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Abstract
Codeswitching is an omnipresent phe
nomenon in multilingual communities all
around the world but remains a challenge for
NLP systems due to the lack of proper data
and processing techniques. HindiEnglish
codeswitched text on social media is often
transliterated to the Roman script which
prevents from utilizing monolingual resources
available in the native Devanagari script.
In this paper, we propose a method to nor
malize and backtransliterate codeswitched
HindiEnglish text. In addition, we present
a graphemetophoneme (G2P) conversion
technique for romanized Hindi data. We
also release a dataset of scriptcorrected
HindiEnglish codeswitched sentences
labeled for the named entity recognition
and partofspeech tagging tasks to facilitate
further research in this area.

1 Introduction

Linguistic codeswitching (CS) is the phenomenon
of mixing two or more languages in the context of
a single utterance. Multilingual speakers around
the world engage in codeswitching on a regular
basis. Codeswitched data differs from monolin
gual data to a great extent which discourages use
of existing NLP technologies on codeswitched
text. Codeswitching also combines the syntax and
lexicon of the languages used, making it difficult
for monolingual models to adapt to codeswitched
data (Çetinoğlu and Çöltekin, 2019).
In textual codeswitching, text is frequently

romanized1 due to various technical constraints.
This is especially true in the case of HindiEnglish
since the Devanagari script for Hindi is not widely
available or efficient on modern technology. Fig
ure 1 shows an example of a codeswitched Hindi
English tweet. As we can see in the example, key
board layouts force users to choose a single script

1Throughout this paper, we use romanized to mean
transliterated to the Roman script

Original: bhai...why r u crying, film
me to boht maza a aajyega...!!☺☺☺
Translation: brother why are you crying, the film
will be fun!

Figure 1: An example of a codeswitched Hindi
English tweet. English text appears in italics and Hindi
text is underlined.

during time of purchase or adapt to using the stan
dard QWERTY layout for transliterating multiple
scripts. Since most users need to use English in
their daily life, it is impractical to choose a differ
ent keyboard layout. The ease of convenience due
to Latin script keyboard layouts and the lack of a
standardized transliteration process leads users to
employ adhoc phonetic transcription rules when
transcribing Hindi in the Roman script (Aguilar
and Solorio, 2020). Variations in transliteration
and the informality of social media adds noise
which makes HindiEnglish codeswitched data in
creasingly different from standard script text and
harder to process. Further, transliteration also pre
vents from leveraging the resources available for
standard Devanagari text like Wikipedia entries
and monolingual models for Hindi.
Recent trends in NLP research on code

switching have explored the performance of large
pretrained models on codeswitching tasks. State
oftheart multilingual models are typically trained
on standard script text like Wikipedia and struggle
at adapting to transliterated noisy codeswitched
input. Transfer learning has emerged as a promis
ing method to adapt monolingual models trained
on high resource languages like English to code
switched data. Large pretrainedmodels likemulti
lingual BERT (henceforth, mBERT) (Devlin et al.,
2019) have shown robust crosslingual zeroshot
performance with codeswitching data. Aguilar
and Solorio (2020) demonstrated the crosslingual
transfer ability of ELMo (Peters et al., 2018) ,
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which was trained on English, to SpanishEnglish,
HindiEnglish, and NepaliEnglish codeswitched
data. They observe that mBERT is outperformed
by their model (CSELMo) for HindiEnglish, pos
sibly due to the fact that mBERT is trained on
Hindi in Devanagari and their codeswitched input
is Romanized. In another study, Pires et al. (2019)
tested mBERT’s zeroshot performance on code
switched data in two formats: transliterated, where
Hindi words are written in the Roman script, and
corrected, where Hindi words have been converted
back to the Devanagari script by human annotators.
Their results show a substantial increase in zero
shot performance with scriptcorrected data. Other
studies have also shown improvement in perfor
mance after normalization and backtransliteration
on various tasks like named entity recognition and
partofspeech tagging (Ball and Garrette, 2018;
Bhat et al., 2018). Thus, there is often a need for
computationally inexpensive systems to prepocess
data by normalization and/or backtransliteration.
We begin by providing background for the

normalization and backtransliteration tasks.
Then, we describe our system for normalization,
graphemetophoneme, and backtransliteration.
Finally, we provide results and statistics of
our system against human annotated data. Our
contributions include: (1) a model to normal
ize phonetic typing variations, (2) a simplified
backtransliteration technique, (3) a grapheme
tophoneme conversion technique for romanized
Hindi, and (4) publicly available data sets of script
corrected HindiEnglish text.

2 Related Work

Normalization. Research in phonetic typing vari
ations when transliterating Hindi has gained in
creasing attention recently due to the presence
of codeswitched data on social media. Singh
et al. (2018c) proposed a normalization model us
ing skipgram and clustering techniques for Hindi
English data. Mandal and Nanmaran (2018) pre
sented the first sequencetosequence model for
normalizing BengaliEnglish codeswitched data.
Transliteration. Previous work in Hindi transliter
ation has fallen in two classes: rule based systems
and machine translation based approaches. Multi
ple libraries like indictransliteration2 exist for sim
ple transliteration tasks using rule based systems;

2https://pypi.org/project/
indic-transliteration/

however, they require input to be normalized and
fail at adapting to nonstandard data that is typ
ical on social media. Before the advent of neu
ral machine translation, statistical machine trans
lation tools such as Moses (Koehn et al., 2007)
were deployed for transliteration. Neural machine
translation based approaches have continued to
treat transliteration as a translation problem and ap
plied methods such as sequencetosequence learn
ing successfully. For instance, Bhat et al. (2018)
proposed a three step encoderdecoder model for
normalization and transliteration of HindiEnglish
codeswitched text.
GraphemetoPhoneme. Graphemetophomene
(G2P) is an important task for speech recogni
tion. Mortensen et al. (2018) presented a multi
lingual G2P system for transcribing a multitude of
languages using simple mappings. G2P for stan
dard Hindi is a straightforward task using simple
phonetic mappings. However, for nonstandard
transliterated Hindi, it can be tricky to generate ac
curate phonemic representations.

3 Background

User generated codeswitched data is noisy and rid
dled with word variations, spelling mistakes, and
grammatical errors. Since the Latin script does not
possess all the consonants and vowels required to
transliterate Hindi, users come up with the most
convenient ways to transcribe Hindi. Common
variations in transliterated Hindi are:

• Ambiguous consonant transliteration: For
consonants not covered by the Roman script,
users rely on the most appropriate translitera
tion available which leads to multiple sounds
being transliterated to the same grapheme in
the roman script. For example, both िदल
<heart> and डब्बा <box> are transliterated
as dil and dabba respectively but the charac
ter <d> corresponds to different consonants in
Hindi.

• Vowel dropping: Since native speakers of
Hindi do not require explicit notation for vow
els that can be easily inferred, they tend to
skip their transcription in text. For instance,
the Hindi word यार is generally transliterated
as yaar. However, vowel dropping changes it
to yr.

• Long vowel transliteration: Users transliter
ate long vowels in various ways. For ex

https://pypi.org/project/indic-transliteration/
https://pypi.org/project/indic-transliteration/
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ample, the most standard way to transliter
ate the word काम would be kaam but it is
often transliterated as kam. During back
transliteration, this can be confused as कम in
stead of काम.

• Double consonant transliteration: Singh et al.
(2018c) describe informal variations in dou
ble consonant transliteration, similar to long
vowel transliteration, where users use vari
ants with or without repeating the respec
tive consonant. For example, इज़्ज़त can be
transliterated as izzat or izat.

• Slang and abbreviations: We define some
commonly used slang and abbreviations for
both Hindi and English. Some examples in
clude:

btw > by the way

wassup > what’s up?

Besides the above, there are other non standard
variations observed in transliterated Hindi as well.
These variations make it difficult to properly
transliterate text using simple phonetic mappings
due to the lack of a standard transliteration scheme.
Numerous schemes like WX notation (Chaitanya
et al., 1996), BrahmiNetITRANS (Kunchukuttan
et al., 2015), and others have been introduced.
However, none of these have been widely em
ployed by the general public.

4 Methodology

We follow a two step system to transliterate Ro
manized Hindi to the Devanagari orthography.
First, we normalize the input using a sequenceto
sequence model. Then, for the backtransliteration
task, we syllabify the token and transcribe to De
vanagari. For the graphemetophoneme task, we
directly map the normalized tokens into the inter
national phonetic alphabet (IPA).

5 Data

We use the hinglishNorm dataset by Makhija et al.
(2020) to train the normalization model. The
dataset comprises of romanized codeswitched sen
tences and their normalized forms annotated by hu
mans. The data contains both Hindi and English
tokens along with their normalized forms. We cre
ate pairs of tokens and their normalized forms to
train our model. We further augment the dataset

with some frequently encountered Hindi words on
social media and their variations.

6 Experiments

6.1 Normalization

Rule based systems are not the most efficient solu
tion to normalization since they are not capable of
capturing all possible variations. Instead, we treat
normalization as a general machine translation
problem. We train a character level sequenceto
sequencemodel for normalization following the ar
chitecture of Sutskever et al. (2014). The model is
comprised of a Long ShortTerm Memory(LSTM)
encoder and LSTM decoder. We use the Keras li
brary (Chollet, 2015) for training the model. Ta
ble 1 compares our model’s performance with
the baselines provided by Makhija et al. (2020).
We evaluate our system using Word Error Rate
(Nießen et al., 2000), BLEU score (Papineni et al.,
2002), and METEOR score (Banerjee and Lavie,
2005).

Model WER BLEU METEOR
(Makhija et al., 2020) 15.55 71.21 0.50

Ours 18.5 80.48 0.56

Table 1: Results showing the effectiveness of the nor
malization model using the WER, BLEU, and ME
TEOR metrics.

It is likely that some of the errors are due to
inconsistencies in the transcription scheme in the
hinglishNorm dataset since it is annotated by hu
mans. One such instance is the long vowel आ
which is normalized to “aa” through most of the
data. However, in some instances, the annotators
normalize it to “a”. For example, “bt control to
krna pdega” from the training data is normalized
to “but control to karana padega”. A sample nor
malized output is shown in Table 2. Here we see
that the Hindi token “bhai” has been normalized to
“bhaai” while the English tokens “wher”, “r”, “u”,
and “frmm” have all been corrected to their correct
spellings.

Original bhaiHIN wher r u frmm
Translation brother, where are you from?
Normalized bhaai where are you from

Table 2: An example of normalized output



122

6.2 Backtransliteration
Contemporary approaches treat transliteration us
ing computationally intensive deep learning ap
proaches. However, once data is normalized in ef
fort tomitigate these variations, transliterating data
does not require any sophisticated approaches.

Roman IPA Dev Roman IPA Dev
k,q kə क kh kʰə ख
g gə ग gh gʰə घ
h ɦə ह ch t͡ʃə च
chh t͡ʃʰə छ j d͡ʑə ज
jh d͡ʑʱə झ y jə य
sh ʃə श t tə त
th ʈʰ थ d d̪ द
dh d̪ɦ ध r ɹə र
n nə न l lə ल
s sə स p pə प
f,ph pʰ फ़ b bə ब
bh bʱə भ m mə म
v ʋə व z zə ज़

Table 3: Mappings for consonants

Table 3 shows mappings between orthographic
forms and phonemic forms for consonants. Table 4
describes the corresponding mappings for vowels.

Roman IPA Dev Roman IPA Dev
a ə अ aa ɑː आ
i i इ ee iː ई
u u उ oo uː ऊ
ri, ru r ̩ ऋ e eː ए
ai,ei ɑːi ऐ o oː ओ
ou ɑːu, ɔː औ am əm अं
ah əh अः

Table 4: Mappings for vowels

A sample process for transliteration is outlined
in Table 5.

Original let’s go bhaaiHIN abhiHIN
kitnaaHIN wait karogeHIN

Translation let’s go brother how long
will you wait

Transliterated let’s go भाई अभी िकतना wait
करोगेे

Table 5: An example of backtransliteration

We test our system against human annotated

data from the XlitCrowd3 corpus for Hindi
English transliteration (Khapra et al., 2014). The
corpus provides crowdsourced data for roman
ized Hindi backtransliterated by human annota
tors. Results show that our system is 78.6% ac
curate. Most of the errors are due to inconsisten
cies in transcription schemes and the rest are due
to mistakes in normalizing by our model. For com
parison, the popular indictrans4 library achieves
63.56% on the same data set (Bhat et al., 2015).

6.3 GraphemetoPhoneme
For the graphemetophoneme task, we describe
manytoone mappings from romanized Hindi to
IPA and Devanagari as shown in Tables 4 and 3.
We use the Epitran5 library by Mortensen et al.
(2018) for transcribing English tokens to IPA. We
extend Epitran with customized mappings for the
Hindi tokens. Since the Roman script doesn’t
cover all the consonants required for transcribing
Hindi, there are multiple ways of transcribing the
same phoneme. However, prepocessing by nor
malization reduces the variation to a large extent.
An example of graphemetophoneme is provided
in Table 6.

Original let’s go bhaaiHIN abhiHIN
kitnaaHIN wait karogeHIN

Translation let’s go brother how long will
you wait

IPA lɛts gəʊ baɪ kɪtnɑ weɪt kəɾoːɡeː
Table 6: An example of Grapheme to Phoneme

7 Released Datasets

We use our system to backtransliterate the Hindi
English corpora from the LinCE6 benchmark
(Aguilar et al., 2020). The NER corpus is from
Singh et al. (2018a) and has 2,079 tweets while the
POS tagging corpus is from Singh et al. (2018b)
and has 1,489 tweets. Some statistics about the
datasets are presented in Table 7.

8 Conclusion and Future Work

Our method can easily be extended to other lan
guages that employ variations of the Devanagari

3https://github.com/anoopkunchukuttan/
crowd-indic-transliteration-data

4https://github.com/libindic/indic-trans
5https://github.com/dmort27/epitran
6https://ritual.uh.edu/lince/home

https://github.com/anoopkunchukuttan/crowd-indic-transliteration-data
https://github.com/anoopkunchukuttan/crowd-indic-transliteration-data
https://github.com/libindic/indic-trans
https://github.com/dmort27/epitran
https://ritual.uh.edu/lince/home
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Task Corpus Hindi English
NER Singh et al. (2018a) 13,860 11,391
POS Singh et al. (2018b) 12,589 9,882

Table 7: Statistics on the datasets

script, for instance Gujarati and Nepali. For other
Romanized languages, simple phonetic mappings
can be generated by domain experts. Using back
transliteration can help preprocess codeswitched
data to improve performance on a variety of tasks.
We also plan to augment the normalization pro
cess with a dictionary of common word varia
tions to make the normalization task more effi
cient. Our ongoing work includes testing perfor
mance of crosslingual transfer on romanized and
scripcorrected text using multilingual models like
mBERT.
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