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Abstract

The irrelevant information in documents poses a great challenge for machine reading compre-
hension (MRC). To deal with such a challenge, current MRC models generally fall into two
separate parts: evidence extraction and answer prediction, where the former extracts the key evi-
dence corresponding to the question, and the latter predicts the answer based on those sentences.
However, such pipeline paradigms tend to accumulate errors, i.e. extracting the incorrect evi-
dence results in predicting the wrong answer. In order to address this problem, we propose a
Multi-Strategy Knowledge Distillation based Teacher-Student framework (MSKDTS) for ma-
chine reading comprehension. In our approach, we first take evidence and document respec-
tively as the input reference information to build a teacher model and a student model. Then the
multi-strategy knowledge distillation method transfers the knowledge from the teacher model to
the student model at both feature and prediction level through knowledge distillation approach.
Therefore, in the testing phase, the enhanced student model can predict answer similar to the
teacher model without being aware of which sentence is the corresponding evidence in the docu-
ment. Experimental results on the ReCO dataset demonstrate the effectiveness of our approach,
and further ablation studies prove the effectiveness of both knowledge distillation strategies.

1 Introduction

Machine reading comprehension (MRC) is a task that enables machines to read and understand natural
language documents to answer questions. Since it well indicates the ability of machines in interpreting
natural language as well as having a wide range of application scenarios, it has attracted extensive at-
tention from academia and industry over the recent years. Prevailing MRC datasets define their tasks as
either extracting spans from reference documents to answer questions, such as SQuAD (Rajpurkar et al.,
2016) and CoQA (Reddy et al., 2019), or inferring answers based on pieces of evidence from a given
document, which is also referred to as non-extractive MRC, including multiple-choice MRC (Richardson
et al., 2013; Lai et al., 2017), open domain question answering (Dhingra et al., 2017) and so on.

Current MRC faces the significant challenge of the irrelevant information in documents causing neg-
ative impact on answer predicting. Therefore, our aim is to engage the model to focus on evidence
sentences in documents and using them to answer corresponding questions accurately. To illustrate,
consider the example shown in Figure 1 (adapted from the ReCO dataset (Wang et al., 2020)). In this
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Document: …红糖水是具有补血、活血的作用，很多的女性在月经期间或者是产后会选择喝一些红糖水，对于身体的恢复是有益处的。也有一些孕妇在怀孕期间会
喝一些红糖水，觉得这样可以补充营养和身体的所需，那么孕妇能可以红糖水吗？红糖含很多的蔗糖，太多的糖可能会导致高血糖，吃点红枣，炖点
乌鸡枸杞汤也是可以的，一般在孕期多喝些白开水就好。孕妇喝红糖水可能导致妊娠糖尿病加重，胎儿畸形，妊娠糖尿病还有可能变成孕妇患有糖尿
的隐患。肥胖的孕妇不可以喝红糖水，因为红糖水的糖分易转化为脂肪。孕妇在怀孕要注意养成好的生活习惯和饮食习惯，女性在孕期可以多吃一些
清淡的食物，做好孕期的饮食调理和胎儿的护理保健…

Candidate
Answers:

可以|不可以|无法确定 Yes | No | Uncertain

Question: 孕妇可以喝红糖水吗？ Can pregnant women drink brown sugar water?

…Brown sugar water has the effect of tonifying and invigorating the blood, many women drink brown sugar water during periods or after pregnancy,
which is beneficial to their recovery. There are also some women who drink brown sugar water during pregnancy, thinking that it can provide the
nutrition and body needs, so can pregnant women can brown sugar water? Brown sugar contains a lot of sucrose, too much sugar may lead to high
blood sugar, eat some jujube, stew some wolfberry chicken soup is also acceptable, generally drink more hot water during pregnancy is great. Drinking
brown sugar water during pregnancy may lead to aggravation of gestational diabetes, fetal malformation, and gestational diabetes may also
become a potential risk of diabetes for pregnant women. Pregnant women who are obese should not drink brown sugar water because the sugar in
brown sugar water is easily converted into fat. During pregnancy, women should pay attention to establish good living and eating habits…

Evidence: 孕妇喝红糖水可能会导致胎儿畸形，有概率得妊娠糖尿病从而发展成为糖尿病。

Drinking brown sugar water during pregnancy may lead to fetal malformations and increase the probability of getting gestational diabetes and
thus developing diabetes.

Figure 1: Example of multiple-choice machine reading comprehension. The sentence in green is the
evidence sentence for answering the given question in this document, which is of great importance. Other
sentences contain irrelevant information, while potentially negatively affecting the answer prediction.
The sentence in blue is the evidence obtained by manual annotation (summarized or paraphrased by the
annotator).

sample document, only the evidence sentences have a significant impact on predicting the answer; the
other sentences are irrelevant information that may confuse the model and preventing it from focusing
on the evidence sentences, thus affecting the correctness of answer predicting.

Previous attempts mainly focused on the pipeline (coarse-to-fine) paradigm (Wang et al., 2019; Niu
et al., 2020): first locating or generating the evidence sentences corresponding to the question by an
evidence extractor or generator, then the answer is predicted based on it. Unfortunately, such a pipeline
paradigm suffers from the problem of error accumulation. Besides, in real-world scenarios, the evidence
supporting the answer to the question is often implicitly present in the document and thus not easily
extracted or generated. For instance, 46% of the evidence sentences could not be explicitly found in the
documents in the ReCO dataset. Once the evidence extractor or generator gets incorrect evidence, the
result obtained by the answer predictor is bound to be wrong.

In this paper, we attempt to engage the model to focus more on the evidence sentences in the docu-
ment rather than extracting them out. Thus we propose a Multi-Strategy Knowledge Distillation based
Teacher-Student framework (MSKDTS). In the training phase, we first take evidence and document as
the reference information to pretrain a teacher model and a student model, respectively. Then, we in-
corporate multi-strategy knowledge distillation into the teacher-student framework, which is the student
model attempts to produce teacher-like features and predicted answers through feature knowledge dis-
tillation and prediction knowledge distillation. Subsequently, in the testing phase, the enhanced student
model predicts the answer with only the document (unaware of the evidence sentences). Hence, the
whole process obviates the process of explicitly evidence extraction, which naturally circumvents the
accumulation of errors in the conventional pipeline paradigm.

Our contributions are summarized as follows:

• We propose a teacher-student framework for MRC to address the issue of irrelevant information in
reference documents causing a negative impact on answer inference.

• We propose a multi-strategy knowledge distillation approach in the teacher-student framework,
which transfers knowledge from the teacher model to the student model at feature level and pre-
diction level through feature knowledge distillation and prediction knowledge distillation.

• We conducted experiments on the two testing sets of the ReCO dataset, the results demonstrate
the effectiveness of our approach, and further ablation experiments prove the effectiveness of both
knowledge distillation strategies.
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2 Related Work

2.1 Machine Reading Comprehension
The task of machine reading comprehension (MRC) can well indicate the ability of the machine to
understand texts. Owing to the rapid development of deep learning and the presence of many large-scale
datasets, MRC is under the spotlight in the field of natural language processing (NLP) in recent years.
Depending on the format of questions and answers, the MRC datasets can be roughly categorized into
cloze-style (Hermann et al., 2015; Hill et al., 2016), multiple-choice (Richardson et al., 2013; Lai et al.,
2017; Wang et al., 2020), span prediction (Rajpurkar et al., 2016; Joshi et al., 2017), and free form (He
et al., 2018; Nguyen et al., 2016). Lately, new tasks have emerged for MRC, such as knowledge-based
MRC (Ostermann et al., 2018), MRC with unanswerable questions (Hu et al., 2019; Sun et al., 2018;
Rajpurkar et al., 2018) and multi-passage MRC (Wang et al., 2018).

To model human reading patterns, pipeline (coarse-to-fine) paradigm have been proposed (Choi et al.,
2017; Li et al., 2018). These models first extract the corresponding evidence from the document and then
predict the answer via such evidence. To train a evidence extractor, current methods are mainly unsuper-
vised methods (Seo et al., 2017; Huang et al., 2019), weakly supervised methods (Min et al., 2018) and
reinforcement learning methods (Choi et al., 2017). Besides, Niu et al. (2020) proposed a self-training
method for MRC with soft evidence extraction, which performs great on several MRC tasks. Moreover,
there are supervised methods (Lin et al., 2018; Hanselowski et al., 2018) for extractive MRC by automat-
ically generating evidence, which can be adopted in non-extractive MRC by first generating the evidence,
then predicting the answer based on it. Last, Wang et al. (2020) presents ReCO, a multiple-choice dataset
which manually annotated the evidence in the document, which allows training the evidence extractor or
generator in a supervised manner.

In order to engage the model focus more on the evidence, while excluding the pipeline paradigm that
inevitably leads to error accumulation, we propose a end-to-end teacher-student framework in this paper.

2.2 Knowledge Distillation
Knowledge distillation (Hinton et al., 2015) is an effective means of transferring knowledge over from
one model to another by mimicking the outputs of the original model. Knowledge Consolidation Net-
work (Cao et al., 2020) is proposed to address the problem of catastrophic forgetting in the incremental
event detection task by utilizing the knowledge distillation method. To deploy huge neural machine trans-
lation models on edge devices, Wu et al. (2020) combined layer-level supervision into the intermediate
layers of the original knowledge distillation framework. To cope with the problem of performance degra-
dation caused by utilizing lifelong language learning on different tasks, Chuang et al. (2020) proposes
an approach that assigns the teacher model to first learn the new task and then passes the knowledge to
the lifelong language learning model via knowledge distillation.

Adversarial feature learning (Donahue et al., 2017) is a method that renders the student model with
comparable feature extraction ability to the teacher model via Generative Adversarial Networks (GANs,
Goodfellow et al. (2014)). In order to tackle the major challenge faced in event detection, namely ambi-
guity in natural language expressions, Liu et al. (2019) proposed an adversarial imitation based knowl-
edge distillation approach to learn the feature extraction ability from the teacher model. Lample et
al. (2018) adopts adversarial feature learning to align features extracted from different language auto-
encoders for unsupervised neural machine translation.

In our work, we incorporate multi-strategy knowledge distillation (feature level with adversarial fea-
ture learning and prediction level) into the teacher-student framework, bringing more attention to the
evidence.

3 Methods

Figure 2 demonstrates the overall framework of MSKDTS, which aims to cope with the irrelevant in-
formation in documents. MSKDTS is composed of three major parts, namely, the teacher model, the
student model and the knowledge distillation strategies. Documents and evidence sentences are concate-
nated with queries and candidate answers respectively as the input to the teacher model and the student

CC
L 
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 1024-1036, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China



Computational Linguistics

Candidate Answers: 可以/不可以/无法确定
Query: 孕妇可以喝红糖水吗？
Evidence: 孕妇喝红糖水可能会导致胎儿畸形，
有概率得妊娠糖尿病从而发展成为糖尿病。

Candidate Answers: 可以/不可以/无法确定
Query: 孕妇可以喝红糖水吗？
Document: ……这样可以补充营养和身体的所
需，那么孕妇能可以红糖水吗？红糖含很多的
蔗糖，太多的糖可能会导致高血糖，吃点红
枣，炖点乌鸡枸杞汤也是可以的，一般在孕期
多喝些白开水就好。孕妇喝红糖水可能导致妊
娠糖尿病加重，胎儿畸形……

Etea

Estu

D

Ctea

Cstu

KEtea or Estu?

① Teacher Model

③ Feature Knowledge Distillation

Fine-tuning

④ Prediction Knowledge Distillation

Fine-tuning

② Student Model

Fine-tuning

Figure 2: The overall framework of MSKDTS. The model is composed of six component: the teacher
encoder Etea, the student encoder Estu, the discriminator D, the teacher classifier Ctea, the student
classifierCstu and the prediction knowledge distillation componentK. In the training phase, we first take
evidence and document as the input reference information to pretrain the teacher model and the student
model. Next,Estu andD compete with each other through adversarial imitation strategy. In addition, the
probabilities of the answers predicted byCstu andCtea are aligned by a prediction knowledge distillation
approach K. In the final testing phase, documents are used as input to the enhanced Estu and Cstu for
answer prediction.

model. Following encoding the input sequences and predicting the answers, we utilize knowledge distil-
lation to align the features and predictions of the student model to the teacher model.

3.1 MRC Model

Our teacher-student framework mainly oriented towards the multiple-choice MRC problem (Richardson
et al., 2013; Lai et al., 2017; Wang et al., 2020). It is composed of a teacher model and a student model,
both of which consisting a BERT encoder and a multi-class classifier.

BERT Based Encoder Etea andEstu are implemented using BERT (Devlin et al., 2019), a multi-layer
bidirectional Transformer (Vaswani et al., 2017) encoder. Below illustrates several different elements of
the input to the BERT encoder and their representations:

• Document: A N-token document contains several sentences, distinct parts of which describe dif-
ferent information, denoted as Xd = {w1, w2, . . . , wN}, where wi denotes a word in the document.

• Evidence: As the most critical information in inferring the correct answer, the evidence is typi-
cally shorter than the document, denoting it by a M-token (where M ≤ N ) sequence as Xe =
{w1, w2, . . . , wM}, where wi denotes each word in the evidence sentences.

• Query: A L-token query is denoted as Xq = {w1, w2, . . . , wL}, where wi is a word in the query.

• Alternative Answers: To predict the correct answer from candidate answers, we denote each can-
didate answer by Ai. We concatenate A1 to AU using [OPT] as the input to the encoder. Note that,
in BERT encoder, we use a special token [unused1] as [OPT].

In accordance with the different inputs of the teacher model and the student model, we concatenate
these elements above and encode them with the BERT encoder to obtain a context-sensitive representa-
tion for the input sequence:

1) For the teacher encoder (Etea), we concatenate candidate answers, query and evidence as input by
special tokens of BERT, obtaining an input representation with evidence sentences as reference informa-
tion. In Figure 3, we present an example of the input sequence for the teacher encoder.

2) For the student encoder (Estu ), analogous to the teacher encoder, except that the reference infor-
mation is the document rather than the evidence sentence, i.e., candidate answers, query, and document.
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[SEP]定确法无[OPT]不[OPT][OPT] 以可 以可 患隐病 的红喝妇孕？吗水糖红喝妇孕 以可 [SEP] …… [SEP]

Alternative Answers Query Evidence

Figure 3: The BERT input format of the teacher encoder (Etea).

Multi-Class Classifier The softmax classifier is applied as our multi-class classifier, both Ctea and
Cstu, which is used to predict the correct answer from the candidate answers. We take the output of the
BERT encoder (Etea and Estu, respectively), i.e., the encoded features, as the input of the classifier. The
hidden layer of [OPT] is used as the classification feature fo for each candidate answer. The multi-class
classifier takes these features as input and then computes a prediction probability for each candidate
answers as output. The prediction probability P (A|E,C) for each candidate answer is computed as:

P (A|E,C) = softmax(W o · fo + bo) (1)

where E is Etea or Estu; C is Ctea or Cstu; A is the candidate answers; W o and bo are trainable
parameters of the multi-class classifier (either Ctea or Cstu).

3.2 Knowledge Distillation Strategies
This section demonstrates in detail of the multi-strategy knowledge distillation in our model, which
includes feature-level and prediction-level knowledge distillation, correspondingly, we build a discrim-
inator D and a prediction distiller K. They differ in that the input to D is the extracted feature vector
(i.e., the hidden layer of [OPT] mentioned in Section 3.1) obtained from either Etea or Estu, whereas
the input to K is the logit of the prediction probability from Ctea or Cstu.

3.2.1 Feature Knowledge Distillation
We adopt an adversarial feature learning approach for feature level knowledge distillation, specifically,
we apply a discriminator D, a multi-layer perception (MLP) based binary classifier. It takes the features
obtained from Etea and Estu as the input then generates a probability PD to distinguish the source of
the input features. PD is calculated as:

PD = sigmoid(W s(tanh(W xfo + bx)) + bs) (2)

where sigmoid(∗) is the activation function that maps a scalar to a float number between 0 and 1. A
well-trained discriminator would output 1 for the features from Etea and 0 for the features from Estu.
W x, bx, W s, and bs are trainable parameters of the discriminator. We use a two-layer MLP to enhance
the representativeness of our discriminator.

The detailed training process of D will be elaborated in Section 3.3.

3.2.2 Prediction Knowledge Distillation
Apart from adversarial feature learning for feature level knowledge distillation, we propose a prediction
level knowledge distillation. It enables the prediction probability of Cstu imitates those of Ctea, thereby
improving its answer prediction ability. We adopt the knowledge distillation method proposed by Hinton
et al. (2015), whose specific approach in this framework is demonstrated in Section 3.3.2.

3.3 Overall Training Procedure
Our training process can be summarized into two phases, namely the pretraining phase and the fine-
tuning phase. The overall training procedure is demonstrated in Algorithm 1.

3.3.1 The Pre-trainig Phase
In the pre-training phase, we first train the teacher model and the student model using the evidence and
the documents as reference information, respectively. Then the discriminator is trained using the outputs
of Etea and Estu.
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Algorithm 1 The Overall Training Procedure
Input: Training Data (x, x∗, y)
1: Pretrain the teacher model (Etea,Ctea), the student model (Estu,Cstu), and the discriminator (D)
2: Freeze Etea and Ctea

3: repeat
4: Freeze D
5: Unfreeze Estu and Cstu

6: Updata Estu and Cstu using Eq.8
7: if the remainder of the batch number to k is 0 then
8: Unfreeze D
9: Freeze Estu and Cstu

10: Update D using Eq.5
11: end if
12: until convergence
Output: An enhanced student model

First, we train the teacher model (i.e., concatenating Etea and Ctea) which is well aware of the evi-
dence sentences. Its loss function is calculated as:

Ltea = −
U∑
i=1

yi log(P (Ai|Etea, Ctea)) (3)

where yi is the label for the i-th answer Ai.
Then, the student model (i.e., concatenating Estu and Cstu) is trained, which is not aware of the evi-

dence, it takes the entire document instead of evidence sentences as reference information, thus implicitly
introducing considerable irrelevant information. Its loss function is calculated as:

Lstu = −
Y∑
i=1

yi log(P (Ai|Estu, Cstu)) (4)

where yi is the label for the i-th answer Ai.
In the final step, we keep the parameters of Etea and Estu unchanged to train the discriminator by

treating the feature vector obtained from Etea as positive examples (label 1) and those from Estu as
negative examples (label 0). In this process, the loss function of training the discriminator is calculated
as:

LD = max
D

Ex∼X [log(D(fo,tea))] + Ex∗∼X∗ [log(1−D(fo,stu))] (5)

where fo,tea is the features of the teacher encoder and fo,stu is the features of the student encoder.

3.3.2 The Fine-Tuning Phase
In the fine-tuning phase, we aim to enhance the feature extraction ability of Estu and the answer pre-
diction ability of Cstu, in other words, in document-only cases, we expect the encoder to ignore the
irrelevant information as much as possible, focusing more on the evidence sentences.

To enhance the feature extraction ability of Estu, we employ the pretrained D, which can well distin-
guish between Etea and Estu, to conduct adversarial training with Estu. The loss of Estu is computed
as:

Lafl = −y log(D(fo,stu)) (6)

where y is the label of the output of Estu given to D during adversarial feature learning. Therefore, in
order for Estu to produce features similar to those produced by Etea, we set y = 1, i.e, we expect the
features extracted by Estu to be recognized by D as those extracted by Etea.

After k batches of fine-tuning Estu, the accuracy of D decreases and fails to distinguish well between
the outputs obtained from Estu and Etea, then we retrain D using the same loss LD as in the pretraining
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phase. Iteratively fine-tune Estu as well as retrain D until the training process converges. The training
procedure is shown in Algorithm 1.

As for prediction level knowledge distillation, the output logit of each sample of Ctea and Cstu are
denoted as v and v∗, respectively. The prediction knowledge distillation is calculated as:

Lpkd = −
U∑
i=1

τi(v
∗) log(τi(v))

τi(v
∗) =

ev
∗
i /Ω∑U

j=1 e
v∗j /Ω

, τi(v) =
evi/Ω∑U
j=1 e

vj/Ω

(7)

where Ω is a hyper-parameter, which is usually set to be greater than 1 (e.g. Ω = 2) in our experiments
to increase the weights of small values; U is the number of classes; Lpkd is designed to encourage the
prediction of the student model to match the prediction of the teacher model.

In the fine-tuning phase, the total loss of the student model is:

Lstu all = Lstu + αLafl + βLpkd (8)

where α and β are two hyper-parameters. If α and β are very large, the model will focus more on learning
knowledge from the teacher model, rather than the ground-truth labels. Noting that, the parameters of
D, Etea, Ctea are kept unchanged while fine-tuning the components of the student model.

After completing the two knowledge distillation approaches above, we obtained an enhanced student
model that has successfully learned the knowledge of the teacher model and is able to predict accurate
answers using only the documents as reference information.

4 Experiments

4.1 Datasets
We conduct experiments on a recently proposed MRC dataset, ReCO (Wang et al., 2020) to evaluate the
validity of our model. To the best of our knowledge, this is the only large-scale multiple-choice MRC
dataset with manually labeled evidence. ReCO contains 300k document-query pairs, each of them is
manually labeled with evidence. It is worth noting that, during the annotation process, for 46% sam-
ples, the annotators paraphrase or highly summarize the key sentences according to their understanding,
resulting in a situation that not all evidence sentences can be found in its corresponding document.

In ReCO, three candidate answers are available for each query. In order to obtain the correct answer,
strong inference capability of the model is required. The dataset contains 280k training samples and 20k
test samples, which are further divided into testing set A (TestA) and testing set B (TestB). TestB is the
complement to TestA in terms of quantity, and can certify the validity of the model more adequately.

4.2 Baseline
To evaluate the capability of MRC models and select well-performing teacher and student models in our
framework, we adopt several strong baselines that perform well on many MRC tasks:

BiDAF (Seo et al., 2017): BiDAF uses LSTM as its encoder, and models the relationship between the
question and the answer by a bidirectional attention mechanism.

BiDAF* (Seo et al., 2017; Peters et al., 2018): BiDAF* replaces the traditional word embedding in
BiDAF with ELMO (a language model trained on unsupervised data), which yields better results.

BERT (Devlin et al., 2019): A multi-layer bidirectional Transformer, which is pretrained on large
unlabeled data, has outperformed state-of-the-art models in many NLP tasks.

ALBERT (Lan et al., 2020): ALBERT is an improved version of BERT, which reduces the overall
number of parameters, speeds up the training process, and is better than BERT in many aspects.

Since the evidence sentences in the 46% samples in the ReCO dataset could not be explicitly found in
the corresponding documents, we use generation models as evidence generators in the pipeline baselines
instead of extraction models.
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Enc2Dec (Sutskever et al., 2014): We designed a coarse-to-fine framework based on the encoder-
decoder framework. This model encodes documents with an LSTM encoder and then generates evidence
by an LSTM decoder.

Enc2Dec* (Sutskever et al., 2014): In addition to the Enc2Dec model, we adopt the BERT encoder in
the encoder-decoder framework.

4.3 Experimental Setup and Evaluation Metrics
We use ALBERT-base from HuggingFace’s Transformer library 0 as the encoder for our MRC model.
For both teacher model and student model as well as the discriminator D, the learning rate is set to 2e-5,
batch size set to 4, hyper-parameters α and β are chosen from [0-100], specified as α = 0.5 and β = 20,
with temperature coefficient Ω = 2. Since D can easily learn and distinguish the features obtained from
different encoders, we randomly sample 10,000 training samples each time to train D. We retrain the
discriminator every k = 3000 batches. All hyper-parameters are obtained by grid search in the validation
process.

Following the previous work (Wang et al., 2020), we use accuracy as our metric to evaluate whether
each sample is correctly classified.

4.4 Results
We list the following Research Questions (RQ) as guidelines for experimentation in our work:

• RQ1: How well did the MRC models perform before incorporating the knowledge distillation strate-
gies, and which model we select to be the teacher or student model?

• RQ2: Is there a significant improvement in performance after applying our proposed MSKDTS
framework, and does the MSKDTS framework outperform the traditional pipeline paradigm?

• RQ3: Whether the feature knowledge distillation we designed can effectively improve the perfor-
mance by enabling Estu to imitate the output features of Etea?

• RQ4: Will the prediction knowledge distillation strategy we employ be effective in improving the
performance of the student model?

4.4.1 Teacher and Student Models
To answer RQ1, this section shows the performance of several baseline models when inputting doc-
uments or evidence as reference information, and compares the performance of different baselines to
select the teacher and student models in the MSKDTS framework.

Teacher (Evidence) Student (Document)
Dev TestA TestB Dev TestA TestB

Random (Wang et al., 2020) 33.3 33.3 33.3 33.3 33.3 33.3
BiDAF (Seo et al., 2017) 68.9 68.3 67.9 55.7 55.8 56.1
BiDAF* (Seo et al., 2017; Peters et al., 2018) 70.3 70.9 71.1 58.4 58.9 58.6
BERTb (Devlin et al., 2019) 73.8 73.4 72.8 61.4 61.1 62.0
BERTl (Devlin et al., 2019) 76.3 77.0 76.4 65.5 65.3 65.8
ALBERTtiny (Lan et al., 2020) 70.9 70.4 71.3 63.1 62.7 62.4
ALBERTb (Lan et al., 2020) 77.2 77.6 77.0 68.2 68.4 69.1
Human - 91.5 - - 88.0 -

Table 1: Experimental results on the development set (Dev), testing set A (TestA) and testing set B
(TestB) of the ReCO dataset. The second/third column shows the result of these models when taking
evidence/documents as inference information input in both training and testing phases. Bold indicates
the best model. BERTb and BERTl denotes BERT base and BERT large, respectively. ALBERTtiny and
ALBERTb denotes ALBERT tiny and ALBERT base, respectively.

0https://huggingface.co/
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Table 1 shows the performance of several baseline models when evidence and documents are used
as reference information input, respectively. Comparing the results in Table 1, we can see that irrele-
vant information in the documents does have a negative effect on answer prediction (for every model
except random, the performance with evidence as reference information input is superior to the perfor-
mance with documents as reference information input), so evidence has a facilitating effect on answer
prediction. Also, the results in Table 1 show that there is a gap between predicting answers by docu-
ments and by evidence even for human, which proves the importance of evidence in machine reading
comprehension.

From the results, we can see that ALBERTb achieves the best performance and can outperform other
BERT-based models when taking evidence and document as reference information input, therefore, we
choose ALBERTb as both our teacher and student models.

The teacher model outperforms the student model by 9.2% and 7.9% on TestA and TestB, respectively.
Since the student model is designed to imitate the behavior of the teacher model in our approach, the
performance of the student model cannot exceed that of the teacher model, i.e., the performance of the
teacher model is the upper bound of our framework, and the lower bound should be the student model
without fine-tuning.

4.4.2 Results on Real Test Scenarios
To answer RQ2, we compared our approach with the pipeline paradigm and the teacher model and student
model (which is not fine-tuned with our knowledge distillation strategies) as upper and lower bounds.

Dev TestA TestB

Lower Bound 68.2 68.4 69.1
Enc2Dec + ALBERTb 68.6 68.9 69.3
Enc2Dec* + ALBERTb 68.9 69.0 69.6
MSKDTS (Ours) 71.3 71.0 70.8
Upper Bound 77.2 77.6 77.0

Table 2: Experimental results on the development set (Dev), testing set A (TestA), testing set B (TestB).
Enc2Dec(*) + ALBERTb is MRC models with evidence generator (pipeline paradigm).

To validate the effectiveness of MSKDTS, we tested the performance of the enhanced student model
in real scenarios. In real scenarios, the evidence in the documents is not annotated, and the enhanced
student model needs to predict the results directly based on the documents as reference information.

From the experimental results in Table 2, we can see that:
First, our student model achieves the best performance, outperforming all the baseline models that do

not use evidence. This demonstrates that the multi-strategy knowledge distillation approach we proposed
enables the student encoder to effectively imitate the output features of the teacher encoder, can focus on
the evidence sentences in the documents.

Second, to compare with the pipeline model, we train an encoder-decoder model that generates the
evidence sentences for each testing sample. The performance of Enc2Dec and Enc2Dec* on the two
testing sets is much weaker than our fine-tuned student model. Our model outperforms Enc2Dec* by
2.0% and 1.2% on TestA and TestB, respectively.

Third, there is still a gap between our approach and the teacher model, which shows that it is still a
significant challenge of how to engage the model to focus on the evidence sentences from the documents.

4.4.3 The Effect of Feature Knowledge Distillation
To answer RQ3, we study the effect of feature knowledge distillation in this section.

We conducted three experiments to demonstrate the effectiveness of adversarial feature learning as
a feature knowledge distillation strategy: 1) Testing the performance of the MSKDTS framework with
different hyper-parameters (when the update frequency k = 10000 and k = 50000 of the discriminator
D). 2) Testing the performance of the MSKDTS framework replacing adversarial feature learning with
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Dev TestA TestB

MSKDTS 71.3 71.0 70.8
MSKDTS (k=10000) 71.0 70.5 70.6
MSKDTS (k=50000) 70.6 70.3 70.2
MSKDTS-AFL+COSINE 70.7 70.6 70.4
MSKDTS-AFL 70.2 70.1 69.8

Table 3: Experimental results on the development set (Dev), testing set A (TestA) and testing set B
(TestB) to verify the effect of feature knowledge distillation.

the cosine similarity loss between the features of the teacher model and those of the student model
(denoted as MSKDTS-AFL+COSINE), which enables the two features to have the same angle in the
high dimensional space. 3) Testing the performance of the MSKDTS framework without any feature
knowledge distillation strategies (denoted as MSKDTS-AFL). Table 3 shows the results of these models.

From these results, we can see that: 1) Our approach outperforms all variants, which proves the
effectiveness of our feature knowledge distillation strategy. 2) For k = 10000 and k = 50000, the
performance degradation is caused by poor discriminator performance due to updating the discriminator
after a larger number of batches. 3) The cosine similarity loss causes a performance degradation with
-0.4% and -0.4% on TestA and TestB due to features learned based on specific distances is prone to be
approximated from a certain aspect (angle) in the high dimensional space, which may result in a loss
of semantic information. 4) In the absence of feature knowledge distillation, the performance degrades
significantly due to the lack of proximity to the features of the teacher model.

4.4.4 The Effect of Prediction Knowledge Distillation

To answer RQ4, we study the effect of the prediction knowledge distillation in this section.

Dev TestA TestB

MSKDTS 71.3 71.0 70.8
MSKDTS-PKD+KL 70.9 70.5 70.3
MSKDTS-PKD 69.7 69.9 70.1

Table 4: Experimental results on the development set (Dev), testing set A (TestA), testing set B (TestB)
to verify the effect of prediction knowledge distillation.

As shown in Table 4, we use KL-divergence (MSKDTS-PKD+KL) to replace the knowledge distilla-
tion loss. This variant causes performance degradation due to the absence of the temperature coefficient
Ω in the knowledge distillation loss. Therefore, it is difficult for the model to learn small logit values
and affects the knowledge distillation ability. Compared to the model without Prediction Knowledge
Distillation, our model achieves significant improvement. It demonstrates the effectiveness of prediction
knowledge distillation. Compared to the student model trained with document only (without fine-tuning),
it verifies that the simultaneous use of feature knowledge distillation and prediction knowledge distilla-
tion can effectively improve the performance.

5 Conclusion

We propose a Multi-Strategy Knowledge Distillation based Teacher-Student framework (MSKDTS) for
MRC to address the challenges posed by irrelevant information in documents for answer prediction.
The teacher-student framework naturally circumvents the error accumulation problem in the traditional
pipeline paradigm and the knowledge distillation strategies enhance the model capability at the feature
and prediction levels. Experiments on the ReCO dataset demonstrate the effectiveness of our approach.
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