
Incorporating Commonsense Knowledge into Abstractive Dialogue
Summarization via Heterogeneous Graph Networks

Xiachong Feng1, Xiaocheng Feng1,2∗, Bing Qin1,2

1Harbin Institute of Technology, China
2Peng Cheng Laboratory, China

{xiachongfeng,xcfeng,bqin}@ir.hit.edu.cn

Abstract

Abstractive dialogue summarization is the task of capturing the highlights of a dialogue and
rewriting them into a concise version. In this paper, we present a novel multi-speaker dialogue
summarizer to demonstrate how large-scale commonsense knowledge can facilitate dialogue un-
derstanding and summary generation. In detail, we consider utterance and commonsense knowl-
edge as two different types of data and design a Dialogue Heterogeneous Graph Network (D-
HGN) for modeling both information. Meanwhile, we also add speakers as heterogeneous nodes
to facilitate information flow. Experimental results on the SAMSum dataset show that our model
can outperform various methods. We also conduct zero-shot setting experiments on the Argu-
mentative Dialogue Summary Corpus, the results show that our model can better generalized to
the new domain.

1 Introduction

Automatic summarization is a fundamental task in Natural Language Processing, which aims to con-
dense the original input into a shorter version covering salient information and has been continuously
studied for decades (Paice, 1990; Kupiec et al., 1999). Recently, online multi-speaker dialogue/meeting
has become one of the most important ways for people to communicate with each other in their daily
works. Especially due to the spread of COVID-19 worldwide, people are more dependent on online com-
munication. In this paper, we focus on dialogue summarization, which can help people quickly grasp the
core content of the dialogue without reviewing the complex dialogue context.

home my car broke down i have to get to work i really use the help

dude can u pick me upBob

where r u?

no problem man! i will leave now and be there in like 10min

Tom

Bob

Tom

Bob's car has broken down.
In 10 minutes Tom will
give him a lift to work.

give a lift

Dialogue
Reference Summary

Figure 1: An example of dialogue-summary pair. Green for speakers, blue for utterances, and pink for
commonsense knowledge. In order to generate “give a lift” in the reference summary, the summarization
model needs to understand the commonsense knowledge behind “pick up” and “car broke down”.

Recent works that incorporate additional commonsense knowledge in the dialogue generation (Zhou
et al., 2018) and dialogue context representation learning (Wang et al., 2020) show that even though
neural models have strong learning capabilities, explicit knowledge can still improve response generation
quality. It is because that a dialog system can understand conversations better and thus respond more
properly if it can access and make full use of large-scale commonsense knowledge. However, current
dialogue summarization systems (Ganesh and Dingliwal, 2019; Li et al., 2019; Liu et al., 2019a; Zhu et

∗Corresponding author.
©2021 China National Conference on Computational Linguistics
Published under Creative Commons Attribution 4.0 International License

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

al., 2020; Chen and Yang, 2020) ignore the exploration of commonsense knowledge, which may limit
the performance. In this work, we examine the benefit of incorporating commonsense knowledge in the
dialogue summarization task and also address the question of how best to incorporate this information.
Figure 1 shows a positive example to illustrate the effectiveness of commonsense knowledge in the
dialogue summarization task. Bob asks Tom for help because his car has broken down. On the one hand,
by introducing commonsense knowledge according to the pick up and car broke down, we can know that
Bob expects Tom to give him a lift. On the other hand, commonsense knowledge can serve as a bridge
between non-adjacent utterances that can help the model better understanding the dialogue.

In this paper, we follow the previous setting (Zhou et al., 2018) and also use ConceptNet (Speer
and Havasi, 2012) as a large-scale commonsense knowledge base, while the difference is that we re-
gard knowledge and text(utterance) as heterogeneous data in a real multi-speaker dialogue. We pro-
pose a model named Dialogue Heterogeneous Graph Network (D-HGN) for incorporating commonsense
knowledge by constructing the graph including both utterance and knowledge nodes. Besides, our het-
erogeneous graph also contains speaker nodes at the same time, which has been proved to be a useful
feature in dialogue modeling. In particular, we equip our heterogeneous graph network with two addi-
tional designed modules. One is called message fusion, which is specially designed for utterance nodes
to better aggregate information from both speakers and knowledge. The other one is called node embed-
ding, which can help utterance nodes to be aware of position information. Compared to homogeneous
graph network in related works (Ganesh and Dingliwal, 2019; Li et al., 2019; Liu et al., 2019a; Zhu et
al., 2020), we claim that the heterogeneous graph network can effectively fuse information and contain
rich semantics in nodes and links, and thus more accurately encode the dialogue representation.

We conduct experiments on the SAMSum corpus (Gliwa et al., 2019), which is a large-scale chat
summarization corpus. We analyze the effectiveness of integration of knowledge and heterogeneity
modeling. The human evaluation also shows that our approach can generate more abstractive and correct
summaries. To evaluate whether commonsense knowledge can help our model better generalize to the
new domain, we also perform zero-shot setting experiments on the Argumentative Dialogue Summary
Corpus (Misra et al., 2015), which is a debate summarization corpus. In the end, we give a brief summary
of our contributions: (1) We are the first to incorporate commonsense knowledge into dialogue summa-
rization task. (2) We propose a D-HGN model to encode the dialogue by viewing utterances, knowledge
and speakers as heterogeneous data. (3) Our model can outperform various methods.

2 Heterogeneous Dialogue Graph Construction

In this section, we describe the graph notation and the graph construction process, which consists of
three steps, including (1) utterance-knowledge bipartite graph construction, (2) speaker-utterance bipar-
tite graph construction and (3) heterogeneous dialogue graph construction.

2.1 Graph Notation

Our heterogeneous dialogue graph (HDG) is defined as a directed graph G = (V, E ,A,R), where each
node v ∈ V and each edge e ∈ E . Different types of nodes and edges are associated with their type
mapping functions τ(v) : V → A and φ(e) : E → R.

2.2 Utterance-Knowledge Bipartite Graph Construction

Current dialogue summarization corpus has no knowledge annotations. To ground each dialogue to com-
monsense knowledge, we make use of ConceptNet (Speer and Havasi, 2012) to incorporate knowledge.
ConceptNet is a semantic network that contains 34 relations in total and represents each knowledge tuple
by R = (h, r, t, w) meaning that head concept h and tail concept t have a relation r with a weight of w.
It contains not only world facts such as “Paris is the capital of France” that are constantly true, but also
informal relations that are part of daily knowledge such as “Call is used for Contact”.

We use each word in the utterance as a query to retrieve a one-hop graph from ConceptNet, as done
by Guan et al. (2019). We only consider nouns, verbs, adjectives, and adverbs. We filter out tuples

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

Hannah needs Betty's number but Amanda
doesn't have it. She needs to contact Larry.

Hannah :
Amanda:
Amanda:
Amanda:
Amanda:
Hannah:
Amanda:
Hannah:
Amanda:

do you have Betty's number?
Lemme check
Sorry, can't find it.
Ask Larry
He called her last time
I don't know him well
Don't be shy, he's very nice
I'd rather you texted him
Just text him

Hannah

Amanda

do you have Betty's number?
Lemme check
Sorry, can't find it.
Ask Larry
He called her last time
I don't know him well
Don't be shy, he's very nice
I'd rather you texted him
Just text him

(d) Speaker-Utterance Bipartite Graph

(a) Dialogue-Summary (b) Related Concepts

number
phone book Location

call someone Used For

callRelated contactUsed For

text
contact Used For

passage Parts Of

do you have Betty's number?
Lemme check
Sorry, can't find it.
Ask Larry
He called her last time
I don't know him well
Don't be shy, he's very nice
I'd rather you texted him
Just text him

phone book

contact

contact

date
Related

request
Type Of

letter
Antonym

refactor

timedate Related moneyType Of

............

phone book

4.89

2.83

1.38

1.26
5.27 2.83

2.003.45

2.00

5.21 2.83

Related
0.90

date

4.89

5.27

1.38

5.21

(c) Utterance-Knowledge Bipartite Graph

contact

(e) Heterogeneous Dialogue Graph

Hannah

Amanda

do you have Betty's number?
Lemme check
Sorry, can't find it.
Ask Larry
He called her last time
I don't know him well
Don't be shy, he's very nice
I'd rather you texted him
Just text him

phone book

contact

speaker node

utterance node

knowledge node

speak-by

know-by
rev-know-by

rev-speak-by

Figure 2: Illustration of Heterogeneous Dialogue Graph Construction Process.

where (1) r is in a pre-defined list of useless relations0 (e.g. “number” is antonym of “letter”), (2) the
weight of r is less than 1 (e.g. “text” is related to “refactor”, weight: 0.9). Finally, we can get related
concepts for the dialogue, as shown in Figure 2(b). We construct utterance-knowledge bipartite graph by
viewing utterances and knowledge as different types of nodes. As shown in Figure 2(c), we connect two
utterances to one tail concept t using edge know-by if they both have the same tail concept t. Note that
two utterances may connect to multiple tail concepts, we choose the one with the highest average weight
of relations (e.g. “phone book” is better than “date”). If there are multiple identical knowledge nodes,
we also combine them to a single one (e.g. two “contact” nodes are combined into one node).

2.3 Speaker-Utterance Bipartite Graph Construction

Given multiple speakers and corresponding utterances in a dialogue, we construct the speaker-utterance
bipartite graph by viewing speakers and utterances as different types of nodes. As shown in Figure 2(d),
we construct speak-by edges from speakers to utterances based on who said the utterances.

2.4 Heterogeneous Dialogue Graph Construction

We combine the utterance-knowledge bipartite graph and the speaker-utterance bipartite graph as our
heterogeneous dialogue graph, as shown in Figure 2(e). Additionally, we add a reverse edge rev-know-by
and rev-speak-by to facilitate information flow over the graph. Finally, there are three types of nodes,
where A becomes speaker, utterance, and knowledge and four types of edges, whereR becomes speak-
by, know-by, rev-speak-by and rev-know-by.

3 Dialogue Heterogeneous Graph Network

In this section, we describe the details of our dialogue heterogeneous graph network (D-HGN), including
three components: node encoder, graph encoder and pointer decoder. The model is shown in Figure 3.

3.1 Node Encoder

The role of node encoder is to give each node vi ∈ V an initial representation h0vi , where vi consists of
|vi| words [wi,1, wi,2, ...wi,|vi|]. Note that speaker and knowledge may have multiple words. We employ
a Bi-LSTM as the node encoder that encodes input node forwardly and backwardly to generate two

0We pre-define the useless relation list, including Antonym, EtymologicallyDerivedFrom, NotHasProperty, DistinctFrom,
NotCapableOf, EtymologicallyRelatedTo and NotDesires.

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

Dialogue

(a) Graph
Construction

ConceptNet

(d) Pointer Decoder

Summary

Node Embedding graph nodes

node representation
word representation

!=,= !=,> !=,? !=,@ Graph Layers

"=
">

"?

"@

"A

LSTM cell

Attention && Copy
Mechanism

HDG

ℎB
ℎC

(c) Graph Encoder (b) Node Encoder

$ℎC

ℎ$/%
ℎ$/,1%

ℎ$2,1

Figure 3: Illustration of our D-HGN model. (a) Graph construction receives a dialogue and ConceptNet
and outputs a heterogeneous dialogue graph (HDG). (b) Node encoder receives a sequence of words for
a node and produces initial node and word representations. (c) Graph encoder first conducts graph opera-
tions for initial node representations. Then a node embedding module is added after graph layers to make
nodes to be aware of position information. Finally, the initial word representations and corresponding
updated node representations are concatenated as final word representations. (d) Pointer decoder can
either generate summary words from the vocabulary or copy from the input words.

sequences of hidden states
(−→
h1,
−→
h2, . . . ,

−−→
h|vi|

)
and

(←−
h1,
←−
h2, . . . ,

←−−
h|vi|

)
.

−→
hn=LSTMf

(
xn,
−−→
hn−1

)
←−
hn=LSTMb

(
xn,
←−−
hn+1

) (1)

xn denotes the embedding of wi,n. The forward and backward hidden states are concatenated as the
initial node representation h0vi = [

−−→
h|vi|;

←−
h1] and initial word representation h0vi,n = [

−→
hn;
←−
hn]. h0vi will be

passed to the graph encoder to learn high-level representations. h0vi,n will be concatenated with updated
node representations to get final word representations.

3.2 Graph Encoder

Graph encoder is used to digest the structural information and get updated node representations. We
employ Heterogeneous Graph Transformer (Hu et al., 2020) as our graph encoder, which models het-
erogeneity by type-dependent parameters and can be easily applied to our graph. It includes: (a) het-
erogeneous mutual attention, which calculates attention scores Attn(s, e, t) between source nodes and
the target node. (b) heterogeneous message passing, which prepares the message vector Msg(s, e, t) for
each source node and (c) target-specific aggregation, which aggregates messages from source nodes to
the target node using attention scores as the weight. Specifically, we design two modules named message
fusion and node embedding to make the learning process more effective for our graph.

Heterogeneous Mutual Attention Given an edge e = (s, t) with their node and edge type mapping
functions τ and φ, we first project source and target node representations from (l-1)-th layer h(l−1)s and
h
(l−1)
t into key vector k(l)s and query vector q(l)t with type-dependent linear projection.

k(l)s = K Linear
(l)
τ(s)

(
h(l−1)s

)
q
(l)
t = Q Linear

(l)
τ(t)

(
h
(l−1)
t

) (2)

Next, to integrate edge type information, we calculate unnormalized score α(s, e, t) between t and s
by adding a edge-based matrix WATT

(l),φ(e). Finally, for each target node t, we conduct Softmax for all

s ∈ N(t) to get the final normalized attention scores Attn(l)(s, e, t), where N(t) denotes neighbors of
target node t. Note that if target node is of utterance type and source node is of speaker type, we do
not calculate the attention score between these two types of nodes. See more detail at message fusion

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

!*

"

!+

!,

) % =utterance

)("")=speaker

) "# =knowledge

)("!) =knowledge

* $" =speak-by

* $# =know-by

* $! = know-by

So
tfm

ax

α("#, $#, %)

Heterogeneous
Mutual Attention

Msg("", $", %)

Msg("#, $#, %)

Msg("!, $!, %)

(b) Heterogeneous Message Passing

(d) Message Fusion

(c) Target-Specific Aggregation

Product
Add

- ' ,)(+!)
-..

α("!, $!, %)

0.8

0.2

(a)

residual connection

ℎ/('0#)

ℎ1!
('0#)

ℎ1"
('0#)

ℎ1#
('0#)

/_123$452 /
(')

6_123$452 1!
(')

6_123$452 1"
(')

71!
(')

71"
(')

8/(')

- ' ,)(+")
-..

9_123$452 1!
(')

9_123$452 1"
(')

9_123$452 1#
(')

:1!
(')

:1"
(')

:1#
(')

- ' ,)(+!)
345

- ' ,)(+")
345

- ' ,)(+#)
345

;ℎ/(')

ℎ/(')

<_123$452 /
(')

Figure 4: Illustration of one graph layer. Given a target node of utterance type and source nodes of
knowledge and speaker type. Firstly, we use (a) heterogeneous mutual attention to calculate the attention
scores by type-dependent linear projection. Secondly, we use (b) heterogeneous message passing to
prepare the message vector for each source node. Thirdly, we use (c) target-specific aggregation to
aggregate messages to the target node. Specifically, we propose a message fusion module that uses
attention scores as the weight to average the knowledge vectors and add speaker information additionally.

module. The process is shown in Figure 4(a).

α(s, e, t) =

(
k(l)s W

ATT
(l),φ(e)q

(l)
t

>
)

Attn(l)(s, e, t) = Softmax
∀s∈N(t)

(α(s, e, t))
(3)

Heterogeneous Message Passing We first project source node representation h(l−1)s into the vector
m

(l)
s = M Linear

(l)
τ(s)

(
h
(l−1)
s

)
with type-dependent linear projection and then followed by a edge-based

matrix WMSG
(l),φ(e) to get the message vector. The process is shown in Figure 4(b).

Msg(l)(s, e, t) = m(l)
s W

MSG
(l),φ(e) (4)

Target-Specific Aggregation We divide this process into two cases based on the type of target node:
(1) τ(t) 6=utterance, (2) τ(t)=utterance. For the first case, We use attention vector as the weight to
average messages: h̃(l)t =⊕∀s∈N(t)

(
Attn(l)(s, e, t)⊗Msg(l)(s, e, t)

)
. For the second case, we design a

Message Fusion module to aggregate messages to utterance node more effectively. After getting aggre-
gated message vector h̃(l)t , we maps it back to τ(t)-type distribution with a linear projection followed by
residual connection to get the updated representation h(l)t , as shown in Figure 4(c).

h
(l)
t = A Linear

(l)
τ(t)

(
Sigmoid

(
h̃
(l)
t

))
+ h

(l−1)
t (5)

Message Fusion Dialogue summaries often describe “who did what”, thus speaker information is re-
quired for utterances. However, if target node of utterance type aggregates messages from source nodes
of knowledge and speaker type, it will prefer more to the speaker node while giving up using knowledge
nodes, since attention is a normalized distribution. Therefore, in our message fusion module, we use
attention weights for knowledge nodes to average corresponding messages and add speaker information
additionally. The process is shown in Figure 4(d).

sk = (∀s ∈ N(t) ∧ τ(s) = knowledge), ss = (∀s ∈ N(t) ∧ τ(s) = speaker)

h̃
(l)
t = ⊕

s∈sk

(
Attn(l)(s, e, t)⊗Msg(l)(s, e, t)

)
+Msg(l)(ss, e, t)

(6)

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

Node Embedding In this section, a module named Node Embedding is designed to make utterance
nodes to be aware of position information in source dialogue. This is because original heterogeneous
graph cannot directly model the chronological order between utterances, while an ideal dialogue sum-
mary needs to refer to the order of corresponding dialogue utterances. In detail, for speaker and knowl-
edge nodes, we fix their position to 0. For each utterance node vi, it associates with a position pvi , which
is the ranking of utterances in the original dialogue. As shown in Figure 3(c), we add position informa-
tion for each node: ĥ(l)vi = h

(l)
vi +W pos[pvi], where W pos denotes a learnable node embedding matrix.

After getting the output representation ĥ(l) for each node, we concatenate updated node representation
ĥ
(l)
vi and corresponding initial word representations h0vi,n followed by a linear projection F Linear to get

final word representations hvi,n.

hvi,n = F Linear([ĥ(l)vi ;h
0
vi,n]) (7)

3.3 Pointer Decoder
We employ a LSTM with attention and copy mechanism to generate summaries. At each decoding
time step t, the LSTM reads the previous word embedding xt−1 and previous context vector ct−1 as
inputs to compute the new hidden state st = LSTM(xt−1, ct−1, st−1). We use the average of all word
representations s0 in the graph to initialize the decoder.

s0 = Average(
∑

vi∈G

∑
n∈[1,|vi|]

hvi,n) (8)

The context vector ct is computed as in Bahdanau et al. (2015), which is then used to calculate gener-
ation probability pgen and the final probability distribution P (w), as done by See et al. (2017).

3.4 Training
For each heterogeneous dialogue graph G that is paired with a ground truth summary Y ∗ =
[y∗1, y

∗
2, ..., y

∗
|Y ∗|], we minimize the negative log-likelihood of the target words sequence.

L = −
|Y ∗|∑
t=1

log p
(
y∗t |y∗1 . . . y∗t−1, G

)
(9)

4 Experiments

Dataset Following the latest works (Gliwa et al., 2019; Ganesh and Dingliwal, 2019), we conduct
experiments on two different settings. Firstly, we train and evaluate our model on the SAMSum cor-
pus (Gliwa et al., 2019), which contains dialogues around chit-chats topics. Secondly, we train using
SAMSum corpus and use the Argumentative Dialogue Summary Corpus (ADSC) (Misra et al., 2015) as
the test set to perform zero-shot setting experiments. Each dialogue in ADSC dataset owns 5 different
summaries and is mainly around debate topics. Table 1 shows the knowledge related statistics of two
datasets.

Dataset Split # Coverage Average Know

SAMSum
Train 14732 94.43% 19.60
Valid 818 95.72% 18.23
Test 819 93.89% 19.77

ADSC Full 45 100% 6.50

Table 1: Knowledge related statistics on SAMSum and ADSC datasets. # is the number of dialogues.
Coverage represents the percentage of dialogues with at least one knowledge node. Average Know
represents the average number of knowledge nodes per dialogue.

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

Implementation Details The word embedding size is set to 100 and initialized with the pre-trained
GloVe vector. The dimension of node encoder and pointer decoder is set to 300. The dimension of graph
encoder is set to 200. The graph layer number is set to 1. Dropout is set to 0.5. We use Adam with the
learning rate of 0.001 and use gradient clipping with a maximum gradient norm of 2. In the test process,
beam size is set to 10, minimum decoded length is 19 1.

Evaluation Metrics We employ the standard F1 scores for ROUGE-1, ROUGE-2, and ROUGE-L met-
rics (Lin, 2004) to measure summary qualities. These three metrics evaluate the accuracy on unigrams,
bigrams, and longest common subsequence between the groundtruth and the generated summary 2.

Baseline Models We compare our model with several baselines.

• LONGEST-3 chooses the longest three utterances as the summary.

• TextRank (Mihalcea and Tarau, 2004) is a graph-based extractive method.

• SummaRunner (Nallapati et al., 2017) extract utterances based on a hierarchical RNN model.

• Transformer (Vaswani et al., 2017) is a Seq2Seq model that utilizes self-attention operations.

• PGN (See et al., 2017) is a Seq2Seq model equipped with copy mechanism.

• HRED (Serban et al., 2016) is a hierarchical Seq2Seq model.

• Abs RL (Chen and Bansal, 2018) is a pipeline model that first selects salient utterances based on
a extractive model then produces the summary based on a abstractive model using diversity beam
search. The extractive model is trained using utterance-level extraction labels. The overall model is
jointly trained using reinforcement learning.

• Abs RL Enhance (Gliwa et al., 2019) is based on Abs RL, which appends all speakers after each
utterance, because the original model may select utterances of a single speaker that will lead to no
other speaker information.

• D-GAT, D-GCN and D-RGCN are variants of our model that replace heterogeneous graph layers
with homogeneous graph layers, including GAT (Velickovic et al., 2018), GCN (Kipf and Welling,
2017) and RGCN (Schlichtkrull et al., 2018) 3.

4.1 Automatic Evaluation

Table 2 shows the results on SAMSum corpus. The D-HGN stands for our full model, which outper-
forms various baselines. Compared with HRED that uses no additional auxiliary information such as
commensence knowledge or utterance-level extraction labels, D-RGCN that uses commensence knowl-
edge can achieve 0.97% improvement on ROUGE-1, 0.94% on ROUGE-2, 1.28% on ROUGE-L, which
shows the effectiveness of knowledge integration. Compared with homogeneous networks like D-RGCN,
D-HGN that based on heterogeneous graph networks can achieve 0.67% improvement on ROUGE-1,
1.00% on ROUGE-2, 0.63% on ROUGE-L, which verifies the effectiveness of heterogeneity modeling.

4.2 Human Evaluation

We conduct human evaluation to verify the quality of the generated summaries, including abstractiveness
(contains higher-level conceptual words), informativeness (covers adequate information) and correctness
(associates right names with actions). We randomly sample 50 dialogues with corresponding generated
summaries to conduct the evaluation. We hired five graduates to perform human evaluation. For each
metric, the score ranges from 1 (worst) to 5 (best). The results are shown in Table 3.

1Our codes are available at: https://github.com/xcfcode/DHGN.
2https://pypi.org/project/pyrouge/
3Note that D-GAT also use message fusion module to update representations for utterance nodes.

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

Type Model Know. Heter. Utter. RL R-1 R-2 R-L

Extractive
LONGEST-3 7 7 7 7 32.46 10.27 29.92
TextRank 7 7 7 7 29.27 8.02 28.78
SummaRunner 7 7 7 7 33.76 10.28 28.69

Abstractive
Transformer 7 7 7 7 36.62 11.18 33.06
PGN 7 7 7 7 40.08 15.28 36.63
HRED 7 7 7 7 40.39 16.13 37.65

Pipeline
Abs RL 7 7 3 3 40.96 17.18 39.05
AbsRL Enhance 7 7 3 3 41.95 18.06 39.23

Ours

D-GCN 3 7 7 7 41.33 16.98 38.70
D-GAT 3 7 7 7 41.08 16.89 38.61
D-RGCN 3 7 7 7 41.36 17.07 38.93

D-HGN 3 3 7 7 42.03 18.07 39.56

Table 2: Test set results on the SAMSum Dataset, where “R-1” is short for “ROUGE-1”, “R-2” for
“ROUGE-2”, “R-L” for “ROUGE-L”. “Know.”, “Heter.”, “Utter.” and “RL” indicate whether knowledge,
heterogeneity modeling, utterance-level extraction labels and reinforcement learning are used or not.

Model Abstractiveness Informativeness Correctness

PGN 2.70 2.68 2.49
AbsRL Enhance 2.94 3.23 2.43

D-HGN 3.26 3.25 2.92
w/o knowledge 3.09 3.16 2.80
w/o speaker 3.23 3.21 2.60

Table 3: Human evaluation results.

Our model achieves higher scores. Compared with D-HGN, D-HGN(w/o knowledge) gets a lower
score in abstractiveness, which indicates knowledge incorporation can help our model express deeper
meanings. D-HGN(w/o speaker) performs worse than D-HGN in correctness, which shows effectiveness
of heterogeneity modeling by viewing speakers as heterogeneous data. AbsRL Enhance performs worst
in correctness, which may due to the utterances extraction will break the coherence of dialogue contexts.

4.3 Ablation Study
We conduct two types of ablation studies to verify the effectiveness of different types of nodes and two
modules we propose. As shown in Table 4, without knowledge integration(w/o knowledge), the model
suffers the performance drop, which shows incorporating knowledge can help our model better modeling
the dialogue context. For speaker nodes, directly remove them in the graph will lead to no speaker in the
final summary. Instead, we append the speakers in front of utterances(w/o speaker). The results show
that modeling speakers as heterogeneous data will do good the final summary generation process.

Model ROUGE-1 ROUGE-2 ROUGE-L

D-HGN 42.03 18.07 39.56
w/o message fusion 41.29 17.09 38.74
w/o node embedding 41.99 17.85 38.89

Table 4: Ablation Study for Two Modules

As shown in Table 5, we remove the message fusion module(w/o message fusion), the results show

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

that it is worth to design specific message fusion method according to different types of nodes. Be-
sides, without taking position information into account(w/o node embedding), our model will lose some
performance.

Model ROUGE-1 ROUGE-2 ROUGE-L

D-HGN 42.03 18.07 39.56
w/o knowledge 41.52 17.38 38.76
w/o speaker 41.06 17.17 38.92

Table 5: Ablation Study for Different Types of Nodes

4.4 Zero-shot Setting
To verify whether knowledge can help our model better generalize to the new domain, we directly test
models on the ADSC Corpus. The results are shown in Table 6. The homogeneous model D-GAT that
uses knowledge can get better results than other baselines. The D-HGN gets the best score. We contribute
this to the fact that knowledge can help our models better understand the dialogue in the new domain.

Model ROUGE-1 ROUGE-2 ROUGE-L

PGN 28.69 4.77 22.39
AbsRL Enhance 30.00 4.87 22.27

D-GAT 32.90 5.46 22.47
D-HGN 33.55 5.68 22.75

Table 6: ROUGE F1 results on the Argumentative Dialogue Summary Corpus.

4.5 Visualization
To examine whether our D-HGN can learn easily distinguishable representations, we extract node repre-
sentations from the last graph layer for the SAMSum test set. We apply t-SNE (van der Maaten, 2014) to
these vectors. The results are shown in Figure 5. We find that our model can generate more discrete and
easily distinguishable representations. Besides, D-GAT also tends to separate representations of different
types of nodes, which indicates explicitly heterogeneity modeling is a more reasonable approach.

Speaker
Utterance
Knowledge

D-GATD-HGN

Figure 5: Visualization of node representations generated by the last graph layer of D-HGN and D-GAT.

4.6 Case Study
Figure 6 shows summaries generated by different models and the visualization of knowledge-to-utterance
attention weights learned by our D-HGN model, the darker the color, the higher the weights. Our model
incorporates two knowledge nodes, one is birthday party according to “bday party”, “happy” and “cake”,
the other one is some people according to “Tom” and “boyfriend”. We can see that our D-HGN model
pays more attention to birthday party rather than some people. On the one hand, incorporating birthday
party helps our model generate a more formal summary (using birthday rather than bday). On the other

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

hand, birthday party connects non-adjacent utterances around the birthday topic, which helps our model
generate a more informative and detailed summary (including cake).

Gary and Lara will meet at 5 pm for Tom's bday party. PGN

Gary and Lara are supposed to be back Tom's home at 5 pm for his bday party.AbsRL
Enhance
D-HGN Gary and Lara are going to Tom's birthday party at 5 pm. Lara will pick up the cake.

Golden It’s Tom's birthday. Lara and Gary will come to Tom's place about 5 pm to prepare

everything. Gary has already paid for the cake Lara will pick it.

Speaker

Knowledge

Utterance

Around 5 pm. He's supposed to be back home at 5:30, so we'll

have enough time to prep things up.

Hey, don't forget about Tom's bday party!

I won't! What time should I show up?
birthday

party

So I'll just pick up the cake and get the balloons...

Thanks, you're so helpful. I've already paid for the cake.

Gary

Gary

Gary

Lara

Lara

some

people

You're such a great boyfriend. He will be so happy!Lara

Figure 6: Example summaries generated by different models for one dialogue.

5 Related Work

Previous works used feature engineering (Xie et al., 2008), template-based (Oya et al., 2014) and graph-
based (Bui et al., 2009) methods for extractive dialogue summarization. Although extractive methods
are widely used, the results tend to be incoherent and poorly readable. Therefore, current works mainly
focus on abstractive methods, which can produce more readable and fluency summaries. They tend to
incorporate additional auxiliary information to help better modeling the dialogue. Goo and Chen (2018)
incorporated dialogue acts to model the interactive status of the meeting. Liu et al. (2019a) tackled the
problem of customer service summarization, which first produced a sequence of pre-defined keywords
then generated the summary. Liu et al. (2019b) generated summaries for nurse-patient conversation
by incorporating topic information. Ganesh and Dingliwal (2019) first removed useless utterances by
utilizing discourse labels and then generated summaries. Li et al. (2019) combined vision and textual
features in a unified hierarchical attention framework to generate meeting summaries. Zhu et al. (2020)
employed a hierarchical transformer framework and incorporated part-of-speech and entity information
for meeting summarization. Chen and Yang (2020) incorporated topic and stage information to model the
dialogue. Zhao et al. (2020) used topic words to alleviate the factual inconsistency problem. Feng et al.
(2020) used dialogue discourse to model the interaction between utterances. In this paper, we facilitate
dialogue summarization task by incorporating commonsense knowledge and further model utterances,
commonsense knowledge and speakers as heterogeneous data.

6 Conclusion

In this paper, we improve abstractive dialogue summarization by incorporating commonsense knowl-
edge. We first construct a heterogeneous dialogue graph by introducing knowledge from a large-scale
commonsense knowledge base. Then we present a Dialogue Heterogeneous Graph Network (D-HGN)
for this task by viewing utterances, knowledge and speakers in the graph as heterogeneous nodes. We
additionally design two modules named message fusion and node embedding to facilitate information
flow. Experiments on the SAMSum dataset show the effectiveness of our model that can outperform
various methods. Zero-shot setting experiments on the Argumentative Dialogue Summary Corpus show
that our model can better generalized to the new domain.

Acknowledgments

This work is supported by the National Key R&D Program of China via grant 2020AAA0106502 and
National Natural Science Foundation of China (NSFC) via grant 61906053 and Natural Science Foun-
dation of Heilongjiang via grant YQ2019F008.

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning

to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Trung Bui, Matthew Frampton, John Dowding, and Stanley Peters. 2009. Extracting decisions from multi-party
dialogue using directed graphical models and semantic similarity. In Proceedings of the SIGDIAL 2009 Con-
ference, pages 235–243, London, UK. Association for Computational Linguistics.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstractive summarization with reinforce-selected sentence rewrit-
ing. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 675–686, Melbourne, Australia. Association for Computational Linguistics.

Jiaao Chen and Diyi Yang. 2020. Multi-view sequence-to-sequence models with conversational structure for
abstractive dialogue summarization. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4106–4118, Online. Association for Computational Linguistics.

Xiachong Feng, Xiaocheng Feng, Bing Qin, Xinwei Geng, and Ting Liu. 2020. Dialogue discourse-aware graph
convolutional networks for abstractive meeting summarization. arXiv preprint arXiv:2012.03502.

Prakhar Ganesh and Saket Dingliwal. 2019. Abstractive summarization of spoken and written conversation. arXiv
preprint arXiv:1902.01615.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summarization. In Proceedings of the 2nd Workshop on New Frontiers
in Summarization, pages 70–79, Hong Kong, China. Association for Computational Linguistics.

Chih-Wen Goo and Yun-Nung Chen. 2018. Abstractive dialogue summarization with sentence-gated modeling
optimized by dialogue acts. In 2018 IEEE Spoken Language Technology Workshop (SLT), pages 735–742.
IEEE.

Jian Guan, Yansen Wang, and Minlie Huang. 2019. Story ending generation with incremental encoding and
commonsense knowledge. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 6473–6480. AAAI Press.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous graph transformer. In Yennun
Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen, editors, WWW ’20: The Web Conference 2020, Taipei,
Taiwan, April 20-24, 2020, pages 2704–2710. ACM / IW3C2.

Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Julian Kupiec, Jan Pedersen, and Francine Chen. 1999. A trainable document summarizer. Advances in Automatic
Summarization, pages 55–60.

Manling Li, Lingyu Zhang, Heng Ji, and Richard J. Radke. 2019. Keep meeting summaries on topic: Abstrac-
tive multi-modal meeting summarization. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2190–2196, Florence, Italy. Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain. Association for Computational Linguistics.

Chunyi Liu, Peng Wang, Jiang Xu, Zang Li, and Jieping Ye. 2019a. Automatic dialogue summary generation
for customer service. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George
Karypis, editors, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 1957–1965. ACM.

Zhengyuan Liu, Angela Ng, Sheldon Lee, Ai Ti Aw, and Nancy F Chen. 2019b. Topic-aware pointer-generator
networks for summarizing spoken conversations. arXiv preprint arXiv:1910.01335.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing order into text. In Proceedings of the 2004 Conference
on Empirical Methods in Natural Language Processing, pages 404–411, Barcelona, Spain. Association for
Computational Linguistics.

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

Amita Misra, Pranav Anand, Jean E. Fox Tree, and Marilyn Walker. 2015. Using summarization to discover
argument facets in online idealogical dialog. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 430–440,
Denver, Colorado. Association for Computational Linguistics.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. Summarunner: A recurrent neural network based se-
quence model for extractive summarization of documents. In Satinder P. Singh and Shaul Markovitch, editors,
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, pages 3075–3081. AAAI Press.

Tatsuro Oya, Yashar Mehdad, Giuseppe Carenini, and Raymond Ng. 2014. A template-based abstractive meeting
summarization: Leveraging summary and source text relationships. In Proceedings of the 8th International Nat-
ural Language Generation Conference (INLG), pages 45–53, Philadelphia, Pennsylvania, U.S.A. Association
for Computational Linguistics.

Chris D Paice. 1990. Constructing literature abstracts by computer: techniques and prospects. Information
Processing & Management, 26(1):171–186.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. 2018.
Modeling relational data with graph convolutional networks. In European Semantic Web Conference, pages
593–607. Springer.

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1073–1083, Vancouver, Canada. Association for Computational Linguis-
tics.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hierarchical neural network models. In Dale Schuurmans and
Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA, pages 3776–3784. AAAI Press.

Robyn Speer and Catherine Havasi. 2012. Representing general relational knowledge in ConceptNet 5. In
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), pages
3679–3686, Istanbul, Turkey. European Language Resources Association (ELRA).

Laurens van der Maaten. 2014. Accelerating t-sne using tree-based algorithms. J. Mach. Learn. Res., 15:3221–
3245.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. 2017. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 5998–6008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018.
Graph attention networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

Tianyi Wang, Yating Zhang, Xiaozhong Liu, Changlong Sun, and Qiong Zhang. 2020. Masking orchestration:
Multi-task pretraining for multi-role dialogue representation learning.

Shasha Xie, Yang Liu, and Hui Lin. 2008. Evaluating the effectiveness of features and sampling in extractive
meeting summarization. In 2008 IEEE Spoken Language Technology Workshop. IEEE.

Lulu Zhao, Weiran Xu, and Jun Guo. 2020. Improving abstractive dialogue summarization with graph structures
and topic words. In Proceedings of the 28th International Conference on Computational Linguistics, pages
437–449, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao, Jingfang Xu, and Xiaoyan Zhu. 2018. Commonsense
knowledge aware conversation generation with graph attention. In Jérôme Lang, editor, Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, pages 4623–4629. ijcai.org.

Chenguang Zhu, Ruochen Xu, Michael Zeng, and Xuedong Huang. 2020. A hierarchical network for abstractive
meeting summarization with cross-domain pretraining. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings, pages 194–203.

CC
L
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 964-975, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

