similarity (Mitchell et al.,
2010; Pynte et al., 2008) between the distributional
vectors, representing the context and the target
word, produced by different Distributional Seman-
tic Models (DSM) (Lenci, 2018). We compared 10
state-of-the-art word embedding models, and two
different approaches to compute the context vector.
We model the predictability of a word within the
context with the word-by-word surprisal computed
with 3 of the above mentioned models (Hale, 2001;

Levy, 2008). Finally, cosine similarity and sur-
prisal are combined in different regression models
to predict eye tracking data.

2 Related Works

Different word embedding models (GloVe,
Word2Vec, WordNet2Vec, FastText, ELMo,
BERT) have been evaluated in the framework
proposed by Hollenstein et al. (2019). The
evaluation is based on the model capability to
reflect semantic representations in the human
mind, using cognitive data in different datasets for
eye-tracking, EEG, and fMRI. Word embedding
models are used to train neural networks on a
regression task. The results of their analyses show
that BERT, ELMo, and FastText have the best
prediction performances.

Regression models with different combinations
of cosine similarity and surprisal, to predict (and
further study the cognitive dynamics beneath) eye
movements have been created by Frank (2017),
who claims that, since word embeddings are based
on co-occurrences, semantic distance may actually
represent word predictability, rather than seman-
tic relatedness, and that previous findings showing
correlations between reading times and semantic
distance were actually due to a confound between
these two concepts. In his work, he uses linear
regression models testing different surprisal mea-
sures, and excluding it. The results show that when
surprisal is factored out, the effects of semantic sim-
ilarity on reading times disappear, proving thus the
existence of an interplay between the two elements.

3 Experimental Setting

3.1 Datasets

The shared task materials come from ZuCo (Hol-
lenstein et al., 2018), that includes EEG and eye-
tracking data, collected on 12 English speakers
reading natural texts. The data collection has been
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done in three different settings: two normal reading
tasks and one task-specific reading session. The
original dataset comprises 1, 107 sentences, and for
the shared task 800 sentences (15, 736 words) have
been used for the training data, while the test set in-
cluded about 200 sentences (3, 554 words). Since
the shared task focuses on eye-tracking features,
only this latter data were available. The training
dataset structure includes sentence number, word-
within-sentence number, word, number of fixations
(nFix), first fixation duration (FFD), total reading
time (TRT), go-past time (GPT), fixation propor-
tion (fixProp). The first three elements were part of
the test set too.

Our approach includes a preliminary step of fea-
ture selection. For this purpose we also used GECO
(Cop et al., 2017) and Provo (Luke and Christian-
son, 2018), two eye-tracking corpora containing
long, complete, and coherent texts. GECO is a
monolingual and bilingual (English and Dutch)
corpus composed of the entire Agatha Christie’s
novel The Mysterious Affair at Styles. GECO con-
tains eye-tracking data of 33 subjects (19 of them
bilingual, 14 English monolingual) reading the full
novel text, presented paragraph-by-paragraph on
a screen. GECO is composed of 54, 364 tokens.
Provo contains 55 short English texts about vari-
ous topics, for a total of 2, 689 tokens, and a vocab-
ulary of 1, 197 words. These texts were read by 85
subjects and their eye-tracking measures were col-
lected in an available on-line dataset. Similarly to
ZuCo, GECO and Provo data are recorded during
naturalistic reading on everyday life materials. For
every word in GECO and Provo, we extracted its
mean total reading time, mean first fixation dura-
tion, and mean number of fixations, by averaging
over the subjects.

3.2 Word Embeddings

Table 1 shows the embeddings types used in our
experiments, consisting of 6 non-contextualized
DSMs and 4 contextualized DSMs. The for-
mer include predict models (SGNS and FastText)
(Mikolov et al., 2013; Levy and Goldberg, 2014;
Bojanowski et al., 2017) and count models (SVD
and GloVe) (Bullinaria and Levy, 2012; Penning-
ton et al., 2014). Four DSMs are window-based
and two are syntax-based (synt). Embeddings have
300 dimensions and were trained on the same cor-
pus of about 3.9 billion tokens, which is a concate-
nation of ukWaC and a 2018 dump of Wikipedia.

Pre-trained contextualized embeddings include the
512-dimensional vectors produced by the three lay-
ers of the ELMo bidirectional LSTM architecture
(Peters et al., 2018), the 1, 024-dimensional vec-
tors in the 24 layers of BERT-Large Transform-
ers (BERT-Large, Cased) (Devlin et al., 2019), the
1, 600-dimensional vectors of GPT2-xl (Radford
et al.), and the 200-dimensional vectors produced
by the Neural Complexity model (van Schijndel
and Linzen, 2018).

3.3 Method

To predict eye tracking data we tested different re-
gression models and several features combinations.

Feature Selection. To select the features to be
used, for each word embedding model and lan-
guage model we carried out a preliminary investi-
gation computing Spearman’s correlation between
eye tracking features, and respectively surprisal and
cosine similarity: The features with the highest cor-
relation with biometrical data have been selected
for being used in the regression model.

For each target word w in GECO, Provo and
ZuCo, we measure the cosine similarity between
the embedding of w and the embedding of the con-
text c composed of the previous words in the same
sentence. We then compute the Spearman correla-
tion between the cosine and the eye-tracking data
for w. We test two different ways of computing the
context embedding:
Additive model (for every embedding type): The
context vector is the sum of all its word embed-
dings. Because of the bidirectional nature of
BERT, the input to this model needed a special
pre-processing. In order to prevent that the vectors
representing words within the context were com-
puted using the target word itself, we passed to
BERT a list of sub-sentences, each of which were
composed of context words only. So given the sen-
tence The dog chases the cat:
S[0] = ["The"]
S[1] = ["The dog"]
S[2] = ["The dog chases"]
S[3] = ["The dog chases the"]
S[4] = ["The dog chases the cat"]
Starting from the second sub-sentence, the cosine
similarity is computed between the last word vec-
tor and the sum of words vectors belonging to the
previous sub-sentence (list element). Therefore,
to compute the cosine similarity between cat and
the previous context, we select cat from S[4] and
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Model Hyperparameters
Non-contextualized DSMs
SVD.w2 count DSM with 345K window-selected context words, window of width 2, reduced with SVD
SVD.synt count DSM with 345K syntactically typed context words reduced with SVD
GloVe count DSM with context window of width 2, reduced with log-bilinear regression
SGNS.w2 Skip-gram with negative sampling, context window of width 2, 15 negative examples
SGNS.synt Skip-gram with negative sampling, syntactically-typed context words, 15 negative examples
FastText Skip-gram with subword information, context window of width 2, 15 negative examples
Contextualized DSMs
ELMo Pretrained ELMo embeddings on the 1 Billion Word Benchmark
BERT Pretrained BERT-Large embeddings on the concatenation of the Books corpus and Wikipedia
GPT2-xl Pretrained GPT2-xl embeddings on WebText
Neural Complexity Pretrained Neural Complexity embeddings on Wikipedia

Table 1: List of the embedding models used for the study, together with their hyperparameter settings.

The+ dog + chases+ the from S[3].
CLS: The context vector is the embedding pro-
duced by BERT for the special token [CLS]. As
for the additive model, BERT was fed with sub-
sentences, and for each target word the CLS-
context-vector was the one computed at the pre-
vious list element. So, looking at the previous
example, for cat as target word, we will use the
CLS vector representing all the S[3] elements.

Given the positive effect of semantic coherence
on language processing, we expect that the eye-
tracking data for w have a negative correlation with
its cosine similarity with c: The higher the cosine,
the lower the reading time of w measured by eye-
tracking.

We then used BERT, GPT2-xl and Neural Com-
plexity to compute word-by-word surprisal. As for
the cosine similarity, for BERT the input sentences
were organized in sub-sentences, and the last to-
ken, the target word, was replaced with the special
tag [MASK]. Finally, we compute the Spearman
correlation between the surprisal of w, and the
eye-tracking data for the target word. Differently
from the cosine, we expect the surprisal to be posi-
tively correlated with the word reading time: The
less predictable a word, the slower its processing.

The comparison has been done between 60 possi-
ble features: 6 values of cosine similarity between
non-contextualized vectors, 51 values of cosine
similarity between contextualized vectors (48 from
24 layers of BERT in two different ways to com-
pute the context vector, and 3 from ELMo, GPT2-xl
and Neural Complexity), 3 values of surprisal from
BERT, GPT2-xl, Neural Complexity. Based on
the correlation values, we selected one cosine sim-
ilarity feature and one surprisal feature, that have
been combined with two variables that are well-
known in the cognitive neuroscience literature for
influencing eye movements: word length and word

frequency, the last one computed on Wikipedia1.
Regression Model Selection. Taking into ac-

count the Spearman’s correlations, we selected one
word embedding model for cosine similarity and
one Language Model for surprisal. Then, different
kind of regression models from Scikit-learn have
been compared. More precisely, PLS Regression,
Multi-layer Perceptron Regressor, Random Forest
Regressor, Linear Regression, Ridge Regression,
Bayesian ridge regression, Epsilon-Support Vector
Regression, Linear regression with combined L1
and L2 priors as Regularizer, Gradient Boosting
Regressor. The metric used to evaluate different
models is the Mean Absolute Error on ZuCo’s eye
tracking features prediction. Once the model and
the features have been selected, the comparison
between 3 different regression settings has been
done: i) surprisal only; ii) cosine similarity only;
iii) surprisal + cosine similarity.
For the regression model selection, we used 2/3 of
the ZuCo training set to train the model, and 1/3 for
validation purposes. Once we found the best (i.e.
lower MAE among eye tracking data) combination
of features and regression model, the prediction on
test data has been done.

4 Results and Discussion

Spearman’s correlations between eye tracking fea-
tures and cosine similarity showed that best perfor-
mances are reached by vectors produced by BERT
layer 22 CLS context (mean correlation over eye
tracking features on the three datasets: −0.62),
while best correlations between eye tracking data
and surprisal are reached by GPT2-xl (mean cor-
relation over eye tracking features on the three
datasets: 0.40). These results led us to select as

1Using https://github.com/IlyaSemenov/wikipedia-word-
frequency
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Feature Model Regression model MAE
FFD BERTcos_GPTsurpr GBR 0.69
FFD GPTcos_GPTsurpr GBR 0.69
FFD BERTcos_GPTsurpr RF 0.74
FFD BASELINE RF 0.77

fixprop BERTcos_GPTsurpr GBR 11.64
fixprop GPTcos_GPTsurpr GBR 11.78
fixprop GPTcos_GPTsurpr RF 12.33
fixprop BASELINE RF 12.75

GPT BERTcos_GPTsurpr GBR 2.96
GPT GPTcos_GPTsurpr GBR 2.978
GPT BERTcos_GPTsurpr LR 3.08
GPT BASELINE BRR 3.09
nFix BERTcos_GPTsurpr GBR 4.21
nFix GPTcos_GPTsurpr GBR 4.37
nFix BERTcos_GPTsurpr LR 4.49
nFix BASELINE LR 4.67
TRT BERTcos_GPTsurpr GBR 1.64
TRT GPTcos_GPTsurpr GBR 1.67
TRT BERTcos_GPTsurpr RF 1.76
TRT BASELINE RF 1.84

Table 2: Best three MAEs for each eye-tracking feature + baseline.

features for regression model: cosine similarity
between vectors computed by BERT 22 CLS and
surprisal computed by GPT2-xl. We also tested
the cosine similarity between vectors computed by
GPT2-xl, to have a comparison with a regression
model with features produced by the same model.
While performing regression model selection com-
paring 9 models from Scikit-learn, we also tried
different combinations of features.

Table 2 shows the best 3 combinations of fea-
tures and models, compared with the baseline
created taking into account word frequency and
word lenght only. The lowest MAEs for each
eye-tracking feature were reached by a Gradient
Boosting Regressor (GBR) using both the cosine
similarity between vectors produced by BERT and
the surprisal computed by GPT2-xl. The average
MAE using the GBR model with BERT cosine and
GPT2-xl surprisal was 4.22 (mean improvement
compared with the baseline = 0.54), with one fea-
ture, fixProp, producing a MAE value significantly
higher than the other eye tracking features. Since
fixProp is "the proportion of participants that fix-
ated the current word" (i.e., the probability of the
word of being fixed), we hypothesized that the com-
bination of phenomena influencing the likelihood
of fixating a word could be captured by the other
4 eye tracking features, making them in turn good
predictors of fixProp.

Therefore, we tested again the 9 regression mod-
els with Scikit-learn, this time using nFix, FFD,
TRT, GPT, word lenght and word frequency as fea-
tures, in every possible permutation (one per time,
pairs of features, etc.). A lower MAE on fixProp

on training data has been obtained using a Random
Forest method with nFix, TRT, and GPT, reaching
a MAE of 3.15.

The improvements of the final model over the
baseline suggest that the information conveyed by
the cosine similarity and the surprisal contributes in
modeling the cognitive processing beneath reading.
Our results are consistent with Pynte et al. (2008)
and Mitchell et al. (2010) findings about the rela-
tion between cosine similarity and eye movements
data, as well as with Hale (2001) and Levy (2008),
who found surprisal to be useful in predicting read-
ing times.
Anyway, our model performance shows that taking
into account both the computational measures ben-
efits the modeling. Even if Frank (2017) rises an
interesting issue about the interplay between the
information included in word embeddings and the
one provided by the suprisal computed by language
models, our results keep us from fully agree with
his observations: since the joined model performed
better that the ones taking into account only cosine
similarity or only surprisal, it is obvious that the
two measures convey exclusive and useful infor-
mation, even if it is more than plausible that they
share some kind of information to some extent.

In summary, we used a two-step approach: i.)
the final model to predict nFix, FFD, GPT, and
TRT in test data was a Gradient Boosting Regres-
sor having as features the cosine similarity between
the CLS vector (BERT) and the target word embed-
ding, GPT2-xl surprisal, word length and word
frequency; ii.) the predicted values of nFix, GPT,
and TRT were used in a Random Forest to predict
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fixProp.
The shared task final results over the test data,

revealed that our model had an average MAE of
4.3877 over all eye tracking features (the baseline
was 7.3699, while the best model reached a MAE
of 3.8134).

5 Conclusions

In this paper we described the system we proposed
in the CMCL2021 "Shared Task: Predicting hu-
man reading patterns". We were required to create
a model capable of predicting number of fixations,
first fixation duration, total reading time, go-past
time, and fixation proportion of each word in the
ZuCo dataset. We proposed a regression model
using word length and word frequency, combined
with two elements that are proved to influence read-
ing processing: the semantic coherence and the
predictability of a word within the context. To com-
pute these last two regression features we used the
cosine similarity between the vector representing
the context and the word embedding of the target
word, and the surprisal computed by Language
Models, respectively. We selected the models to
produce the vectors and to compute the surprisal
calculating the Spearman correlation between the
cosine similarity and the eye tracking data, and
between the surprisal and the same data. We then
used the best cosine similarity and surprisal within
a regression model, selected among 9 possible mod-
els. Our results outperformed the baseline, with
a average MAE among eye tracking features just
0.5743 higher than the best model in the competi-
tion.
Our model may be improved exploring new types
of regressors and word embeddings, and including
new textual features such as sentence length and in-
formation regarding words immediately preceding
the target ones.
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