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Abstract

Any test that promises to assess Human
Knowledge of Language (KoL) for any
statistically-based Language Model (LM)
must meet three requirements: (1) compre-
hensive coverage of linguistic phenomena;
(2) replicable and statistically-vetted human
judgement data; and (3) test the LM’s abil-
ity to track the gradience of sentence accept-
ability. To this end, we propose here the
LI-Adger dataset: a comprehensive collection
of 519 sentence types (4177 sentences) span-
ning the field of current generative linguis-
tics, accompanied by attested and replicable
human acceptability judgements (Sprouse and
Almeida, 2012; Sprouse et al., 2013; Sprouse
and Almeida, 2017). Finally, we posit the
Acceptability Delta Criterion (ADC), an eval-
uation metric that tests how well a LM can
track changes in human acceptability judge-
ments across minimal pairs instead of testing
whether the LM assigned a greater likelihood
to the expert-labeled acceptable sequence of a
minimal pair (S1 > S2). We benchmark six
different BERT (Devlin et al., 2018) models
and a baseline trigram model with the ADC.
Although the best performing BERT model
scores 94%, and the trigram scores 75% clas-
sification accuracy under the traditional met-
ric, performance drops precipitously to 38%
for BERT and 30% for the trigram model un-
der the ADC. Adopting the ADC reveals how
much harder it is for LMs to track the gra-
dience of acceptability across minimal pairs.
With this work, we propose and provide the
three necessary requirements for a comprehen-
sive linguistic analysis and test of the appar-
ently Human KoL exhibited by LMs that we
believe is currently missing in the field of Com-
putational Linguistics.

1 Introduction

Assessing Human Knowledge of Language (KoL)
in statistically-based Language Models (LMs) gen-
erally involves assuming some fundamental prop-

erty or computation occurring in the Human Lan-
guage Faculty and arguing that an often poorly
understood, statistical, and typically connectionist
model, also encodes that property or uses that com-
putation. This quickly becomes a problematic task
because understanding the Human Language Fac-
ulty has been conventionally posed as a problem to
be solved at a causal level removed from the algo-
rithmic and computational implementation levels.
Put in more abstract terms, assessing the KoL of
a LM requires inferring some abstract operation
inside a human black box based on input-output
analysis and determining whether a second, statisti-
cal black box is somehow also performing the same
operation by some other means.

The issue is made even more challenging by
changes in either field that consequently change
our assumptions surrounding the Human Language
Faculty or the black boxes used in Machine Learn-
ing (ML). This, in turn, immediately impacts any
claims relating the two by some abstract property,
linguistic or otherwise, that is required for the eval-
uation of LMs. If any concrete progress is to be
made when it pertains to KoL in LMs, then the de-
sign of the tests we perform and their conclusions
must be based on the same empirical data from cur-
rent input-output analyses of the Human Language
Faculty that have subsequently been used to build
the linguistic theories that attempt to characterize
and explain Human KoL.

We take concrete steps toward designing such a
test of KoL for LMs by positing the necessary com-
ponents required to build upon the same foundation
of empirical data as in the field of generative lin-
guistics. First, we posit a gold standard in empirical
data: the LI-Adger dataset, a collection of linguistic
phenomena representative of the field of linguistics,
accompanied by human acceptability judgements
in the form of Magnitude Estimation (ME) data,
all collected by Sprouse and Almeida 2012 and
Sprouse et al. 2013. Altogether, the dataset has an
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attested maximum False Positive (Type 1 error) rate
between 1-12% and is well above the 80% thresh-
old for statistical power (<20% False Negatives, or
Type 2 errors) (Sprouse and Almeida, 2017). The
reliability of the LI-Adger dataset is such that, if
the linguistic theories were somehow proven to be
incorrect and reformulated, it would not be because
of the data, but because of incorrect theorizing; any
tractable theory of linguistics must account for the
attested empirical phenomena observed in the LI-
Adger dataset (Sprouse and Almeida, 2012). To
complement this data, we propose the Acceptability
Delta Criterion (ADC), a proof of concept metric
that enforces the gradience of acceptability in its
evaluation of model performance, and adopts the at-
tested continuous human judgements as the ground-
truth labels that LMs must approximate in order
to demonstrate KoL. Finally, we use two distinct
Bidirectional Encoder Representations from Trans-
formers (BERT; Devlin et al. 2018) models: the out-
of-the-box BERT trained using the Masked Lan-
guage Modeling (MLM) objective (BERTMLM),
and BERTCoLA, which is fine-tuned using the Cor-
pus of Linguistic Acceptability (CoLA; Warstadt
et al. 2019). As an additional baseline check, we
include a trigram model trained using the British
National Corpus (BNC) to test whether the ADC
would constitute a meaningful advantage in statis-
tical significance (fewer Type 1 errors) over the
traditional method of comparing probabilities over
isolated, minimally-differing sequences of words.
Henceforth we refer to the traditional metric as the
BLiMP criterion1(Warstadt et al., 2020), that will
be contrasted against the new measure proposed
here, the Acceptability Delta Criterion (ADC).

Under the BLiMP criterion, BERTCoLA, cor-
rectly evaluates 2213 out of 2365 (∼94%) minimal
pairs in the LI-Adger dataset; that is, for those 2213
minimal pairs, BERTCoLA gives a higher score to
the sentence in the minimal pair deemed by experts
to be the acceptable one of the pair. To put the
performance of BERTCoLA into perspective, the
trigram model’s output, when normalized for se-
quence length using the Syntactic Log-Odds Ratio
(SLOR; Pauls and Klein, 2012; Lau et al., 2017) is
able to correctly evaluate 1781 out of 2365 (∼75%)

1Although this has been the traditional metric to test KoL
in the literature (Linzen et al., 2016; Marvin and Linzen, 2018;
Wilcox et al., 2018; Warstadt and Bowman, 2020; among
others), we name this metric with the same acronym as that of
the Benchmark for Linguistic Minimal Pairs by Warstadt et al.
(2020) mainly for conciseness and ease of use.

minimal pairs. Considering the coverage of phe-
nomena in the LI-Adger dataset, we may interpret
these results in one of two ways: either metrics
such as the BLiMP criterion lead to tests with low
levels of statistical significance (with a high rate
of false positives), or a basic trigram model using
SLOR encodes the KoL necessary to account for
75% of the phenomena in generative linguistics.

Precisely this dilemma is what the ADC is meant
to solve. Evaluating the models on how well they
track the gradience of acceptability by adopting the
ADC at its strictest level (with δ = 0.5, where δ
indicates the number of standard deviation units a
model’s scores are allowed to deviate from the cor-
responding human judgements) leads to a notable
drop in performance, particularly for the trigram
model. BERTCoLA only correctly scores 726 out of
2365 (∼31%) minimal pairs, whereas the trigram
model with SLOR correctly scores 712 out of 2365
(∼30%). The ADC is therefore a much harder task,
because the difference in likelihood acceptability
score between the two sentences in each minimal
pair is what is being evaluated.

2 Related Work

The success of Neural Language Models at dif-
ferent natural language tasks, such as Next Sen-
tence Prediction (NSP), Machine Translation (MT)
and Question Answering (QA), among others2, has
made it a popular endeavor to assess the potential
KoL encoded in the learned representations of the
language models and how that KoL may be con-
tributing to their performance.

Human KoL, due to its abstract, deliberately
acomputational nature, can only be assessed via
proxies, generally by probing language acquisition
or use. At present, the studies of LMs’ KoL that
rely on an input-output analysis of the system tend
to focus on probing their weak generative capac-
ity: i.e, testing whether a given LM can discern
whether a particular sequence of words is or is not
in the set of sentences generated by some presumed
corresponding grammar, typically by comparing
the probabilities the LM assigns to different but re-
lated sequences of words. Contrast this with testing
the LM’s strong generative capacity by evaluating
whether it has assigned the correct syntactic struc-
ture, or series of candidate syntactic structures in

2For a quick collection of more natural language tasks
and how different models perform on them, see the GLUE
Leaderboard or the Super GLUE Leaderboard.

https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard
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the case of ambiguous or homonymous sequences,
to a sequence of words (Chomsky, 1956).

Warstadt et al. (2020) have taken seminal steps
toward evaluating LMs beyond their weak gener-
ative capacity by positing the Benchmark of Lin-
guistic Minimal Pairs for English (BLiMP). They
automatically generated 67 datasets of 1000 mini-
mal pairs each from grammar templates that span
12 linguistic phenomena. They designed the tem-
plates to contrast in grammatical acceptability by
isolating specific phenomena in syntax, morphol-
ogy or semantics. In doing so, the authors intend to
mirror what a working linguist uses to probe KoL
in native speakers of a language. Because such prin-
ciples generally appeal to grammatical constraints,
they go beyond simple weak generative capacity.

While the tradition of using minimal pairs in lin-
guistics dates back nearly 100 years (e.g. Bloom-
field 1933, among many others), the concept of
using minimal pairs to evaluate NN models is not
entirely new either (Linzen et al., 2016; Marvin and
Linzen, 2018; Wilcox et al., 2018; to name a few).
However, the creators of BLiMP take the idea to
a much larger scale and propose a single metric
for evaluation, which we have named the BLiMP
criterion out of convenience. For a given minimal
pair mi consisting of an acceptable sentence si,1
and an unacceptable sentence si,2, if a LM eval-
utes P (si,1) > P (si,2), then the LM has met the
BLiMP criterion for mi. The authors of BLiMP
thus score a LM on the BLiMP dataset according
to the percentage of all the minimal pairs for which
it was able to fulfill the BLiMP criterion. This,
of course, can be broken down into further analy-
ses of the 12 linguistic phenomena they sought to
represent in the dataset.

Because the BLiMP dataset relies on templates,
the choice and design of the linguistic phenomena
represented in the data is inherently limited, and
therefore unrepresentative of syntax or linguistics
more broadly. Secondly, the templated approach
produces semantically implausible sentences, such
as Sam ran around some glaciers as noted by
Warstadt et al. (2020) in their paper. Sprouse et al.
(2018) have shown that semantic implausibility is
a very strong confounding factor when eliciting
human acceptability judgements, even in a Forced
Choice (FC) task such as the one used to collect
the human judgement data in BLiMP. Finally, the
BLiMP criterion treats sentence acceptability as
a functionally categorical phenomenon, which we

assert to be gradient by nature.

Our proposed test of Human KoL in LMs takes
this minimal pair approach to the next level by ad-
dressing the three gaps we have outlined above. We
(1) expand linguistic coverage to be representative
of the field with the LI-Adger dataset, (2) further
control for confounding factors such as semantic
implausibility when eliciting human acceptability
judgements by using the examples constructed by
hand by Sprouse and Almeida 2012 & Sprouse
et al. 2013, and (3) enforce the gradient nature of
sentence acceptability judgements with the ADC.

3 Why BERT is the benchmark.

We chose BERT as the model to test due to the
growing body of research attributing ever greater
Human KoL to BERT. Warstadt and Bowman
(2019) have shown high Matthews Correlation Co-
efficient (MCC) scores between the expert accept-
ability labels for the sentences in the Corpus of
Linguistic Acceptability (CoLA; Warstadt et al.,
2019) and BERTCoLA models’ predictions. They
have gone on to show with a grammatically anno-
tated CoLA analysis set that BERTCoLA models ex-
hibit very strong positive MCC scores on multiple
syntactic features. For example, they claim BERT
exhibits strong knowledge of complex or noncanon-
ical argument structures such as ditransitives and
passives, and has a distinct advantage over base-
line performance on sentences with long-distance
dependencies such as questions. Finally, Salazar
et al. (2019) used the raw pseudo-log-likelihood
(PLL; Wang and Cho, 2019; Shin et al., 2019;
Salazar et al., 2019) scores from the out-of-the-box
BERTMLM to evaluate its KoL using the BLiMP
benchmark and found it to correctly predict 84.8%
of the minimal pairs in BLiMP, thereby beating
GPT-2 by 4.2% and almost reaching the human
baseline at 88.6%. We take the information pro-
vided here and the overarching body of research
surrounding BERT 3 as the baseline level of perfor-
mance to be expected from the model. We hypothe-
size that BERT is capable of exhibiting reasonable
levels of gradience when it calculates sequence
likelihoods or acceptability scores across minimal
pairs when compared to the human ME data.

3For a recent review of the Knowledge of Language that
has been attributed to BERT, see A Primer in BERTology:
What We Know About How BERT Works, (Rogers et al., 2021)
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4 The LI-Adger dataset is the test set.

The LI-Adger dataset is a collection of two separate
datasets. The first consists of a randomly selected
sample of 150 pairwise phenomena (300 sentence
types) from Linguistic Inquiry (LI) 2001-2010 col-
lected by Sprouse et al. (2013). Each pairwise
phenomenon includes 8 hand-constructed, semanti-
cally plausible and lexically matched minimal pairs
such that most of the contribution of lexical infor-
mation to the acceptability of the sentences would
be distributed equally to the pair.

The second set of sentences is an exhaustive se-
lection of 219 sentence types from Adger (2003)’s
Core Syntax textbook (198 directly from the text-
book + 21 as additional controls) that form 105
multi-condition phenomena collected by Sprouse
and Almeida (2012). Much like the LI dataset, 8 to-
kens of each sentence type were created by hand by
the original authors such that the structural proper-
ties of the condition were maintained but the lexical
items varied.

For the purposes of the LI-Adger dataset as a
whole, we have split each multi-condition phe-
nomenon into minimal pairs by taking each pos-
sible combination of acceptable and unacceptable
sentences in the condition as a valid minimal pair,
when properly lexically matched. We include an
explicit example of the arrangement with a multi-
condition phenomenon from Chapter 8 (Functional
Categories III) of the Core Syntax textbook in Ap-
pendix A.

The Adger dataset, in virtue of being sampled
from the Core Syntax textbook, that constructs a
theory of syntax from the ground up on the basis
of key examples, can be taken to have a reasonably
good coverage of the field of syntax. We augment
this with the LI dataset, sampled from the 111/114
articles published in Linguistic Inquiry about US
English syntax from 2001-2010 (out of the total
308 articles published during that time). Therefore,
to the extent that the Adger Core Syntax textbook
and LI2001-2010 are representative of the data in
the field, so is the LI-Adger dataset. (Sprouse and
Almeida, 2012; Sprouse et al., 2013).

5 The Human Magnitude Estimation
(ME) data are the ground truth labels.

Just as important as the coverage of linguistic phe-
nomena represented in the LI-Adger dataset is the
foundation of human judgement data built upon
it. Sprouse and Almeida (2012) collected Magni-

tude Estimation (ME) and Yes-No (YN) judgement
data from a total of 440 native participants for the
469 data points they sampled from the Adger Core
Syntax textbook. After conducting three different
statistical analyses on the data (standard frequentist
tests, linear mixed-effects models, and Bayes fac-
tor analyses), they found that the maximum repli-
cation failure rate between formal and informal
judgements (i.e. formal vs. informal data collec-
tion methods) was 2 percent (Sprouse and Almeida,
2012; Schütze and Sprouse, 2013).

Sprouse et al. (2013) took those analyses even
further with their sample of 148 pairwise phenom-
ena from LI2001-2010. They collected data for
the LI sentences using the 7-point Likert Scale
(LS) task, ME and Forced Choice (FC) and vet-
ted this dataset via 5 different statistical analyses
(Descriptive directionality, one- and two-tailed null
hypothesis tests, Bayes factor analysis and linear
mixed effect models). They estimated a minimum
replication rate for journal data of 95 percent ±5
(Sprouse et al., 2013; Schütze and Sprouse, 2013.

Finally, Sprouse and Almeida (2017) sampled
50 pairwise phenomena from the LI dataset in a
complementary study that determined the statisti-
cal power of formal linguistics experiments by task
and average effect size and recommend setting the
threshold for well-powered experiments at 80% sta-
tistical power. They find that the FC task would
reach the 80% power threshold and detect 70% of
the phenomena published in LI2001-2010 with just
ten participants, assuming each provides only one
judgement per phenomenon. With fifteen partic-
ipants, FC would detect 80% of the phenomena.
Because the ME task has less statistical power than
FC, it requires at least thirty to thirty-five partici-
pants to reach the same 80% coverage of LI2001-
2010 as FC (Sprouse and Almeida, 2017; Schütze
and Sprouse, 2013). Because the sample sizes for
the LI-Adger datsets are much larger (104 partici-
pants per condition for the LI sentences and 40 for
the Adger sentences), we do not forfeit any statisti-
cal power by using ME data in spite of the higher
statistical power of the FC task. On the contrary,
the ME task will allow us not only to perform the
same type of functionally categorical acceptability
comparison as the BLiMP criterion, but also allow
us to make comparisons between every condition
in the dataset.

Taken together, the human ME data that accom-
pany the LI-Adger dataset are therefore reliable,
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replicable and statistically powerful. This collec-
tion of empirical data has the added benefit of being
theory-agnostic; if linguistic theories were to fun-
damentally change in the future, the significance
and validity of the data would remain unchanged
because this statistically vetted empirical evidence
would still remain to be accounted for.

6 The Acceptability Delta Criterion
(ADC) is the loss function.

Thanks to the ME data associated with each sen-
tence in the LI-Adger dataset, we can now make
direct acceptability comparisons, not just between
the two sentences of a minimal pair, but also across
minimal pairs, and even across phenomena. The
reason why is precisely the gradient nature of ac-
ceptability: violations of certain linguistic phenom-
ena elicit much stronger responses from the partic-
ipants than others, as observed in the differences
in ME scores across minimal pairs and across lin-
guistic phenomena in the dataset. We include an
example of such a difference in Appendix B.

Acceptability judgement experiments carry as a
necessary underlying assumption that acceptability
is a percept that arises in response to linguistic stim-
uli. Collecting data about the percept requires then
that the subject report that perception of acceptabil-
ity (Chomsky, 1965; Sprouse and Almeida, 2013;
Schütze and Sprouse, 2013; T Schütze, 2016). Con-
sequently, acceptability judgements are a behav-
ioral response that may vary in intensity, much like
brightness, loudness, temperature, pain, etc. The
degree of this response is inherently informative,
in particular because acceptability is the behavioral
output of the grammatical system, to which neither
speakers nor linguists have direct access. We in-
clude one example of this variability in intensity
and how it is reflected in the human ME judgements
in Appendix B.

To this end, we propose the Acceptability Delta
Criterion (ADC). It is founded on the principle that,
if we are to ascribe any inferred knowledge of one
black box (the Human Language Faculty) to an-
other black box (Neural Language Models) based
solely on an input-output analysis of both systems,
then the response of both systems must agree both
categorically and in magnitude. In other words, for
a minimal pair whose change in human acceptabil-
ity rating is nearly night and day, a language model
with comparable KoL must output a similarly dras-
tic change in acceptability rating across the same

minimal pair.
To make this example more concrete: Suppose

we have a language model L with output function
f that takes in a sequence of words ~xi and out-
puts a score yi. The first step in computing the
ADC is to understand the range of values output
by the language model L over the 4179 LI-Adger
sentences: Y = [y1, y2, ..., y4179]. With the full
range of values, we apply a Z-score transformation
to each of the values in Y by subtracting the mean
of Y from each of the values and then dividing
them by the standard deviation of Y . This will
yield the set of Z-score transformed predictions
Z = [z1, z2, ..., z4179]. Notice that because this
is a purely linear transformation, it preserves the
relationships between the data points. In addition,
the resulting set of predictions Z represents a stan-
dardized form of Y , where each prediction zi is
expressed in standard deviation units of yi from the
mean of Y (Schütze and Sprouse, 2013).

Now that we have grounds for making the com-
parison4 and a value for how acceptable the model
L finds a sequence of words ~xi in terms of standard
deviation units zi, we can begin to compare the
degree of this acceptability response to the human
judgement data, also expressed in standard devia-
tion units. For a given minimal pair mi consisting
of an acceptable sentence si,1 and an unacceptable
sentence si,2, we will have 4 pieces of informa-
tion: two human Z-score transformed acceptability
judgements hi,1 and hi,2, and two language model
scores zi,1 and zi,2. We turn these into two con-
crete points of comparison: a human acceptability
delta ∆hi = hi,1 − hi,2 and a language model ac-
ceptability delta ∆lmi = zi,1 − zi,2. In this new
formulation, no information has been lost. Recall
that the BLiMP criterion is met for the minimal
pair mi when the language model scores the ac-
ceptable sentence higher than the unacceptable one,
i.e. ∆lmi > 0.

With the fully defined delta values as well as

4We rely on the Z-score transformation as opposed to
the log-transformation because the Z-score transformation
is linear and therefore preserves the relationships that exist
between the data. This transformation also has the added
benefit that it assumes the data are continuous, which both
the ME data and the LMs’ likelihoods are. On the other hand,
the log-transformation is generally not recommended for ME
data because it introduces distortion to the data by nature of
being nonlinear, and is too powerful for simple outlier removal
(Sprouse, 2011; Schütze and Sprouse, 2013). The Z-score
transformation is therefore the better candidate operation we
can reasonably apply to both the human judgement data and
the LMs’ likelihood scores.
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a reformulated BLiMP criterion in terms of the
delta values, we may at last proceed to define the
ADC. Let δ be a scalar value indicating the number
of maximum allowed units of deviation between
the human judgement delta ∆hi and the language
model delta ∆lmi. Using this δ value, we consider
the ADC to be met for the minimal pair mi when
the following two conditions are met:

sign(∆hi) = sign(∆lmi) (1)

|∆hi −∆lmi| < δ (2)

The δ parameter in Equation 2 can be adjusted
to allow for larger or smaller amounts of deviation
between the human and LM acceptability deltas. If
δ is set to a large number, the ADC functionally
becomes the BLiMP criterion because it is domi-
nated by Equation 1. The main difference would
be that, instead of comparing the expert labels to
the LM’s output, the human judgements would be-
come the ground truth. For example, if δ is set
to a very large number, and the human ME data
find the expert-labeled unacceptable sentence as
more acceptable than the expert-labeled acceptable
counterpart, then the LM is expected to follow the
same monotonicity. We include a concrete example
of the ADC in action in Appendix C. Because the
δ parameter determines how closely the LM’s ac-
ceptability deltas must track the human judgement
deltas, we adopt a first approximation of δ = 0.5,
which we believe to be the proper value of δ in
order to test for the gradience of acceptability. Ad-
ditionally, we adopt a value of δ = 1 in order to
show how performance under the ADC changes as
the δ parameter is relaxed. We include results for
both values of δ in the case study to be presented
here.

7 The KoL experiment brings everything
together.

With the LI-Adger dataset as the test set, the human
ME data as the ground truth labels and the ADC
as the loss function, this KoL experiment now only
requires the model to test.

In order to ensure we observe the best perfor-
mance by BERT in our benchmarks, we adopt
two parallel approaches to the tests: a syntactic
probing approach and a MLM approach with a
variant of the Cloze task (Taylor, 1953). For the

probing approach, we train a linear softmax clas-
sifier (probe) on top of BERT’s hidden layer out-
puts using the Corpus of Linguistic Acceptability
(CoLA; Warstadt et al., 2019). We use the Hug-
gingface Transformers library (Wolf et al., 2020)
to fine-tune three pre-trained versions of BERT in
order to be comprehensive in our coverage: 10
random seeds of BERTbase−uncased, 20 random
seeds of BERTlarge−uncased, and 20 random seeds
of BERTlarge−cased. For further control we attempt
to replicate the mean MCC scores per linguistic
phenomenon obtained by Warstadt and Bowman
(2019) on their later published CoLA Analysis set.
For the purposes of transparency and the replicabil-
ity of our own experiment, we include the results of
our models’ performance on the CoLA Analysis set
in Appendix D. For each of the three BERTCoLA

we selected the random restart that yielded the high-
est MCC score on the CoLA test set as the model
to test using the ADC. Finally, we need to adapt the
categorical output of the fine-tuned BERT models
(cj where j ∈ {1, 0}) to a more gradient form in
order to ensure the models have the best chance of
tracking sentences through the acceptability gradi-
ent. We rely on Sun et al. (2019)’s formulation of
the probabilities5 of the categorical labels as the
softmax of BERT’s final hidden layer output hi:

P (cj |hi) = softmax(Whi) (3)

Therefore, the output of the fine-tuned BERT mod-
els can be defined as:

outi = arg max
cj∈{0,1}

[
P (cj |hi)

]
(4)

Out of convenience, we will switch the categorical
labels from {0, 1} to {-1, 1}. This allows us to
multiply the model’s confidence in a particular la-
bel (P (cj |hi)) by the label itself, written explicitly
below:

outi = arg max
cj∈{−1,+1}

[
P (cj |hi)

]
∗

max
cj∈{−1,+1}

[
P (cj |hi)

] (5)

5Guo et al. (2017) among others have found that in order
for the softmax output of a neural network to be considered
a true probability or confidence, it must be calibrated to the
true correctness likelihood via other post-processing methods
currently unavailable to us. Because there is currently no
complete theory of the gradient nature of acceptability that can
produce the gradient acceptability score for a given sentence
on demand (Sprouse and Almeida, 2012), we will loosely
interpret the output of the softmax in Equation 3 as the model’s
confidence in that particular label.
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With this formulation, we can easily retrieve both
the predicted categorical label (sign(outi)) and the
model’s confidence in that label (|outi|).

Reformulations aside, because probing relies
on training an additional classifier on top of the
latent, albeit poorly understood, representations
of neural LMs, it is extremely difficult to control
for confounding variables, such as the information
being introduced into the system by training the
probing classifier in the first place (Warstadt et al.,
2020). Additionally, D’Amour et al. (2020) have
found substantial evidence indicating that these
overparametrized neural LMs by nature exploit dif-
ferent sets of spurious correlations according to
their random initialization in spite of exhibiting
very similar performance on I.I.D. test sets. This
poses a unique set of difficulties for the use of
probes for any assessment of KoL in such LMs.

We mitigate these concerns with the sec-
ond, parallel approach to our experiment: We
use the publicly available model checkpoints
for BERTbase−uncased, BERTlarge−uncased, and
BERTlarge−cased, which were originally trained us-
ing the Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) objectives (Devlin
et al., 2018). Because MLM is one of the tasks used
to pre-train BERT in the first place, we use it to test
the models in their out-of-the-box state. By mask-
ing each token in a sentence si sequentially and
recovering the log likelihood of the original token,
we are able to calculate a pseudo-log-likelihood
(PLL) score for the sentence. Salazar et al. (2020)
have shown that BERT’s PLL scores are able to
outperform GPT-2 on the BLiMP dataset under
the traditional metric, as well as on other natural
language benchmarks, potentially due to BERT’s
ability to better leverage the left and right context
of each masked token when calculating its likeli-
hood. This altogether strongly favors PLL scores
as the ideal metric to test the out-of-the-box BERT
models with the ADC.

Now we have 6 distinct BERT models to
test: the three best performing random restarts
of BERTbase−uncased, BERTlarge−uncased, and
BERTlarge−cased when fine-tuned using CoLA (col-
lectively BERTCoLA), and the three unadulter-
ated, publicly available model checkpoints for
which we will calculate PLL scores (collectively
BERTMLM)6. To this assortment, we add the tri-

6We make a note here to acknowledge that, due to com-
putational limitations at the time of writing and experimen-
tation, we were unable to add models much larger than

gram model trained by Sprouse et al. (2018) using
the British National Corpus (BNC). We will use
both its raw negative log-likelihood scores and Syn-
tactic Log-Odds Ration (SLOR; Pauls and Klein,
2012, Lau et al., 2017) scores.

Finally, we test four metrics: the original BLiMP
criterion, and the ADC with δ values of 0.5, 1.0 and
5.0. The goal with the last δ = 5.0 is to observe
how model performance approaches that of the
BLiMP criterion when the ADC is dominated by
Equation 1. The results of these tests are presented
in Table 1.

8 Results

We summarize the results of our proposed KoL
benchmark with the BERT and trigram models in
Table 1. We observe extremely good performance
across the board under the BLiMP criterion. How-
ever, employing the ADC with the stricter δ values
(δ = 0.5, δ = 1.0) leads to a precipitous drop in
performance. When the distance between the mod-
els’ output deltas and the human judgement deltas
(Equation 2) is no longer considered by the ADC
(δ = 5.0), all the models’ performances come very
close to the performance numbers they obtained
under the BLiMP criterion because the models
are no longer expected to track the human judge-
ment deltas in magnitude, only monotonicity. The
minute differences in performance are primarily
accounted for by disagreements between the expert
labels and the human judgements in minimal pairs
where the human judgements favored the sentence
expert-labeled as unacceptable. We include 4 ex-
ample minimal pairs where the BERTCoLA models
scored correctly under the BLiMP criterion, but
not under the ADC with δ = 5.0 in Appendix E.
This is a very encouraging result, suggesting that
the ADC is in fact a generalization of the BLiMP
criterion, with the difference being explained by
the shift to human judgements as the ground-truth
labels.

To further compare how each of the models’ ac-
ceptability deltas (∆lmi) behave with respect to the
ground truth (∆hi), we plot in Figure 1 a heatmap
of the Pearson’s Correlation Coefficient (PCC) ma-
trix for all 8 models and the human judgements.

The models that were best able to track the
human judgement deltas through the full spec-
trum of acceptability were the BERTMLM mod-

BERTlarge−cased, such as GPT-2 or GPT-3 to the case study
presented here.
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Model BLiMP ADC, δ = 0.5 ADC, δ = 1.0 ADC, δ = 5.0

BERTbase−uncased;MLM 0.852 0.364 0.631 0.849

BERTlarge−uncased;MLM 0.866 0.378 0.658 0.859

BERTlarge−cased;MLM 0.871 0.376 0.661 0.868

BERTbase−uncased;CoLA 0.915 0.286 0.538 0.902

BERTlarge−uncased;CoLA 0.917 0.311 0.564 0.907

BERTlarge−cased;CoLA 0.936 0.307 0.561 0.925

trigramSLOR 0.753 0.301 0.520 0.744

trigramlog−prob 0.671 0.165 0.329 0.668

Table 1: Comparison between the models’ BLiMP criterion and ADC scores, using δ={0.5, 1.0, 5.0}. We include
three BERTMLM models, three BERTCoLA models, as well as SLOR and log-likelihood scores from a trigram
model trained on the British National Corpus by Sprouse et al. 2018

els with the PLL metric at a moderate positive
correlation of 0.38 for BERTlarge−cased and 0.39
for BERTbase−uncased and BERTlarge−uncased. The
BERT models fine-tuned using CoLA were only
very slightly (0.01) better correlated with the hu-
man judgement deltas than the trigram model’s
SLOR score deltas. Functionally, the 7 models (ex-
cluding the trigram’s raw log-likelihood scores)
perform very closely when tracking the human
judgement deltas at the minimal pair level. As
an additional resource, we include example mini-
mal pairs of where the BERTCoLA models and the
trigram model disagree in Appendix F, and plot
all six BERT models’ deltas (∆lmi) against the
human deltas (∆hi) in Appendix G.

9 Discussion

The first column of Table 1 (BLiMP) is what first
prompted us to formulate the ADC. In particu-
lar, note that the performance of the basic trigram
model trained using the BNC is at 75.3% when
using its SLOR scores. Having discussed how com-
prehensive the LI-Adger dataset is, this leaves us
with the following troubling dichotomy: Either the
trigram model encodes approximately 3 quarters of
the empirical linguistic phenomena in the LI-Adger
dataset, or it is too easy to best the BLiMP criterion
with word cooccurrences alone. The dichotomy
suggests that the BLiMP criterion has a low signif-
icance level as a metric when assessing KoL and
thus commits a higher rate of Type 1 errors than
would be advisable in order for experiments that
rely on it to be conclusive. We believe this to be due

to treating sentence acceptability as a functionally
categorical metric when it is inherently gradient;
we remedy this by testing for the gradience of ac-
ceptability using the ADC.

However, the ADC does raise the concern of
whether we are fundamentally changing the results
by adopting human acceptability judgements as
ground-truth instead of the expert labels. We evalu-
ated all 8 models with ever greater δ values in order
to observe how much this should concern us, and as
observed in the rightmost column of Table 1 (ADC,
δ = 5.0), that concern is minimal. The perfor-
mance of each of the models very closely approx-
imated their original performance under the tradi-
tional metric (leftmost column; BLiMP). Adopting
the human judgements as the ground truth labels
therefore does not inherently cause a steep drop in
performance. Furthermore, we believe it a counter-
productive effort to compute human performance
as compared to the expert labels, or to have LMs
competing against human baselines to reach perfect
predictive accuracy of expert labels. The expert la-
bels are based on linguistic theories that are firstly
subject to change as the theories are either refined
or disproven, and secondly built upon the empir-
ical basis of human judgements in the first place.
Our belief is as follows: just as any new, tractable
theory of linguistics must account for the empiri-
cal phenomena observed in the LI-Adger dataset
and human judgement data, so must any Language
Model account for the linguistic phenomena ob-
served in the dataset, and it must do so by tracking
the human data within an established margin (δ).
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Figure 1: PCC matrix between human judgements and all three BERTCoLA & BERTMLM models. As a further
baseline we add the SLOR and log likelihood scores of a trigram model trained on the British National Corpus by
Sprouse et al. (2018). All correlations shown have a p < 0.0001.

10 Contributions

With this work, we have identified three quintessen-
tial requirements to a test of Human Knowledge of
Language in statistically-based Language Models:
It must (1) exhibit comprehensive coverage of lin-
guistic phenomena, (2) support attested and replica-
ble human judgement data, and (3) test LMs’ ability
to track different linguistic phenomena across the
full range of the acceptability gradient. Addition-
ally, we advance a test of KoL for LMs that meets
all three requirements.

First, we present the LI-Adger dataset as a gold
standard test dataset: a comprehensive, empiri-
cally attested collection of 519 pairwise and multi-
condition phenomena collected by Sprouse et al.
(2013) from Linguistic Inquiry (LI) 2001-2010,
and by Sprouse and Almeida (2012) from Adger’s
(2003) Core Syntax textbook. To complement
the test dataset, we present statistically powerful,
replicable and validated human Magnitude Estima-
tion (ME) data collected by Sprouse and Almeida
(2012) and Sprouse et al. (2013) as the ground truth
labels we expect LMs with Human KoL to approx-

imate. Finally, in order to tie the LI-Adger dataset
and the human ME data together, we present the
Acceptability Delta Criterion (ADC), a metric that
tests LMs for Human KoL by requiring LMs to
track the validated human judgements through the
gradient spectrum within a specified margin (δ)
as the acceptability values change across minimal
pairs.

Our three main contributions with this work
when taken together create a comprehensive and
powerful input-output analysis of Human KoL for
LMs. With further ongoing work, the test will em-
power us to see a fine-grained analysis of which
phenomena a LM is able to account for in its output
from how well it predicts the acceptability deltas
around them. It is our hope that researchers will
rely on the LI-Adger dataset for its coverage of em-
pirically attested linguistic phenomena, embrace
the paradigm of human judgements as the ground-
truth labels that LMs are expected to approximate,
and, beyond that, adopt the ADC as we take our
understanding of KoL in LMs to the next level.
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Appendix A

An example of one multi-condition phenomenon
from Chapter 8 (Functional Categories III) of the
Adger (2003) Core Syntax textbook is presented in
Table 2 below.

Sentence ID Sentence

ch8.150.*.01 Melissa seems that is happy.

ch8.151.g.01 It seems that Melissa is happy.

ch8.152.g.01 Melissa seems to be happy.

Table 2: Example multi-condition phenomenon from
the Adger dataset. Note: the original sentences in the
Adger textbook used names from Greek mythology, but
were changed to common names in order to avoid inad-
vertently influencing the native speakers’ judgements.

This multi-condition phenomenon would consti-
tute two minimal pairs in the LI-Adger dataset we
present as the gold standard test set. The unaccept-
able sentence (ch8.150.*.01) forms a minimal pair
with each of the other two acceptable forms. We
include the pairings explicitly in the list below.

1. Minimal pair with ch8.151.g.01

(a) It seems that Melissa is happy.
(b) * Melissa seems that is happy.

2. Minimal pair with ch8.152.g.01

(a) Melissa seems to be happy.
(b) * Melissa seems that is happy.

Similarly, we form minimal pairs of all multi-
condition phenomena in the original LI and Adger
datasets by exhaustively enumerating all lexically
matched pairs of acceptable & unacceptable sen-
tences in the multi-condition phenomenon.

Appendix B

In order to illustrate the informativeness of adopt-
ing gradient acceptability judgements and of being
able to make direct comparisons across minimal
pairs with the ME data, take as an example the two
minimal pairs in Table 3.

It is clear that the difference in acceptability
across the Culicover minimal pair is vastly differ-
ent from the difference across the Bowers minimal
pair in Table 3. In fact, the average ME rating for
the expert-labeled unacceptable Bowers sentence
(33.2.bowers.7b.*.07) is much higher than many
other sentences in the data that are expert-labeled
as acceptable, meaning the 104 participants that
were asked to rate this sentence found it statisti-
cally completely acceptable. This type of informa-
tion is absolutely crucial when evaluating whether
a LM has knowledge of any particular linguistic
phenomenon, yet this information is lost when
analysing performance according to the BLiMP
criterion.

Appendix C

As an example of the ADC in action, consider
the minimal pairs from Table 3 (Appendix B), ex-
pressed in Table 4 in terms of the Sentence ID of the
grammatical sentence. We show the acceptability
delta values for the Z-score transformed log prob-
abilities of a simple trigram model trained on the
British National Corpus (Sprouse et al. 2018), as
well as the human acceptability deltas. We also in-
clude two columns indicating whether the BLiMP
criterion (BC) or the Acceptability Delta Criterion
(ADC) was met.

Appendix D

We recreate in Table 5 an updated version of the
table of MCC scores on the CoLA test set pre-
sented by Warstadt and Bowman (2019) (W&B).
We add a column to indicate the authors respon-
sible for training the model and include our three

https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
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Sentence ID Sentence ME Z-score

32.3.Culicover.7a.g.01 John tried to win. 1.453262

32.3.Culicover.7b.*.01 John tried himself to win. -0.86729

33.2.bowers.7b.g.07 Sarah counted the change accurately. 1.230412

33.2.bowers.7b.*.07 Sarah accurately counted the change. 1.20698

Table 3: Two minimal pairs for the Linguistic Inquiry (LI) dataset collected by Sprouse & Almeida, 2012. The ME
Z-score is the averaged Z-score transformation of the human Magnitude Estimation scores for each of the shown
sentences across the 104 different experimental participants (Sprouse et al., 2013).

Sentence(g) ID ∆hi ∆lmi BC met? ADC met? (δ = 1)

32.3.Culicover.7a.g.01 2.320552 0.633896671 Yes No

33.2.bowers.7b.g.07 0.023432 -0.158799029 No No

Table 4: The two minimal pairs from Table 3 expressed in terms of the Sentence ID of the grammatical sentence
with acceptability delta values from the human judgements and Z-score transformed log probability scores from a
trigram trained by Sprouse et al. (2018) on the British National Corpus (BNC). The last two columns show whether
the BLiMP criterion (BC) or the Acceptability Delta Criterion (ADC) was met.

trained models in the comparison. Additionally,
we include two models submitted by Jacob Devlin
to the GLUE Leaderboard for additional points of
comparison, although we assume the scores pre-
sented in the leaderboard are the maximum MCC
scores achieved by the models on the CoLA out-
of-domain test set. Our mean MCC scores for
BERTCoLAlarge−cased

were within error margins of
the BERTCoLAlarge

model reported by W&B. Ad-
ditionally, the maximum MCC score achieved here
by BERTCoLAlarge−cased

beat the score posted by
Jacob Devlin on the GLUE Leaderboard, and was
less than 0.01 away from the maximum MCC score
posted by W&B’s BERTCoLAlarge

. We consider
these results to be strongly indicative of successful
replication, given the known stochastic variation in
such models.

Appendix E

We present in Table 6 four example minimal
pairs that the three BERTCoLA models evalu-
ated correctly under the BLiMP criterion, but
not under the ADC with δ = 5.0. We re-
port the Z-score transformed acceptability scores
for BERTCoLAlarge−cased

, the best performing out
of the three BERT models. In the case of
BERTCoLAlarge−cased

, the minimal pairs presented
are 4 out of the 58 total minimal pairs that it scored
correctly under the BLiMP criterion, but not under

the ADC with δ = 5.0.
The common factor among the four minimal

pairs presented in Table 6, and the other 54 mini-
mal pairs where BERTCoLAlarge−cased

fulfilled the
BLiMP criterion but not the ADC with δ = 5, is
that the human judgements disagree with the ex-
pert categorization. This is, by design, one of the
crucial properties of the ADC, because ultimately
linguistic theory is developed by probing either lan-
guage use or language acquisition and developing
grammars that are able to account for the attested
empirical phenomena. The paradigm of the ADC
is therefore grounded in the empirical data itself,
not on the theory built upon it.

Appendix F

We present in Table 7 four example minimal pairs
where all three BERTCoLA models scored the pair
correctly under the ADC with δ = 0.5 but the
trigram did not. In Table 8 we present the oppo-
site: four example minimal pairs where the trigram
model’s SLOR scores evaluated the pair correctly
under the ADC with δ = 0.5 but none of the three
BERTCoLA models did.

Appendix G

In Figure 4 we draw a correlation (scatter) plot with
best fit line of the six BERT models’ delta scores
(∆lmi) on the x-axis against the human judgement
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ModelCoLA Mean (STD) Max Ensemble Authors

CoLA baseline 0.320 (0.007) 0.330 0.320 W&B 2019

GPT 0.528 (0.023) 0.575 0.567 W&B 2019

BERTlarge 0.582 (0.032) 0.622 0.601 W&B 2019
Human 0.697 (0.042) 0.726 0.761 Warstadt et al. 2018

BERTbase−uncased 0.478 (0.018) 0.514 0.522 HJVM & friends

BERTlarge−uncased 0.542 (0.019) 0.583 0.578 HJVM & friends

BERTlarge−cased 0.574 (0.026) 0.613 0.588 HJVM & friends

BERTbase 0.521* (N/A) 0.521* 0.521* Jacob Devlin

BERTlarge 0.605* (N/A) 0.605* 0.605* Jacob Devlin

Table 5: Replication of Warstadt and Bowman (2019) with our trained BERTCoLA models for comparison. Per-
formance (MCC) on the CoLA test set, including mean over restarts of a given model with standard deviation,
maximum over restarts, and majority prediction over restarts. We include the BERTCoLA scores on the GLUE
leaderboard for the CoLA task submitted by Jacob Devlin for further points of comparison.

deltas (∆hi) on the y-axis. The figure reveals the
BERTCoLA models’ behavior is not gradient de-
spite our reformulation of the BERTCoLA mod-
els’ outputs in order to make them more gradient.
The BERTCoLA models consistently predicted sen-
tences to be either more than 90% acceptable or less
than 90% unacceptable; the fine-tuning phase on
the categorical expert labels in CoLA only seems
to cripple the BERTCoLA models’ performance.

The out-of-box BERTMLM models’ PLL out-
put deltas are much more gradient than those of
the BERTCoLA models and seem to better roughly
track the best-fit line.
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Figure 2: Replication of Warstadt and Bowman (2019) with our BERTCoLA models for comparison. Performance
(MCC) on CoLA analysis set by major feature. Dashed lines show mean performance on the CoLA out-of-domain
test set. From left to right, performance for each feature is given for base-uncased, large-uncased, and large-cased.

Minimal Pair Human BERT

Top: Acceptable | Bottom: Unacceptable judgement acceptability

We proved Amelia to the manager to be responsible. -0.56008 0.732817911

*We proved to the manager Amelia to be responsible. -0.13864 -1.39757562

There is likely to live a snake in the garden. -0.6451 -1.02182

*There is likely a snake to live in the garden. -0.51201 -1.39602

Jenny would accurately have calculated the results. 0.345683 -1.340338319

*Jenny accurately will calculate the results. 0.501494 -1.40060934

The announcer’s introduction of Ted was humorous. 0.659471 0.73306608

*The announcer’s introduction of Ted’s was humorous. 0.748718 -1.335794047

Table 6: Four minimal pairs where the BERTCoLA models meet the BLiMP criterion but not the generalized ADC
with δ = 5.0. We report the acceptability scores from the large-cased version of BERTCoLA The human judgement
and BERT acceptability scores are already Z-score transformed. The common factor is that the human judgements
disagree with the expert labels.
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Figure 3: Replication of Warstadt and Bowman (2019) with our trained BERTCoLA models for comparison. Per-
formance (MCC) on CoLA analysis set by minor feature. Dashed lines show mean performance on the CoLA
out-of-domain test set. From left to right, performance for each feature is given for base-uncased, large-uncased,
and large-cased.
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Minimal Pair trigram BERTCoLA

Top: Acceptable | Bottom: Unacceptable SLOR acceptability

She taught the students math. -0.685949 0.73276

*She taught math the students. -0.562807 -1.40171

There are linguists available. -0.337031 0.732224

*There are linguists tall. -0.512287 -1.41472

Our professor gave no extensions to any students. -0.728557 0.721394

*Our professor gave any extensions to no students. -1.33971 -1.3493

What did you address to whom? 0.478869 0.73067

*To whom did you address what? -0.890322 0.681159

Table 7: Four minimal pairs where all BERTCoLA models meet the ADC with δ = 0.5 but the trigram baseline
does not. We report the acceptability scores from the large-cased version of BERTCoLA. The trigam SLOR and
BERTCoLA acceptability scores are already Z-score transformed.

Minimal Pair trigram BERTCoLA

Top: Acceptable | Bottom: Unacceptable SLOR acceptability

Michael managed to drive his car. 0.950214 0.733175

*Michael managed to have driven his car. 0.26957 -1.37701

Paul flew to Ireland and Laura sailed to Greece. 0.253906 0.733086

*Paul flew Ireland and Laura sailed to Greece. -0.779695 0.731989

She ran into Spencer and asked him out. 0.821345 0.73299

*She ran into Spencer and asked out. -0.194269 -1.38959

The children are almost all sleeping. 0.30149 0.733162

The children almost all are sleeping. -0.680258 0.729437

Table 8: Four minimal pairs where the trigram baseline meets the ADC with δ = 0.5 but none of the BERT
models do. We report the acceptability scores from the large-cased version of BERTCoLA. The trigam SLOR and
BERTCoLA acceptability scores are already Z-score transformed.
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Figure 4: Scatterplot of human judgements (y-axis) vs. BERTCoLA acceptability scores, & BERTMLM PLL scores
from all three BERT models for each sentence in the LI-Adger dataset with best-fit line in red. We add a jitter of
0.05 along the x-axis and lower the alpha to 0.3 to highlight the density of the points.


