
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 303–310
Online, November 11, 2021. ©2021 Association for Computational Linguistics

303

Multi-Layer Random Perturbation Training for
Improving Model Generalization

Lis Kanashiro Pereira1, Yuki Taya2, Ichiro Kobayashi3

Ochanomizu University
kanashiro.pereira@ocha.ac.jp1, g1620525@is.ocha.ac.jp2

koba@is.ocha.ac.jp3

Abstract

We propose a simple yet effective Multi-
Layer RAndom Perturbation Training algo-
rithm (RAPT) to enhance model robustness
and generalization. The key idea is to apply
randomly sampled noise to each input to gener-
ate label-preserving artificial input points. To
encourage the model to generate more diverse
examples, the noise is added to a combination
of the model layers. Then, our model regular-
izes the posterior difference between clean and
noisy inputs. We apply RAPT towards robust
and efficient BERT training, and conduct com-
prehensive fine-tuning experiments on GLUE
tasks. Our results show that RAPT outper-
forms the standard fine-tuning approach, and
adversarial training method, yet with 22% less
training time.

1 Introduction

Although deep learning models have been very suc-
cessful in various kinds of NLP problems, they are
known to be sensitive towards input data distribu-
tion change which are pervasive across language
tasks. Motivated by this, a recent line of work
investigate the adversarial training technique to en-
hance the model robustness. Adversarial training
has proven effective in improving model general-
ization and robustness in computer vision (Madry
et al., 2017; Goodfellow et al., 2014) and natu-
ral language processing (NLP) (Zhu et al., 2019;
Jiang et al., 2019; Cheng et al., 2019; Liu et al.,
2020a; Pereira et al., 2020, 2021; Cheng et al.,
2020). It works by augmenting the input with a
small perturbation to steer the current model pre-
diction away from the correct label, thus forcing
subsequent training to make the model more ro-
bust and generalizable. In NLP, the cutting-edge
research in adversarial training tends to perform
an inner search for the most adversarial direction
using gradient steps (Zhu et al., 2019; Jiang et al.,
2019; Cheng et al., 2019; Liu et al., 2020a; Pereira

Figure 1: Acurracy and training time comparison be-
tween adversarial training (SMART) and RAPT on the
MNLI (matched) development dataset. RAPT obains
an accuracy gain of 0.6% yet with a training time drop
of 24%.

et al., 2020, 2021; Cheng et al., 2020). This causes
a significant overhead in training time. Moreover,
such methods tend to add the adversarial perturba-
tion only to the embedding layer, which might not
be optimal.

By contrast, in this paper, we investigate a sim-
pler direction by using only randomly sampled
noise to generate label-preserving artificial input
points. We thus propose a simple yet effective
RAndom Perturbation Training algorithm (RAPT)
for enhancing model robustness and generalization.
For each instance, instead of using gradient steps
to generate adversarial examples, RAPT adds ran-
domly sampled noise to the hidden representaions
of a randomly chosen layer, among multiple in-
termediate transformer layers (i.e. BERT layers).
We hypothesize this might encourage the model
to generate more diverse examples, and improve
model generalization capability. Our model then
regularizes the model posterior difference between
clean and noisy inputs.

On the overall GLUE benchmark, RAPT out-
performs the standard fine-tuning approach, and



304

matches or improves the performance of strong ad-
versarial training methods such as SMART (Jiang
et al., 2019), yet with a significantly reduced train-
ing time. Figure 1 shows the accuracy gain and
training time drop of RAPT compared to SMART
on the MNLI (matched) development dataset.

2 RAPT

In this paper, we focus on fine-tuning BERT models
(Devlin et al., 2019), as this approach has proven
very effective for a wide range of NLP tasks.

The standard training algorithm seeks to learn
a function f(x; θ) : x → C as parametrized by
θ, where C is the class label set. Given a training
dataset D of input-output pairs (x, y) and the loss
function l(., .) (e.g. cross entropy), the standard
training objective would minimize the empirical
risk:

min
θ

E(x,y)∼D[l(f(x; θ), y)].

By contrast, in adversarial training, as pioneered
in computer vision (Goodfellow et al., 2014; Hsieh
et al., 2019; Madry et al., 2017; Jin et al., 2019),
the input would be augmented with a small pertur-
bation that maximize the adversarial loss:

min
θ

E(x,y)∼D[max
δ
l(f(x+ δ; θ), y)],

where the inner maximization can be solved by
projected gradient descent (Madry et al., 2017).

Recently, adversarial training has been success-
fully applied to NLP as well (Zhu et al., 2019;
Jiang et al., 2019; Pereira et al., 2020). In partic-
ular, SMART (Jiang et al., 2019) regularizes the
standard training objective using virtual adversar-
ial training (Miyato et al., 2018), by performing
an inner loop to search for the most adversarial
direction:

min
θ

E(x,y)∼D[l(f(x; θ), y)+

αmax
δ
l(f(x+ δ; θ), f(x; θ))]

(1)

Effectively, the adversarial term encourages
smoothness in the input neighborhood, and α is a
hyperparameter that controls the trade-off between
standard errors and adversarial errors.

Current adversarial methods for NLP are slower
than standard training, due to the inner maximiza-
tion. SMART, for instance, requires an additional
K projected gradient steps to find the perturba-
tion that maximizes the adversarial loss (violation

Algorithm 1 RAPT
Input: N : the number of training epochs,
D, {(x1, y1), ..., (xn, yn)}: the dataset, X : the
minibatch of the dataset, f(x; θ): the machine learning
model parametrized by θ, σ2: the variance of the random
noise δ, η: the number to controll the size of the noise, L:
the number of transformer based model’s layers, f layer:
the function that computes the hidden representations of a
given layer, h: the hidden representations of a layer of the
model, δr: the noise added to the hidden states of layer r
, τ : the global learning rate, α: the hyperparameter for
balancing the standard loss and the regularization term,
max_layer: the number of the maximum layer where
the noise can be added during training.

1: for epoch = 1, 2, .., N do
2: for X ∈ D do
3: Generate a random integer r ∈ {1, ...,max_layer}
4: for (x, y) ∈ X do
5: δ ∼ N(0, σ2I)
6: δ ← η δ

‖δ‖∞
7: // x : forward pass to the last layer of the model
8: for layer = 1, 2, ..., L do
9: h← f layer(h)

10: if layer is r then
11: h← h+ δrI
12: end if
13: end for
14: gθ ← ∇θl(f(x; θ), y)
15: +α∇θl(f(x+ δr; θ), f(x; θ))
16: θ ← θ − τgθ
17: end for
18: end for
19: end for
Output: θ

of local smoothness) (Liu et al., 2020a). In prac-
tice, K = 1 suffices SMART, and it is roughly 2
times slower compared to standard training. By
contrast, RAPT completely removes the adversar-
ial steps that use gradient steps from SMART and
instead optimizes for stabilizing the model local
smoothness using only randomly sampled noise for
regularization:

min
θ

E(x,y)∼D[l(f(x; θ), y)+

αl(f(x+ δr; θ), f(x; θ))]
(2)

RAPT does not require extra backward compu-
tations and empirically works as well as or better
than SMART. We consider the posterior regular-
ization using the KL-divergence. For all tasks in
this work, an input text sequence is divided into
subword units wt, t = 1, . . . , T . The tokenized
input sequence is then transformed into embed-
dings, x1, . . . ,xT ∈ Rn, through a token encoder,
which combines a token embedding, a (token) po-
sition embedding and a segment embedding (i.e.
which text span the token belongs to) by element-
wise summation. The embedding layer is used as



305

the input to multiple transformer layers (Vaswani
et al., 2017) to generate the contextual represen-
tations, hlayer1 , . . . ,hlayerT ∈ Rd, which are the
hidden states of an intermediate layer of the BERT
model.

In RAPT, we sample noise vectors δ1, . . . , δT
from N (0, σ2I), with mean 0 and variation of σ2.
We first set a maximum layer (among all BERT
intermediate layers) where the noise vector can be
added. In each epoch, for each mini-batch selected,
a layer among the first layer and the maximum
layer previously set is randomly chosen. The noise
input is then constructed by adding the noise vec-
tor δr (Equation 2) to the hidden state vector of
the ramdomly chosen layer (hlayer). Specifically,
the model first performs a forward pass up to the
chosen layer, then the noise vector is added to its
hidden states, i.e. hlayer1 +ηδr1, . . . ,h

layer
T +ηδrT .

The model is then updated according to the task-
specific objective for the task. To preserve the
semantics, we constrain the noise to be small, and
assume the model’s prediction should not change
after adding the perturbation. The algorithm of
RAPT is shown in Algorithm 1.

3 Experiments

3.1 Datasets
We evaluate our model on the GLUE1 bench-
mark, a collection of nine natural language un-
derstanding (NLU) tasks. It includes question
answering (Rajpurkar et al., 2016), linguistic ac-
ceptability (Warstadt et al., 2018), sentiment analy-
sis (Socher et al., 2013), text similarity (Cer et al.,
2017), paraphrase detection (Dolan and Brockett,
2005), and natural language inference (NLI) (Da-
gan et al., 2006; Bar-Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009; Levesque
et al., 2012; Williams et al., 2018). The diversity
of the tasks makes GLUE very suitable for eval-
uating the generalization and robustness of NLU
models. The GLUE tasks used in our experiments
are summarized in Table 1.

3.2 Implementation Details
Our model implementation is based on the MT-
DNN2 framework (Liu et al., 2019, 2020b). We
use BERTBASE(Devlin et al., 2019) as the text en-
coder. We used ADAM (Kingma and Ba, 2015)
as our optimizer with a learning rate in the range

1https://gluebenchmark.com/
2https://github.com/namisan/mt-dnn

∈ {1 × 10−5, 2 × 10−5, 8 × 10−6} and a batch
size ∈ {16, 32}. The maximum number of epochs
was set to 6. A linear learning rate decay schedule
with warm-up over 0.1 was used, unless stated oth-
erwise. To avoid gradient exploding, we clipped
the gradient norm within 1. All the texts were
tokenized using wordpieces and were chopped to
spans no longer than 512 tokens. For SMART , we
follow (Jiang et al., 2019) and set the perturbation
size to 1 × 10−5. We choose the step size from
{1 × 10−3, 1 × 10−2, 1 × 10−1, 1, 1.5, 2, 2.5, 3}.
We set the variance for initializing the perturba-
tion to 1 × 10−5. The α parameter (Equation 1
and Equation 2) were both set to 1. During RAPT,
we select η from {0.01, 1.5, 2, 2.3, 2.5}. We found
that adding the noise to the layers 1 to 3 worked
best in our experiments, therefore, the max_layer
parameter in Algorithm 1 was set to 3. For more
details, please refer to Section 4.

3.3 Main Results

We apply RAPT to BERTBASE and evaluate its per-
formance on GLUE. Our results are shown in Table
2. We compare RAPT with the standard fine-tuning
approach (Standard) and with the adversarial train-
ing method SMART. For our model RAPT, we
compare a model that adds the noise to the em-
bedding layer only, RAPT (Embedding), with the
model that adds the noise to the other layers. We
report the model that uses η = 2, RAPT (η = 2),
and the model that selects the best η value, RAPT
(BEST η).

Overall, we observed that SMART and RAPT
were able to outperform standard fine-tuning, with-
out using any additional knowledge source, and
without using any additional dataset other than
the target task datasets. These results suggest that
adding noisy input points during training lead to a
more robust model and help generalize better on
unseen data. RAPT consistently outperforms stan-
dard training (with an average score of 81.9% vs.
81.1% on the test set).

Remarkably, RAPT outperforms SMART on
most GLUE tasks, and obtains the highest aver-
age score among all tasks on both dev and test sets
(85.1% and 81.9%, respectively), yet with a smaller
training time (86.7 minutes on average, as shown in
Table 3). This indicates that using only randomly
sampled noise leads to better results. We also ob-
serve pronounced gains of RAPT on the smaller
datasets such as RTE (with a test set accuracy of

https://gluebenchmark.com/
https://github.com/namisan/mt-dnn


306

Corpus Task #Train #Dev #Test #Label Metrics
Single-Sentence Classification

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 1: Summary information of the GLUE benchmark.

Methods MNLI-m/mm QQP RTE QNLI MRPC CoLA SST STS-B Average
Acc Acc/F1 Acc Acc Acc/F1 Mcc Acc P/S Corr Score

Standarddev 84.1/84.3 90.5/87.3 69.3 90.9 86.9/90.7 58.3 92.4 89.9/89.4 84.5
SMARTdev 84.7/85.2 90.9/87.9 70.8 91.4 86.4/90.5 58.6 92.8 90.2/89.7 84.9
RAPTdev(Embedding) 85.2/85.5 91.2/88.3 69.5 91.7 86.1/90.1 58.3 92.9 90.1/89.8 84.9
RAPTdev(η = 2) 85.2/85.5 91.2/88.2 70.6 91.8 86.9/90.8 58.7 92.8 89.9/89.6 85.1
RAPTdev(BEST η) 85.3/85.6 91.2/88.2 70.6 91.8 86.9/90.8 58.7 92.8 90.1/89.7 85.1
Standardtest 84.2/83.2 88.6/70.6 67.9 90.2 84.0/88.3 52.1 93.1 86.3/85.0 81.1
SMARTtest 85.0/84.2 89.1/71.8 68.4 90.7 83.6/88.1 52.8 93.5 86.9/85.6 81.6
RAPTtest(Embedding) 85.3/84.4 89.1/71.8 68.4 91.1 84.1/88.2 53.0 93.7 87.5/86.4 81.9
RAPTtest(η = 2) 85.4/84.7 89.1/71.9 67.4 91.1 84.0/88.3 51.1 93.8 87.2/86.1 81.7
RAPTtest(BEST η) 85.5/84.7 89.1/71.9 68.0 91.1 84.0/88.3 52.3 93.8 86.8/85.5 81.8

Table 2: Comparison of standard fine-tuning (Standard), adversarial training (SMART) and our methods (RAPT)
on GLUE. We use the BERTBASE model as the text encoder for all models. For a fair comparison, all these results
are produced by ourselves.Theses scores are the average of each model across 5 random seeds. The GLUE test
results are scored using the GLUE evaluation server.

68.4) and STS-B (with a test set Pearson/Spearman
correlation scores of 87.5/86.4), which illustrates
the benefits of RAPT on improving model general-
izability.

Adding the perturbation to multiple intermediate
layers leads to better results on the dev set than
adding the random perturbation to the embedding
layer only (average score of 85.1% vs. 84.9%,
respectively). However, on the test set, adding
the random perturbation to the embedding layer
only leads to slightly better results than adding the
random perturbation to multiple intermediate layers
(81.9% vs. 81.8%, respectively). Still, both settings
outperform SMART and standard fine-tuning.

Regarding the training time, on the overall
GLUE benchmark, RAPT takes on average 22%
less time to train compared to SMART (86.7 vs
110.9 minutes, respectively), as shown in Table 3.

4 Analysis

Here, we take a closer look at the embeddings and
hidden representations of the intermediate layers
of BERT using standard fine-tuning (Standard),
SMART, and RAPT. After training, we extract the
embeddings (for Standard and SMART) and the
intermediate layer representations (where noise has
been added) of the second intermediate layer (for
RAPT) of a sentence. Then, we compute the top
most similar words for each word in the sentence.
We use the cosine similarity for computing the sim-
ilarity between the vectors. As shown in Table
4, adding the noise to the intermediate layers us-
ing RAPT introduces more diversity. For instance,
among the top-10 closest words to the word coun-
try, SMART shares eight words with the Standard
fine-tuning methods, while RAPT shares only five.



307

Time (min) MNLI QQP RTE QNLI MRPC CoLA SST STS-B Average
Standard 220 175 2.5 40 2.5 4.8 17.5 3.8 69.6
SMART 370 270 4 102 4.1 8 31.5 6 110.9
RAPT 280 220 3 80 3.4 6.5 24.5 4.9 86.7
RAPT/SMART 0.76 0.81 0.75 0.78 0.81 0.79 0.77 0.8 0.78

Table 3: Training time comparison between standard fine-tuning (Standard), SMART, and RAPT. RAPT/SMART
denotes the ratio between the training time of RAPT and SMART. We used a A100-PCIE-40GB GPU to measure
the training time.

Input: [CLS] by law , mexico can only export half the oil
it produces to the united states . [SEP] mexico produces
more oil than any other country . [SEP]

Standard SMART RAPT
nation nation countries
region county nation
county region region
island countries nations

countries province cities
state island kingdom

territory state global
province territory city

countryside homeland territory
mountain trade countryside

Table 4: Top-10 closest words to the vector of the
word country using standard fine-tuning (Standard),
SMART, and RAPT on the RTE development dataset.
The words in red are the words not shared with the
Standard fine-tuning method. RAPT has five different
words, while SMART has only two.

Although having more diversity, the hidden repre-
sentations are kept meaningful.

To further illustrate the diversity RAPT intro-
duces to the model’s hidden representations, Table
5 and Table 6 compare the embeddings produced by
SMART before and after adding the perturbation
and the hidden reporesentations produced by RAPT
before and after adding the noise. For SMART, we
can observe that the top-10 similar words to the
word country do not change after adding the per-
turbation, and the cosine similarity scores are kept
around the same. In our experiments, increasing
the perturbation size leads to a drop in accuracy.
For RAPT, we extract the hidden representations
from the second layer of BERT. As we can see, the
cosine similarity scores change and more diversity
is introduced. In our development experiments, the
accuracy instead increases, indicating that the hid-
den representations from the intermediate layers
might be less sensitive to noise compared to the
embedding layer.

Regarding which layer combination setting is
best for adding the noise, we found that adding

the noise to the layers 1 to 3 worked best in our
experiments, as shown in Figure 2 and Figure 3,
for the MNLI and MRPC datasets.

Figure 2: Performance on the MNLI development set
as we change the layer combination to add the noise.
On the x-axis, max_layer = embed denotes that the
noise is added to the embedding layer only. All the
other values denote that, for each mini-batch, a layer
among the layer 1 up to this layer value is randomly
chosen. The model is then updated according to the
task-specific objective for the task.

Figure 3: Performance on the MRPC development set
as we change the layer combination to add the noise.
On the x-axis, max_layer = embed denotes that the
noise is added to the embedding layer only. All the
other values denote that, for each mini-batch, a layer
among the layer 1 up to this layer value is randomly
chosen. The model is then updated according to the
task-specific objective for the task.



308

Input: [CLS] by law , mexico can only export half the oil it produces to the united states . [SEP]
mexico produces more oil than any other country . [SEP]

SMART SMART (+noise) RAPT RAPT (+noise)
word similarity word similarity word similarity word similarity
nation 0.2991 nation 0.2992 countries 0.3976 countries 0.3141
county 0.2942 county 0.2945 nation 0.3328 nation 0.2714
region 0.2939 region 0.2941 region 0.3182 region 0.2546

countries 0.2736 countries 0.2738 nations 0.2934 nations 0.2430
province 0.2517 province 0.2515 kingdom 0.2929 cities 0.2337

island 0.2475 island 0.2473 province 0.2880 kingdom 0.2336
state 0.2449 state 0.2445 island 0.2810 global 0.2324

territory 0.2227 territory 0.2227 city 0.2702 city 0.2295
homeland 0.2106 homeland 0.2103 countryside 0.2682 territory 0.2293

trade 0.2090 trade 0.2087 realms 0.2670 countryside 0.2274

Table 5: Top-10 closest words to the vector of the word country using SMART and RAPT on the RTE development
dataset. SMART (the leftmost column) denotes the embedding of the target vector (country) before adding the
perturbation using SMART. SMART (+noise) denotes the embedding of the target vector (country) after adding
the perturbation using SMART. In both cases, we compute the similarity between the embedding of the target word
and the embeddings of the other words in the training set. RAPT (the second column from the right) denotes the
hidden state vector of the second layer of BERT of the target vector (country) before adding the noise using RAPT.
RAPT (+noise) denotes the hidden state vector of the second layer of BERT of the target vector (country) after
adding the noise using RAPT. In both cases, we compute the similarity between the hidden state of the target word
and the hidden states of the other words in the training set.

Input: [CLS] by law , mexico can only export half the oil it produces to the
united states . [SEP] mexico produces more oil than any other country . [SEP]

SMART SMART (+noise) RAPT RAPT (+noise)
word similarity word similarity word similarity word similarity
could 0.5857 could 0.5855 could 0.5656 could 0.4580
may 0.3869 may 0.3873 cannot 0.5162 cannot 0.4269

cannot 0.3774 cannot 0.3776 couldn 0.5098 couldn 0.4213
might 0.3736 might 0.3736 allows 0.3445 allows 0.2859
couldn 0.3651 couldn 0.3650 helps 0.3408 must 0.2759
must 0.3388 must 0.3388 shall 0.3218 may 0.2659
will 0.3312 will 0.3314 should 0.3183 doesn 0.2639

should 0.3119 should 0.3121 must 0.3130 sees 0.2531
would 0.2914 would 0.2915 doesn 0.3106 helps 0.2388
shall 0.2624 shall 0.2626 may 0.3083 allow 0.2318

Table 6: Top-10 closest words to the vector of the word can using SMART and RAPT on the RTE develop-
ment dataset. SMART (the leftmost column) denotes the embedding of the target vector (can) before adding the
perturbation using SMART. SMART (+noise) denotes the embedding of the target vector (can) after adding the
perturbation using SMART. In both cases, we compute the similarity between the embedding of the target word
and the embeddings of the other words in the training set. RAPT (the second column from the right) denotes the
hidden state vector of the second layer of BERT of the target vector (can) before adding the noise using RAPT.
RAPT (+noise) denotes the hidden state vector of the second layer of BERT of the target vector (can) after adding
the noise using RAPT. In both cases, we compute the similarity between the hidden state of the target word and
the hidden states of the other words in the training set.

5 Conclusion

We proposed RAPT, a simple and efficient ran-
dom perturbation training algorithm for fine-tuning

large scale pre-trained language models. Our ex-
periments demonstrated that it achieves compet-
itive results on GLUE tasks, without relying on



309

any additional resource other than the target task
dataset. Moreover, our model can significanlty
reduce the training time compared to adversarial
training. RAPT is model-agnostic, and can also
be generalized to solve other downstream tasks as
well, and we will explore these directions as future
work.

Acknowledgments

We thank the reviewers for their helpful feedback.
This work has been supported by the project KAK-
ENHI ID: 21K17802.

References
Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and

Danilo Giampiccolo. 2006. The second PASCAL
recognising textual entailment challenge. In Pro-
ceedings of the Second PASCAL Challenges Work-
shop on Recognising Textual Entailment.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth pascal recognizing textual entailment challenge.
In In Proc Text Analysis Conference (TAC’09.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Hao Cheng, Xiaodong Liu, Lis Pereira, Yaoliang Yu,
and Jianfeng Gao. 2020. Posterior differential reg-
ularization with f-divergence for improving model
robustness. arXiv preprint arXiv:2010.12638.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019.
Robust neural machine translation with doubly ad-
versarial inputs.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Proceedings of the First Inter-
national Conference on Machine Learning Chal-
lenges: Evaluating Predictive Uncertainty Visual
Object Classification, and Recognizing Textual En-
tailment, MLCW’05, pages 177–190, Berlin, Hei-
delberg. Springer-Verlag.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recogniz-
ing textual entailment challenge. In Proceedings of
the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 1–9, Prague. Association
for Computational Linguistics.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei
Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. 2019. On
the robustness of self-attentive models. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 1520–1529.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
Smart: Robust and efficient fine-tuning for pre-
trained natural language models through princi-
pled regularized optimization. arXiv preprint
arXiv:1911.03437.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
arXiv preprint arXiv:1907.11932.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. ICLR (Poster)
2015.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Thirteenth International Conference on the Princi-
ples of Knowledge Representation and Reasoning.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu
Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.
2020a. Adversarial training for large neural lan-
guage models. arXiv preprint arXiv:2004.08994.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4487–4496.

Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng,
Xueyun Zhu, Emmanuel Awa, Pengcheng He,
Weizhu Chen, Hoifung Poon, Guihong Cao, and
Jianfeng Gao. 2020b. The microsoft toolkit of multi-
task deep neural networks for natural language un-
derstanding. arXiv preprint arXiv:2002.07972.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.
Towards deep learning models resistant to adversar-
ial attacks. arXiv preprint arXiv:1706.06083.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-
supervised learning. IEEE transactions on pat-
tern analysis and machine intelligence, 41(8):1979–
1993.

http://arxiv.org/abs/1906.02443
http://arxiv.org/abs/1906.02443
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/W07-1401
https://www.aclweb.org/anthology/W07-1401


310

Lis Pereira, Xiaodong Liu, Fei Cheng, Masayuki Asa-
hara, and Ichiro Kobayashi. 2020. Adversarial train-
ing for commonsense inference. arXiv preprint
arXiv:2005.08156.

Lis Pereira, Xiaodong Liu, Hao Cheng, Hoifung Poon,
Jianfeng Gao, and Ichiro Kobayashi. 2021. Targeted
adversarial training for natural language understand-
ing. Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 5385–5393 June 6–11, 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Thomas
Goldstein, and Jingjing Liu. 2019. Freelb: En-
hanced adversarial training for language understand-
ing. arXiv preprint arXiv:1909.11764.

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

