@inproceedings{zhao-etal-2021-ji,
title = "基于枢轴语言系统融合的词汇混淆网络神经机器翻译(Neural Machine Translation for Vocabulary Confusion Network Based on Pivotal Language System Fusion)",
author = "Zhao, Xiaobing and
Jin, Bo and
Sun, Yuan",
editor = "Li, Sheng and
Sun, Maosong and
Liu, Yang and
Wu, Hua and
Liu, Kang and
Che, Wanxiang and
He, Shizhu and
Rao, Gaoqi",
booktitle = "Proceedings of the 20th Chinese National Conference on Computational Linguistics",
month = aug,
year = "2021",
address = "Huhhot, China",
publisher = "Chinese Information Processing Society of China",
url = "https://preview.aclanthology.org/fix-sig-urls/2021.ccl-1.5/",
pages = "46--56",
language = "zho",
abstract = "神经机器翻译在低资源语言的翻译任务中存在翻译难度大、译文质量不佳的问题。本文针对低资源语言与汉语之间没有双语平行语料的情况,采用正反向枢轴翻译的方法,生成了三种低资源语言到汉语的平行句对,采用词汇级的系统融合技术,将Transformer模型和对偶学习模型翻译生成的目标语言译文进行融合,然后通过混淆神经网络进行词汇选择,生成了更为优质的目标语言译文。实验证明,本文提出的多模型融合方法在爱沙尼亚语-汉语、拉脱维亚语-汉语、罗马尼亚语-汉语这三种低资源语言翻译任务中均优于独立模型的翻译效果,进一步提升了低资源语言神经机器翻译的译文质量。"
}
Markdown (Informal)
[基于枢轴语言系统融合的词汇混淆网络神经机器翻译(Neural Machine Translation for Vocabulary Confusion Network Based on Pivotal Language System Fusion)](https://preview.aclanthology.org/fix-sig-urls/2021.ccl-1.5/) (Zhao et al., CCL 2021)
ACL