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Abstract

We constructed parsers for five non-English
editions of Wiktionary, which combined with
pronunciations from the English edition, com-
prises over 5.3 million IPA pronunciations,
the largest pronunciation lexicon of its kind.
This dataset is a unique comparable corpus
of IPA pronunciations annotated from mul-
tiple sources. We analyze the dataset, not-
ing the presence of machine-generated pronun-
ciations. We develop a novel visualization
method to quantify syllabification. We exper-
iment on the new combined task of multilin-
gual IPA syllabification and stress prediction,
finding that training a massively multilingual
neural sequence-to-sequence model with copy
attention can improve performance on both
high- and low-resource languages, and multi-
task training on stress prediction helps with
syllabification.

1 Introduction

Wiktionary1 is a free online multilingual dictionary
containing a plethora of interesting information.
In this paper, we focus on the pronunciation an-
notations in Wiktionary, which are relatively un-
derstudied. For any given word, Wiktionary may
include data for IPA (both phonetic and phonemic),
hyphenation, dialectical variation, and even audio
files of speakers pronouncing the words. These
types of data have been shown to be useful for
tasks such as grapheme-to-phoneme transduction,
e.g. in recent SIGMORPHON shared tasks (Gor-
man et al., 2020). There are many existing parsing
efforts that have extracted pronunciation informa-
tion from Wiktionary. Recent extractions of data
from Wiktionary focus on obtaining high-quality
pronunciations from a single edition of Wiktionary,
usually the English edition (e.g. Wu and Yarowsky,

1www.wiktionary.org

2020a; Sajous et al., 2020; Lee et al., 2020). How-
ever, substantial increases in data can be obtained
by parsing other editions of Wiktionary, which have
been shown to be helpful for downstream tasks. For
example, Schlippe et al. (2010) extract pronuncia-
tions from the English, French, German, and Span-
ish editions, and ? extract pronunciations from the
English, German, Greek, Japanese, Korean, and
Russian editions.

In this paper, we build upon Yawipa (Wu and
Yarowsky, 2020a,b), a recent Wiktionary parsing
framework. Targeting the larger Wiktionaries for
increased coverage and those not dealt with in
previous work, we construct new pronunciation
parsers for the French, Spanish, Malagasy, Ital-
ian, and Greek editions of Wiktionary. Combined
with pronunciations from the English Wiktionary,
this totals to over 5.3 million words, which to our
knowledge is the largest pronunciation lexicon to
date and also a unique comparable corpora of pro-
nunciations. In Section 2, we show that our ex-
tracted pronunciations are a substantial increase
in data, covering numerous pronunciations not in
the English Wiktionary. This is especially bene-
ficial for low-resource languages. In Section 3,
we analyze this data and find that a small portion
of these pronunciations may be low-quality and
computer-generated. In Section 4, we present a
novel visualization technique for analyzing the use
of stress in IPA pronunciations. In Section 5, we
experiment on the combined task of massively mul-
tilingual syllabification and stress detection. Our
neural sequence-to-sequence model with copy at-
tention outperforms a sequence labeling baseline,
especially in very low-resource scenarios, under-
scoring the contributions of additional languages
to the task. In addition we find that a multi-task
approach of predicting both stress and syllabifica-
tion can improve the performance on syllabification
alone.

www.wiktionary.org
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Figure 1: Screenshot of the English Wiktionary’s pro-
nunciation information for the French word chien.

2 Wiktionary Pronunciation Extraction

As a multilingual resource, Wiktionary exists as
a set of numerous editions. That is, the English
Wiktionary is written in English by and for English
speakers, while the French Wiktionary is written
in French by and for French speakers. Any edition
can contain entries for words in any language. For
example, Figure 1 shows a screenshot of the En-
glish Wiktionary’s pronunciation information for
the French word chien. We use the terms <lang>
edition and <lang> Wiktionary interchangeably.

Why parse other editions of Wiktionary?
Speakers of different languages have different pri-
orities when annotating data. One can assume that
an editor of the Spanish Wiktionary is more likely
to provide pronunciations for Spanish words before
working on English words. Our effort at extract-
ing a new dataset of pronunciations from 6 differ-
ent editions of Wiktionary resulted in a total of
over 5,3 million unique IPA pronunciations across
2,177 languages. Note that because the data comes
from multiple editions, a word may have multiple
annotated pronunciations, making our dataset an
interesting comparable corpora. Figure 2 shows
the 16 languages with the most data in this dataset,
along with the contribution of each edition of Wik-
tionary from which we parsed and extracted IPA
pronunciations.

We draw several insights from Figure 2. First,
the inclusion of pronunciations from non-English
Wiktionaries represents substantial gains. Though
the English edition is the largest Wiktionary by
number of entries,2 the French edition contains a
huge number of pronunciations for French words,
dwarfing other editions that we parsed. The French
Wiktionary also supplies the entirety of the pronun-
ciations for Northern Sami words (se, spoken in
Norway, Sweden, and Finland), most of the avail-
able pronunciations for Esperanto (eo) and Italian

2https://meta.wikimedia.org/wiki/
Wiktionary

Figure 2: The top 16 languages in terms of number of
pronunciations, with contributions from multiple edi-
tions of Wiktionary.

(it) words, and also words in 1,198 other low-
resource languages not shown in the long tail of
Figure 2. In contrast, the English edition (the sec-
ond largest supplier) is the sole supplier of pronun-
ciations in 416 languages.

Parsing Implementation The Yawipa frame-
work (Wu and Yarowsky, 2020a) extracts data from
the XML dump of Wiktionary.3 Every entry is
encoded in MediaWiki markup, which is similar
to Markdown but includes special templates (en-
closed in double braces) which programmatically
generates HTML that we see when we visit the
Wiktionary website. For example, in the English
wiktionary, the entry for the French word chien con-
tains the following markup (rendered in Figure 1):

===Pronunciation===
{{fr-IPA}}
{{audio|fr|Fr-chien.ogg|audio}}
{{rhymes|fr|jẼ}}

These three templates generate the three bullet
points in Figure 1. Note that the {{fr-IPA}}
template generates the IPA pronunciation, so the
IPA itself does not exist in the English Wiktionary
dump. Thus, we can only extract the IPA from
the French edition, below, highlighting the need
to parse multiple Wiktionary editions for multiple
sources of pronunciations.

3https://dumps.wikimedia.
org/enwiktionary/latest/
XXwiktionary-latest-pages-articles.xml.
bz2, where XX is replaced with a two-letter ISO 639-1 code.

https://meta.wikimedia.org/wiki/Wiktionary
https://meta.wikimedia.org/wiki/Wiktionary
https://dumps.wikimedia.org/enwiktionary/latest/XXwiktionary-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiktionary/latest/XXwiktionary-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiktionary/latest/XXwiktionary-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiktionary/latest/XXwiktionary-latest-pages-articles.xml.bz2
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=== {{S|nom|fr}} ===
{{fr-rég|SjẼ}}

Above is the French Wiktionary’s pronunciation
for the word chien. A template (fr-rég) is also
used, but the IPA is extractable from the markup.
Each edition of Wiktionary has its own conven-
tions on formatting and templates, thus requiring
a separate parser specifically for that edition. For
implementation details, please see the repository
https://github.com/wswu/yawipa.

3 Analysis of the Dataset

For high-resource languages, the home language
edition (e.g. English edition for the English lan-
guage) usually supplies the most pronunciations,
but this is not always the case (e.g. the French
Wiktionary provides more Italian pronunciations
than the Italian edition). In terms of amount of
data, two languages are outliers: Malagasy (mg,
an Austronesian language spoken in Madagascar)
and Volapük (vo, a constructed language). As rela-
tively less spoken languages, these languages have
a disproportionately large amount of data. Why is
this so?

The data for these two languages come from the
Malagasy edition, which we parsed because of its
high ranking in the List of Wiktionaries.4 Both
Malagasy and Volapük are inflected languages5

whose IPA pronunciations seem to be entirely
computer-generated using a regular transduction
process from orthography to IPA, which was ex-
ploited to create a large set of pronunciations for
these two languages.

We also find that some Latin pronunciations may
be machine-generated. For example, the Malagasy
edition supplies /kontabulawit/ as the pronuncia-
tion for the Latin contabulavit and [d”ẽ:onstRat] for
demonstrat. These pronunciations lack stress and
syllable markings, and in the case of demonstrat,
do not agree with established pronunciations of
Latin. thus leading us to believe that these were
machine-generated pronunciations. In contrast, the
English edition contains both well-formed classi-
cal and ecclesiastical Latin pronunciations with
stress and syllable markers, but only for the dictio-
nary forms contabulō /kon"ta.bu.lo:/ and dēmonstrō
/de:"mon.stro:/.

4https://en.wikipedia.org/wiki/List_
of_Wiktionaries

5Inflected words have their own Wiktionary entry, which
can exponentially increase the number of pronunciations.

We must emphasize that we are not condemn-
ing the use of machine-generated pronunciations.
For many languages, e.g. Spanish and Latin, the
spelling of a word reflects its pronunciation, so
generated pronunciations are likely to be accurate.
Indeed, the existence of pronunciation templates
such as {{fr-IPA}}, mentioned above, are well-
researched additions to Wiktionary that alleviate
the need for humans to manually input IPA pro-
nunciations, thus reducing the potential for human
error. We fully support the use of these templates
(though they make our parsing job harder), and
we would love to see them standardized across all
Wiktionary editions, so that editions such as the
Malagasy edition can benefit from contributions to
the English edition (or any other edition, for that
matter).

We do caution researchers that the data con-
tained in crowd-sourced resources such as Wik-
tionary may not be thoroughly vetted for accuracy,
as we have discovered. Fortunately, the openness
of these crowdsourced data allows for community
members to quickly intervene when problematic
data is found. One especially poignant example in
recent news is the Scots Wikipedia, a large portion
of which was recently revealed to be written by
an American teenager who is not a Scots speaker.6

Essentially, this teenager translated English articles
into “Scots” by systematically rewriting English
words to sound as if they were spoken with a Scot-
tish accent, in the same vein as some of the Latin
“IPA” pronunciations in the Malagasy Wiktionary.

4 Visualizing Syllabification

IPA has the ability to mark syllable boundaries
(.) as well as primary (") and secondary () stress.
Words in some languages, e.g. Malay, do not have
stress, and sometimes stress can be double marked
("") for extra stress. We first quantify IPA stress and
syllabification in our extracted dataset then present
multilingual experiments on predicting syllabifica-
tion and stress.

We develop a visualization technique to under-
stand the distribution of words in each language
that contain syllable boundaries (Figure 3). These
bubble charts plot the number of characters in a
word (x-axis), the percentage of words containing
syllable markers (y-axis), and the number of words

6https://www.reddit.com/r/Scotland/
comments/ig9jia/ive_discovered_that_
almost_every_single_article

https://github.com/wswu/yawipa
https://en.wikipedia.org/wiki/List_of_Wiktionaries
https://en.wikipedia.org/wiki/List_of_Wiktionaries
https://www.reddit.com/r/Scotland/comments/ig9jia/ive_discovered_that_almost_every_single_article
https://www.reddit.com/r/Scotland/comments/ig9jia/ive_discovered_that_almost_every_single_article
https://www.reddit.com/r/Scotland/comments/ig9jia/ive_discovered_that_almost_every_single_article
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Figure 3: Percentage of French, English, Malagasy, and Latin words containing syllable markers, by length of
word. The size of the points indicates the number of words and cannot be compared among graphs.

in these categories (size of the dot). These charts
can help researchers to quickly quantify the pres-
ence of syllable markers, one component of high-
quality IPA pronunciations. We consider a word
to be syllabified if it contains any of the following
symbols: . " 

Ideally, one should see that the longer the word,
the higher the percentage of words that have sylla-
bles marked. French is a perfect example of this:
once words reach 9–10 characters in length, they
all contain syllable markers. By examining these
plots, we can easily identify examples of prob-
lematic IPA syllabification in Malagasy (mg) and
Latin (la) words. For Malagasy words, syllable
boundaries simply do not exist. For Latin words,
we see an unusual negative-slope curve, where
words around 4–6 characters in length are more
likely to have syllables marked, but longer words
are less likely to have syllable boundaries marked.
This analysis actually is consistent with our ear-
lier finding in Section 2: because Latin is a highly
inflected language, the dictionary forms contain
high-quality IPA, but the overwhelming number of
pronunciations are actually machine-generated for
inflected forms, which may not have the syllables
marked. English is a middle ground in terms of
quality. While we see the expected upward slope
as the length of the word increases, the percentage
of words with syllable markers never approaches
100%. A manual review of several English pro-
nunciations indicates that annotators simply did
not include syllable boundaries for many English
words. Further analyses could shed light on the rea-

sons for the negligence of the annotators, or other
phenomena that might explain the lack of syllable
markers.

5 Experiments

In this section, we present experiments on multi-
lingual syllable and stress prediction. In the lin-
guistics literature, many studies have shown that
awareness of syllable boundaries can improve word
recognition performance in children (e.g. McBride-
Chang et al., 2004; Plaza and Cohen, 2007; Gülde-
noğlu, 2017). Speech syllabification is also a com-
mon step in a speech recognition pipeline. Syllab-
ification of text is not a new task, and has been
explored via a variety of methods, including rule-
based and grammar-based approaches (e.g. Weeras-
inghe et al., 2005; Müller, 2006) and data-driven
approaches (e.g. Bartlett et al., 2008; Nicolai et al.,
2016; Gyanendro Singh et al., 2016). However, pre-
vious work has focused primarily on a handful of
languages, and some focus on orthographic syllabi-
fication rather than phonemic segmentation. Some
use CELEX (Baayen et al., 1996), a popular dataset
containing syllabified text, but it only contains syl-
labified words in English, German, and Dutch. In
contrast, our extracted pronunciation lexicon is a
unique multilingual resource that allows for devel-
oping and evaluating models and approaches on
the new combined task of massively multilingual
IPA syllabification and stress prediction across hun-
dreds of languages. In this task, given unmarked
IPA, a model must insert syllable markers or stress
markers at the appropriate locations.
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Data For our task, we filter our pronunciation
dataset to keep only IPA containing syllable bound-
aries or stress markers,7 so that we have ground
truth for our model. This resulted in 93,206 IPA
pronunciations across 174 languages, which we
split into a 80-10-10 train-dev-test stratified split
(same proportion of languages in each set).

Models We first build a baseline: a multilingual
character BiLSTM sequence tagger with 256 hid-
den size (B) that predicts both stress and syllabifica-
tion (Str & Syl) or syllabification alone (Syl). The
data is preprocessed such that each IPA character
is labelled with 0 for no stress or syllable, 1 for
primary stress ("), 2 for secondary stress (), and 3
for syllable boundary (.). We include a language
token so the model will incorporate knowledge of
the language. For example:

IPA: /In.flu"En.z@/
Input: eng I n f l u E n z @

Output: 0 2 0 3 0 0 1 0 3 0

For comparison, we experiment with two mod-
ern seq2seq models: the default encoder-decoder
model (S) in OpenNMT-py (Klein et al., 2017), and
the same model with copy attention (SC) (See et al.,
2017). In this scenario, we formulate syllabifica-
tion and stress prediction as a sequence generation
task, where the input is an unstressed, unsyllabified
IPA, and the output is the original IPA sequence
containing both stress and syllable markers.

We then treat syllabification and stress predic-
tion in a pipelined approach (Syl → Str), where the
first model (B or SC) will predict syllable bound-
aries, and then a second model will predict the
stress. Stress classification is a 3-class classifica-
tion problem: given a syllable, predict primary
stress, secondary stress, or no stress. The structure
of this stress classifier is also a BiLSTM, where the
hidden state of the syllable in question is passed to
a dense feed-forward layer, then a softmax.

5.1 Results

A summary of experimental results is in Table 1.
The baseline BiLSTM model performs consistently
worse than the seq2seq models. This is somewhat
surprising, since the seq2seq task is a more chal-
lenging task: the model must generate the IPA
characters along with stress and syllable markers.
However, the seq2seq model is able to generate the

7A stress marker can server as a syllable boundary, e.g. for
the English word consume /k@n"sum/.

Model Acc CED 5Acc 5CED

B Syl 68 .48 — —
SC Syl 79 .42 96 .11

B Syl → Str 53 .88 — —
SC Syl → Str 31 1.13 — —

B Str & Syl 52 .89 — —
-Str 68 .49 — —
S Str & Syl 69 .72 89 .25
-Str 77 .47 93 .16
SC Str & Syl 74 .54 92 .17
-Str 81 .35 95 .11

Table 1: Results on the syllabification and stress pre-
diction tasks. See Section 5 for abbreviations. Acc is
1-best accuracy, 5Best is 5-best accuracy (is the gold
in the top 5 hypotheses?), CED is mean character edit
distance.

correct sequence of IPA characters, minus stress
and syllable markers, in 95% (for regular attention)
and 99% (for copy attention) of test examples, alle-
viating our concerns and proving the effectiveness
of copy attention for this task.

The pipeline approach performs substantially
worse than the multi-task approach. In the pipeline,
the syllabification model first predicts the syllable
boundaries, then the stress classifier produces a
classification for each syllable. We find that with
the pipeline approach, it is impossible to improve
upon the first step in the pipeline. Thus, if the syl-
labification step does not correctly identify syllable
boundaries, the final pronunciation will never be
correct, even if the stress is correctly predicted for
each syllable.

Finally, multi-task training on both syllabifica-
tion and stress marking improves performance over
syllabification alone. We believe this is because
stress and syllable prediction are two somewhat
overlapping tasks. If a model can label stress, then
it should have some notion of where syllables are.
The (-Str) rows in Table 1 show performance on
syllabification by evaluating the output of the multi-
task model preprocessed to replace all stress marks
with syllable boundaries.

The large majority of languages in our dataset
can be considered low-resource, a specific inter-
est of our experiments. 154 of the 174 languages
have much fewer than 466 training examples (0.5%
of the entire dataset), yet the average accuracy on
these languages is an impressive 67% for syllabifi-
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cation (B Str & Syl - Str) and 51% for both syllabi-
fication and stress prediction (B Str & Syl). This
highlights the contribution of other languages in a
single massively multilingual model trained to do
both tasks. Other researchers have found that good
performance on syllabification requires much more
data than this (Nicolai et al., 2016). We highlight
the fact that many of the languages have less than
10 test examples and can be considered truly low-
resource; the contribution of many other languages
allows our multilingual models to predict the cor-
rect pronunciation with minimal training data in a
specific language. Though we find that multilin-
gual training helps for low-resource languages, it
can also help with high-resource languages: in the
SC Str & Syl scenario, a model trained only on
French obtained 92.1% on the French test words,
compared to the multilingual model at 98.1% ac-
curacy. Full tables of results, along with code to
reproduce our experiments, is available at https:
//github.com/wswu/syllabification.

6 Conclusion

We extracted the largest dataset of IPA pronuncia-
tions to date, by combining IPA from the French,
Spanish, Malagasy, Italian, and Greek editions
of Wiktionary along with existing pronunciations
from the English edition, totaling to 5.3 million pro-
nunciations. We developed a visualization method
for examining syllabification in large datasets,
which can give indications about the quality of
IPA pronunciations. We experiment on the new
combined task of massively multilingual prediction
of syllabification and stress using a variety of mod-
els and approaches, showing success with a multi-
task multilingual sequence-to-sequence model. We
hope our dataset and analysis methods will be use-
ful for researchers in a variety of disciplines.

We envision our newly extracted pronunciation
dataset to be especially useful for researchers in-
terested in lexicography and spoken language tech-
nologies. In terms of lexicography, this dataset
is a unique comparable corpus containing anno-
tations from several editions of Wiktionary, each
representing a distinct population of speakers. In
several cases, the same pronunciation is supplied by
multiple editions, and some editions use phonetic
rather than phonemic IPA. Future work can address
questions such as: When and why might differ-
ent editions disagree on a pronunciation? Why do
some words have pronunciations and others don’t?

In addition, we would like to investigate the use
of our pronunciation dataset in language learning
of core vocabulary of low-resource languages (Wu
et al., 2020) and modeling etymology relationships
between words (Wu et al., 2021).
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