@inproceedings{huang-etal-2021-ji,
title = "基于序列到序列的中文{AMR}解析({C}hinese {AMR} Parsing based on Sequence-to-Sequence Modeling)",
author = "Huang, Ziyi and
Li, Junhui and
Gong, Zhengxian",
editor = "Li, Sheng and
Sun, Maosong and
Liu, Yang and
Wu, Hua and
Liu, Kang and
Che, Wanxiang and
He, Shizhu and
Rao, Gaoqi",
booktitle = "Proceedings of the 20th Chinese National Conference on Computational Linguistics",
month = aug,
year = "2021",
address = "Huhhot, China",
publisher = "Chinese Information Processing Society of China",
url = "https://preview.aclanthology.org/fix-sig-urls/2021.ccl-1.35/",
pages = "374--385",
language = "zho",
abstract = "抽象语义表示(Abstract Meaning Representation,简称AMR)是将给定的文本的语义特征抽象成一个单根的有向无环图。AMR语义解析则是根据输入的文本获取对应的AMR图。相比于英文AMR,中文AMR的研究起步较晚,造成针对中文的AMR语义解析相关研究较少。本文针对公开的中文AMR语料库CAMR1.0,采用序列到序列的方法进行中文AMR语义解析的相关研究。具体地,首先基于Transformer模型实现一个适用于中文的序列到序列AMR语义解析系统;然后,探索并比较了不同预训练模型在中文AMR语义解析中的应用。基于该语料,本文中文AMR语义解析方法最优性能达到了70.29的Smatch F1值。本文是第一次在该数据集上报告实验结果。"
}
Markdown (Informal)
[基于序列到序列的中文AMR解析(Chinese AMR Parsing based on Sequence-to-Sequence Modeling)](https://preview.aclanthology.org/fix-sig-urls/2021.ccl-1.35/) (Huang et al., CCL 2021)
ACL