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Abstract

Existing entity alignment models mainly use the topology structure of the original knowledge
graph and have achieved promising performance. However, they are still challenged by the
heterogeneous topological neighborhood structures, which could cause the models to produce
different representations of counterpart entities. In the paper, we propose a global entity align-
ment model with gated latent space neighborhood aggregation (LatsEA) to address this chal-
lenge. Latent space neighborhood is formed by calculating the similarity between the entity
embeddings, it can introduce long-range neighbors to expand the topological neighborhood and
reconcile the heterogeneous neighborhood structures. Meanwhile, it uses vanilla GCN to aggre-
gate the topological neighborhood and latent space neighborhood respectively. Then, it uses an
average gating mechanism to aggregate topological neighborhood information and latent space
neighborhood information of the central entity. In order to further consider the interdependence
between entity alignment decisions, we propose a global entity alignment strategy, i.e., formu-
late entity alignment as the maximum bipartite matching problem, which is effectively solved by
Hungarian algorithm. Our experiments with ablation studies on three real-world entity alignment
datasets prove the effectiveness of the proposed model. Latent space neighborhood information
and global entity alignment decisions both contributes to the entity alignment performance im-
provement.

1 Introduction

Knowledge graph (KG) is an important tool to store knowledge, which provides support for many appli-
cations, such as question answering systems, recommender systems. Many KGs have been constructed
for particular applications. Sometimes single KG cannot meet the needs of certain applications, so it is
necessary to integrate multiple complementary KGs. Entity alignment is non-trivial to integrating dif-
ferent KGs. Traditional entity alignment methods are mainly divided into two categories, one is based
on the entity’s label information (Ngomo and Auer, 2011; Pershina et al., 2015), the other is based on
manually defining features. Recently, the embedding-based representation learning has attracted more
and more attention. Given a KG, embedding-based representation learning can map entities to a low-
dimensional vector space, then entity alignment model can find counterpart entities according to the
similarity of the embeddings. The embedding-based entity alignment approaches show its superiority.
Such methods are all built based on KG embedding models (such as TransE (Bordes et al., 2013)). Then
they use a transformation matrix to convert the embedding space and complete the entity alignment by
calculating the similarity between entity embeddings, such as MTransE (Chen et al., 2017). In recent
researches, graph convolutional neural networks (GCN) have shown amazing results when processing
graph structure data. GCN-based Entity alignment models all hope that counterpart entities have similar
neighborhood structures and have similar vector representations. Several recent GCN-based alignment
models (such as GCN-Align (Wang et al., 2018), AVR-GCN (Ye et al., 2019), GMNN (Xu et al., 2019),
AliNet (Sun et al., 2020), RDGCN (Wu et al., 2019)) have achieved good results.
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However, existing embedding-based entity alignment models still face a critical problem. The coun-
terpart entities usually have dissimilar neighborhood structures in between KGs, which will produce dif-
ferent embedding. The statistics on DBpedia datasets the percentages of such entity pairs reach 89.97%
between Chinese-English, 86.19% between Japanese-English and 90.71% between French-English, re-
spectively (Sun et al., 2020).

The difficulty in tackling this problem is how to alleviate the difference in topological neighborhood
structure. Therefore, we propose a global entity alignment model with gated latent space neighborhood
aggregation (LatsEA). Latent space neighborhood is formed in the embedding space by calculating the
similarity between the entity embeddings, which can introduce long-distance neighbors to expand the
topological neighborhood. The basic idea is to first learn KGs embeddings through KG embedding mod-
els and calculate the similarity between entity embeddings to generate latent space neighborhood. So,
the model can be combined with many existing KG embedding models. Then, we use the GCN to aggre-
gate topological neighborhood and latent space neighborhood respectively. Finally, we use an average
gating mechanism to aggregate topological neighborhood information and latent space neighborhood
information.

State-of-the-art models treat entities autonomously when determining entity alignment results. Intu-
itively, if a target entity is aligned to a source entity with higher confidence, it has a smaller chance to be
aligned with another source entity. So, we formulate entity alignment as the maximum bipartite match-
ing problem, which can be solved by Hungarian algorithm, so that the interdependence between entity
alignment decisions can be captured to make global entity alignment decisions. Our experiments with
ablation studies prove the effectiveness of the proposed model (LatsEA) and the global entity alignment
strategy. In summary, our main contributions as follows:

• We propose a novel global entity alignment model, which introduces latent space neighborhood to
reconcile the heterogeneous neighborhood structures.

• We propose an average gating mechanism to aggregate topological neighborhood information and
latent space neighborhood information, so that the entity embeddings contain the entities informa-
tion in topological and latent space neighborhood.

• We consider the interdependence between entity alignment decisions, and propose a global entity
alignment strategy, i.e., formulate entity alignment as the maximum bipartite matching problem and
use the classic Hungarian algorithm to solve.

• We perform experiments with ablation studies on three real-world datasets prove the effectiveness
of the proposed model and the global entity alignment strategy.

2 Related Work

In our proposed entity alignment model, the most relevant works are KG embedding and embedding-
based entity alignment, so we introduce some of the work related.

2.1 KG Embedding
In the past few years, the researches on KG embedding is mainly divided into three categories: transla-
tional distance models, neural network based models, and bilinear models (Zhang et al., 2020). TransE
(Bordes et al., 2013) is a classic model in the translational distance models. It believes that in a triple,
the relation is the translations of the head entities to the tail entities. TransE can solve the relation type
of 1-1 well, but cannot solve the relation type of 1-N, N-1, N-N. Therefore, subsequent researches have
proposed many improved versions based on the TransE, such as TransH (Wang et al., 2014), TransD (Lin
et al., 2015).

With the rise of neural networks in recent years, neural networks are used to many KG embedding
researches, such as ConvE (Dettmers et al., 2018) and CapsE (Nguyen et al., 2019). KGs have three
widely spread types of relation patterns: symmetry, inversion, and composition (Chen et al., 2017).
However, models mentioned above can model one or two type of relation patterns. RotatE (Sun et al.,
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2019), which is a translational distance models, can model all relation patterns. It maps the entities and
relations to the complex vector space and defines each relation as a rotation from the head entities to
the tail entities. But real-world KGs usually have semantic hierarchies that RotatE fails to model. So,
to tackle this challenge, the HAKE (Zhang et al., 2020) model is based on the RotatE, and retains the
rotation characteristics of the RotatE. It contains modulus part and phase part. The modulus part models
the entities at different levels of the hierarchy in KGs, and the phase part models the entities at the same
level of the semantic hierarchy. In the paper, we use the HAKE (Zhang et al., 2020) model to learn KGs
embedding and generate latent space neighborhood by calculating the cosine similarity between entity
embeddings.

2.2 Embedding-based Entity Alignment

Embedding-based entity alignment models employ the embedding models to learn entity embeddings,
then learn a mapping to transform the embedding space and find entity alignment through the similarity
between these embeddings, such as MTransE (Chen et al., 2017). IPTransE (Zhu et al., 2017) iteratively
adds the newly discovered entity alignment to the training data to improve the performance. There are
also some models that use auxiliary information to improve the performance. For example, JAPE (Sun et
al., 2017) combines attribute information to find entity alignment. Graph convolutional network (GCN)
has demonstrated its powerful ability to process graph structure data, so many entity alignment models
use GCN. GCN-Align (Wang et al., 2018) is a cross-language KG alignment framework, it uses GCN
to convert two KGs into the same embedding space, and then calculates the distance between entity
embeddings to completing the entity alignment. RDGCN (Wu et al., 2019) and AVR-GCN (Ye et al.,
2019) improved the traditional GCN alignment framework. MuGNN (Cao et al., 2019) proposes a two-
step method (KG completion and multi-channel graph neural network) for entity alignment. AliNet (Sun
et al., 2020) introduces two-hop neighbors to reconcile heterogeneous neighborhood structures, and has
achieved good results.

However, existing embedding-based entity alignment models mentioned above are still challenged that
the neighborhood structure may be heterogeneous in different KGs. This may cause model to produce
dissimilar entity embeddings for the corresponding entities, which will affect the accuracy of entity
alignment. To tackle this problem, a straightforward idea is to mitigate the heterogeneity between KGs.
AliNet (Sun et al., 2020) and MuGNN (Cao et al., 2019) above have noticed the problem. We are inspired
by these works, to alleviate the heterogeneity, our idea is to utilize the latent space neighborhood in the
KGs embedding space that can introduce distant neighbors to expand the topological neighborhood. In
order to further consider the interdependence between entities that have been ignored in many existing
researches, we convert the entity alignment into maximum bipartite matching problem to make global
entity alignment. This problem can be further solved by the Hungarian algorithm. Our experiments
with ablation studies on three entity alignment datasets prove the effectiveness of the proposed model.
Latent space neighborhood information and global entity alignment decisions both contributes to the
entity alignment performance improvement.

3 Problem Formulation

Formally, we represent a KG as a directed graph, where E represents the set of entities, R represents the
set of relations, and T is the set of triples. Each triplet (h, r, t) ∈ T indicates that the head entity h is
connected to the tail entity t through the relation r. Entity alignment task is to automatically find more
entity pairs that denote the same real-world identity in heterogeneous KGs. Entity alignment model is
to take different KGs G = (E,R, T ) and G′ = (E′, R′, T ′) as input, and find a set of identical entities
Se = {(e, e′) ∈ E ×E′ | e ≡ e′} representing the same object in the real-world. Those entity alignment
seeds can be used as training data.

4 The Proposed Model

The goal of entity alignment is to discover the entity pairs representing the same object in heterogeneous
KGs. In the paper, LatsEA uses HAKE (Zhang et al., 2020) model to learn the latent space of the KG,
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then it aggregates the topological neighborhood and the latent space neighborhood of the central entity
through vanilla GCN respectively. The average gating mechanism controls the topological neighborhood
information and latent space neighborhood information aggregation to yield central entity embeddings.
Then the entity similarity matrix is constructed by calculating the similarity between entity embeddings.
To further consider the interdependence between entities and make global entity alignment decisions,
we convert the entity similarity matrix into a bipartite graph, i.e., each row represents an entity in the
source KG, and each column represents an entity in the target KG. So, the entity alignment problem is
equivalent to maximum bipartite matching problem, which can be solved by Hungarian algorithm. The
model architecture is illustrated in Figure.1.

Figure 1: Overview of the LatsEA. The red rectangle in the figure represents the topological neigh-
borhood, and the green rectangle represents the latent space neighborhood.

4.1 Basic Embedding Module

In our proposed model, in order to obtain a very meaningful entity embedding, the KG embedding
model is required not only to model common relation patterns in the KG, but also to model semantic
hierarchies. Because semantic hierarchies are very common in real-world applications. So, we choose
Hierarchy-Aware Knowledge Graph Embedding (HAKE) (Zhang et al., 2020) to learn the latent space of
KG. HAKE maps KG into the polar coordinate system, the modulus part can model entities at different
level, and the phase part can model entities at the same level of the hierarchy. Given a triple (h, r, t), the
formula of HAKE as follows:

hm ◦ rm = tm, where hm, tm ∈ Rk, rm ∈ Rk
+

(hp + rp)mod2π = tp, where hp, rp, tp ∈ [0, 2π)k
(1)

where hm and hp are generated by the modulus part and the phase part respectively. Therefore, the entity
embeddings can be expressed as the concatenation of hm and hp. We calculate the cosine similarity
between entity embeddings to generate the entity’s latent space neighborhood, which will be described in
next section. In practice, we train HAKE beforehand and freeze its parameters in the following process.

4.2 Topological Neighborhood and Latent Space Neighborhood

Existing entity alignment models mainly use the topology structure. But there is almost no way to use
the structural information in latent space. The entity’s topological neighborhood NT (u) is defined as
follows:

NT (u) = {v|v ∈ E, (u, v) ∈ R} (2)

where E is a set of entities, R is a set of relations. With a certain number of hops, if an entity has a path
connected to the central entity, it will be part of the topological neighborhood. As shown in Figure. 2,
the set of all blue circles build up the topological neighborhood when the number of hops is 2.
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Figure 2: An illustration of the latent space neighborhood and topological neighborhood.

We introduce the latent space neighborhood to alleviate the heterogeneous. As shown in Figure. 2, if
the distance between entity embeddings generated by HAKE is less than our predefined threshold ρ, the
entity is the adjacent entity of the central entity in the latent space. These entities form the latent space
neighborhood of the central entity. Therefore, the latent space neighborhood NH(u) can be expressed
by the following formula:

NH(u) = {v|v ∈ E, d(eu, ev) < ρ} (3)

where ρ is a predefined distance threshold. eu, ev are embeddings of entity u and entity v, respectively.
d(eu, ev) is a function to calculate the distance between entity embeddings, we use the cosine similarity.
The dotted circle in Figure. 2 represents the latent space neighborhood, the radius is the threshold ρ. The
blue dotted line represents the topological neighborhood aggregation, and the green dotted line represents
the latent space neighborhood aggregation.

4.3 Neighborhood Aggregation

The GCN was first proposed in ICLR (Kipf et al., 2017), which deals specifically with graph-structured
data and particularly powerful. Therefore, we use vanilla GCN to aggregate the topological neighborhood
and latent space neighborhood respectively.

Topological Neighborhood Aggregation. The one-hop neighborhood is the most important structure
information to learn the central entities’ embeddings. The hidden representation of entity i at lth layer is
represented as h(l)i,T , it is obtained by aggregating its one-hop neighborhood, the calculation method is as
follows:

h
(l)
i,T = σ(

∑
j∈NT (i)

1

ai
W

(l)
T h

(l−1)
j ) (4)

Where NT (·) is a set of one-hop neighbors (including itself) of entity i, ai is the normalization constant,
W

(l)
T is the weight matrix of the lth layer, σ(·) is an activation function, we use the hyperbolic tangent

function (tanh). The input of each layer in GCN is a vertex feature matrix, it can encode nodes so that
the vector representation of the entities contains the structural information in the graph.

Latent Space Neighborhood Aggregation. The latent space of the KG is learned through the HAKE
(Zhang et al., 2020) embedding model, which maps the KG to a continuous latent space. The HAKE
embedding model is equivalent to a mapping function, which maps the nodes into a vector. The neighbor-
hood in the latent space contains the entity in the dotted circle with radius ρ in Figure. 2. The definition
of the latent space neighborhood is described in section 4.2. It is a set of entities whose distance to the
central entity is less than a given parameter ρ in the latent space. We use cosine similarity as the distance
function d(·). Through the aggregation of latent space neighborhood, it is possible to capture long-range
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dependencies and alleviate the non-isomorphic neighborhood structures. Vanilla GCN is also used to en-
code entities in latent space neighborhood aggregation. Like the topological neighborhood aggregation,
the hidden representation of the entity i in the lth layer is represented as h(l)i,H , which can be calculated
using the following formula:

h
(l)
i,H = σ(

∑
j∈NH(i)

1

ai
W

(l)
H h

(l−1)
j ) (5)

Where NH(i) is a set of latent space neighbors (including itself) of entity i, ai is the normalization
constant, W (l)

H is the weight matrix of the lth layer.

4.4 Gated Topological and Latent Space Neighborhood Aggregation

After generating topological neighborhood information h(l)i,T and latent space neighborhood information

h
(l)
i,H through GCN aggregation, they need to be aggregated to generate central entities embeddings h(l)i

in the lth layer. Because LSTM uses a gating mechanism to greatly alleviate the gradient disappear-
ance and achieved relatively good results. Motivated by LSTM, we propose to use an average gating
mechanism to aggregate topological neighborhood information and latent space neighborhood informa-
tion. Different from AliNet (Sun et al., 2020), the average gating mechanism adds an average between
different neighborhoods to reduce the influence of noise. First, the average vector h̄(l)i of topological
neighborhood information h(l)i,T and latent space neighborhood information h(l)i,H is obtained at the lth

layer, its calculation method is as follows:

h̄
(l)
i =

1

n

∑
j∈T,H

hli,j (6)

Where n is the number of neighborhood types. The basic idea is that if the entity embeddings in a
neighborhood is far from the average embedding, vector averaging can alleviate the noise introduced in
a neighborhood. Therefore, the hidden representation h(l)i of entity i at lth layer can be calculated by the
following formula:

h
(l)
i = GM(h̄

(l)
i ) + (1−GM(h̄

(l)
i )) · h(l)i,T (7)

GM(h̄
(l)
i ) = σ(Wh̄

(l)
i ) (8)

where GM(·) is a gate that controls the aggregation of topological neighborhood information and latent
space neighborhood information, this gate is as shown in (8). W is a weight matrix, so that the gate can
be trained together with the model. We can find from formula (7) that when the latent space neighbor-
hood brings more noise, its weight will be reduced, which can well alleviate the influence of the noise
introduced by the latent space neighborhood and improve the accuracy of the model.

4.5 Global Entity Alignment Strategy
We calculate the similarity between entity embeddings generated by average gated topological and latent
space neighborhood aggregation to generate the similarity matrix M. Many state-of-the-art models have
determined entity alignment results in an independent manner. However, each entity alignment decision
is interdependent. Source KG and target KG have a vertex set respectively, entity alignment is equivalent
to finding as many matching entities as possible in two disjoint vertex sets. So, to make global entity
alignment decisions, we formulate entity alignment as the maximum bipartite matching problem, which
can be solved by Hungarian algorithm. To facilitate subsequent processing, we use 1 to subtract the
similarity matrixM to get the matrixM−. Therefore, if the element inM− is smaller, the corresponding
two entities are more similar. The complete process is shown in Algorithm 1, which has time complexity
of O(n3) for entity alignment.

Suppose there are three entities s1, s2, s3 in the source KG, and three entities t1, t2, t3 in the target
KG. The example in Figure. 3 illustrates the algorithm.
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Algorithm 1: Hungarian algorithm
Input:M−

1 Subtracting the row minimum from each row;
2 Subtracting the col minimum from each row;
3 lineCount = 0;
4 while (lineCount <len(M−)):
5 Cover all zeros with a minimum line count;
6 if (lineCount == len(M−)):
7 break;
8 else:
9 all uncovered elements in M− subtract min uncovered element;
10 all elements in M− that are covered twice add min uncovered element;
11 Find an optimal assignment in M− with zeros cover;

Figure 3: Entity alignment as maximum bipartite matching problem using Hungarian algorithm.

To enable LatsEA to let the embeddings of aligned entities have small distance while those of un-
aligned entities have large distance, we use a set of pre-aligned entity pairs Se as training data to train
LatsEA. We minimizing the margin-based ranking loss function L in (Wu et al., 2019) to train model’s
parameters in an end-to-end way.

L =
∑

(u,v)∈Se

∑
(u′ ,v′ )∈S′

e

[f(hu, hv) + γ − f(hu′ , hv′ )]+ (9)

Where [x]+ = max{0, x}, Se is the set of pre-aligned entity pairs, which is the positive sample during
training. S

′
e is the set of negative entity pairs yielded by corrupting (u, v). γ is margin hyper-parameters

separating positive and negative entity pairs. f(·) = ‖ · ‖2 is the L2 distance metric function. We adopt
Adam to minimize the loss function L. Then use the global entity alignment strategy to obtain the final
entity alignment result.

5 Experiments

5.1 Datasets and Experiment Settings
Our experiments were conducted on DBP15K created by Sun et al. (2017). This dataset was generated
based on the DBpedia multilingual KG and contains DBPZH−EN (Chinese-English), DBPJA−EN
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Methods
DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR
*MTransE 0.308 0.614 0.364 0.279 0.575 0.349 0.244 0.556 0.335

*JAPE 0.412 0.745 0.490 0.363 0.658 0.476 0.324 0.667 0.430
*AlignE 0.472 0.729 0.581 0.448 0.789 0.563 0.481 0.824 0.599
*GCN 0.487 0.790 0.559 0.507 0.805 0.618 0.508 0.808 0.628

MuGCN 0.493 0.845 0.611 0.501 0.856 0.620 0.498 0.869 0.622
AliNet 0.505 0.726 0.589 0.528 0.747 0.612 0.526 0.785 0.622
LatsEA 0.522 0.763 0.613 0.539 0.772 0.625 0.538 0.787 0.632

Table 1: Results comparison on entity alignment (* marks the results obtained from AliNet)

(Japanese-English) and DBPFR−EN (French-English). Each dataset contains 15,000 aligned entities
for training and testing models. For detailed statistics, please refer to the original paper.

We investigate LatsEA’s performance on entity alignment by comparing with three embedding-based
entity alignment models and three GCN-based entity alignment models. They are MTransE (Chen et
al., 2017), JAPE (Sun et al., 2017), AlignE (Sun et al., 2018), GCN (Kipf et al., 2017), MuGCN
(Cao et al., 2019) and AliNet (w/o rel. loss) (Sun et al., 2020). Because of the AliNet (Sun et al.,
2020) model only provides codes that does not optimize the relation loss, we only compare with AliNet
(w/o rel. Loss) (Sun et al., 2020). If LatsEA optimizes the relation loss proposed by AliNet, it will
also perform better. We use grid search to find the appropriate value of the hyper-parameters. We
choose hyper-parameters on the following possible values: margin γ in {0.5,1.0,. . . ,3.0}, learning rate
in {0.0001,0.001,0.01,0.1}, ρ in {0.80,0.81,. . . ,0.95}, the dimension of the hidden representation of
each layer in {200,300,400,500,600}, the number of GCN layers in {1,2,3,4}. The following hyper-
parameters were used in the experiments.The γ is 1.5, the learning rate is 0.001, ρ is 0.93, the batch
size is 1024. For each positive sample, 10 negative samples are collected. All GCN-based models stack
two layers of GCN, and the dimension of the hidden representation of the three layers is 500, 400, and
300. We use tanh(·) as the activation function of neighborhood aggregation, and use the ReLU(·) as
the activation function of gating mechanism. We use 70% of the seed alignments (10500 entity pairs for
dbp15k) as the validation set and base on Hits@1 Performance termination training with a patience of 5
epochs. Following convention, we use Hits@1, Hits@10, and MRR to evaluate how the models perform.
Higher Hits@1, Hits@10, and MRR scores indicate better performance.

5.2 Entity Alignment Results
Table 1 shows the performance of LatsEA and other entity alignment models. To show the fairness of
the comparison, we reproduce the experimental results of MuGCN (Cao et al., 2020) and AliNet (w/o
rel. Loss) (Sun et al., 2020) models under the same conditions. According to the experimental results,
we found that LatsEA significantly outperforms the other entity alignment models on Hits@1 and MRR
on the three datasets, the best results are highlighted in bold. For example, LatsEA achieves a Hits@1
score of 0.522, 0.539, and 0.538 on the three datasets, which are 0.017, 0.011, and 0.012 higher than
the Hits@1 scores of AliNet (w/o rel. Loss) (Sun et al., 2020), respectively. Although LatsEA did not
perform as well as MuGCN (Cao et al., 2020) on Hits@10, note that, the Hits@1 can better reflect the
performance of the models. Because Hits@1 is equivalent to precision. LatsEA will perform better with
global entity alignment strategy, and its results will be discussed in detail in section 5.5. We think that
these results have demonstrated LatsEA’s effectiveness. The reason is that LatsEA uses the latent space
neighborhood information to mitigate heterogeneous neighborhood structures.

5.3 Effectiveness of Latent Space Neighborhood
Here, we set up two variants of LatsEA, LatsEA (To) only uses topological neighborhood information,
LatsEA (Ls) only uses latent space neighborhood information. The entity alignment results are shown in
Table 2. The best results are highlighted in bold. We observed that the latent space neighborhood brought
improvement to entity alignment. This is because latent space neighborhood can introduce long-range
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Methods
DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR
LatsEA(Ls) 0.115 0.372 0.197 0.113 0.257 0.166 0.105 0.269 0.162
LatsEA(To) 0.504 0.728 0.578 0.528 0.757 0.616 0.535 0.794 0.632

LatsEA 0.522 0.763 0.613 0.539 0.772 0.625 0.538 0.787 0.632

Table 2: Results on DBP15K w.r.t. different neighborhood

Methods
DBP15KZH−EN

H@1 H@10 MRR
*GCN 0.487 0.790 0.559

LatsEA(ρ=0.92) 0.516 0.742 0.601
LatsEA 0.522 0.763 0.613

LatsEA(ρ=0.94) 0.519 0.717 0.606
LatsEA(ρ=0.95) 0.517 0.714 0.604

Table 3: Results on DBP15KZH−EN w.r.t. different distance

neighbors to mitigate heterogeneous neighborhood structures. For example, on DBP15KZH−EN , the
introduction of latent space neighborhood information can improve the entity alignment performance by
about 2% on Hits@1, about 4% on Hits@10 and MRR. When LatsEA uses the latent space neighborhood
information alone, the model performs poorly. This may be because the threshold ρ is large, which results
in less useful information contained in the generated latent space neighborhood.

5.4 Impact of Distance when Generating Latent Space Neighborhood
The purpose of introducing the latent space is to expand the neighborhood structure and reconcile the
heterogeneity between KGs. We use grid search to find that the model performs better when ρ = 0.93. In
order to deeply observe the influence of distance threshold ρ when generating latent space neighborhood,
we evaluated the performance of LatsEA when the ρ is slightly higher than 0.93 or slightly lower than
0.93. The entity alignment results are shown in Table 3. Due to limited space, we only show the entity
alignment results on the DBP15KZH−EN . The best results are highlighted in bold. It can be observed
from the Table 3 that LatsEA performs best when the cosine similarity ρ = 0.93. We observe that
the model’s performance will declines as well when the ρ is larger. Because the larger ρ, latent space
neighborhood will bring less useful information. Similarly, although the smaller ρ allows LatsEA to
indirectly capture the more distant neighborhood information, such distant neighbors will also introduce
more noise. Experiments results are consistent with our empirical analysis.

5.5 Effectiveness of Global Entity Alignment Strategy
Here, we examined the effectiveness of the proposed global entity alignment strategy. After generate
the entity embeddings through our LatsEA, we obtain the similarity matrix of entities by calculating the
similarities between these embeddings. In order to consider the interdependence between each entity
alignment decision, we propose a global entity alignment strategy (GEAS). Concretely, we formulate
entity alignment as the maximum bipartite matching problem, which can be solved by Hungarian algo-
rithm. Because the algorithm can make global optimal entity alignment decisions and ensure that each
entity gets the optimal match. Therefore, we use Hits@1 to evaluate whether our proposed GEAS is
effective. Hit@1 is equivalent to the accuracy of the model. The accuracy is shown in Table 4. We
can observe from Table 4 that the performance on all datasets will be better with GEAS, revealing the
effectiveness of considering the interdependence between entity alignment decisions.

6 Conclusion

In this paper, we propose LatsEA for entity alignment, aiming at mitigating the heterogeneous among
the topological neighborhood structures of counterpart entities. LatsEA introduces neighborhood struc-
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Methods
DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

Hits@1 Hits@1 Hits@1
LatsEA 0.522 0.539 0.538

LatsEA+GEAS 0.551 0.582 0.593

Table 4: Results on DBP15K w.r.t. GEAS

ture in the latent space to capture distant neighbors’ information, which can expand the topological
neighborhood. It uses vanilla GCN to aggregate the information of adjacent entities in the topological
neighborhood and latent space neighborhood, respectively. Then, it uses an average gating mechanism
to aggregate topological neighborhood and latent space neighborhood information. In order to further
consider the interdependence between entities and make global entity alignment decisions, we propose
a global entity alignment strategy, i.e., formulate entity alignment as the maximum bipartite match-
ing problem which is effectively solved by Hungarian algorithm. We evaluate LatsEA and global entity
alignment strategy on three real-world entity alignment datasets, this result shows their effectiveness. Be-
cause the contribution of distant neighbors to the central entity embeddings is different, in future work,
we will introduce an attention mechanism to give different weights to neighbor entities with different
contributions when aggregating latent space neighborhood information.
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