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Abstract

Length prediction is a special task in a series
of NAT models where target length has to be
determined before generation. However, the
performance of length prediction and its influ-
ence on translation quality has seldom been
discussed. In this paper, we present compre-
hensive analyses on length prediction task of
NAT, aiming to find the factors that influence
performance, as well as how it associates with
translation quality. We mainly perform experi-
ments based on Conditional Masked Language
Model (CMLM) (Ghazvininejad et al., 2019),
a representative NAT model, and evaluate it
on two language pairs, En-De and En-Ro. We
draw two conclusions: 1) The performance of
length prediction is mainly influenced by prop-
erties of language pairs such as alignment pat-
tern, word order or intrinsic length ratio, and
is also affected by the usage of knowledge dis-
tilled data. 2) There is a positive correlation
between the performance of the length predic-
tion and the BLEU score.

1 Introduction

Though Transformer (Vaswani et al., 2017) has
promoted conventional autoregressive generation
(AR) by leveraging multi-head self-attention to
avoid recurrence at training, decoders that generate
each token conditioned on previously generated
tokens still make it impossible to take full advan-
tage of parallelism during inference: p(Y |X) =∏T

i p(yi|y≤i|X). Non-autoregressive Machine
Translation (NAT) (Gu et al., 2018; Kaiser et al.,
2018) was proposed to parallelize the generation
by allowing the prediction of each token indepen-
dently, known as the conditional independence as-
sumption i.e. p(Y |X) =

∏T
i p(yi|X). However, it

always results in significant performance degrada-
tion. Therefore, how to improve NAT performance
remains an open question.

There are basically two directions of NAT mod-
els. One is insertion-based models where multi-

ple tokens can be inserted into an existing unfin-
ished sentence, and the sentence length dynami-
cally changes during insertion (Stern et al., 2019;
Gu et al., 2019; Chan et al., 2019). Another pre-
determines the target side length N and generates
tokens in a fixed length space conditioned on well-
predicted tokens and optionally copied source em-
bedding within N iterations (Gu et al., 2018; Lee
et al., 2018; Ghazvininejad et al., 2019). In this pa-
per, we mainly focus on the critical component in
the second direction — length prediction which has
been rarely discussed. Specifically, we investigate
RQ1: what influences accuracy of length predic-
tion, and RQ2: how accuracy of target sentence
length prediction affects the translation quality.

To answer these questions, we first analyze in-
trinsic properties of sentence lengths for different
language pairs. Then we evaluate various length
prediction strategies and dig into potential influen-
tial factors. Finally the correlation between accu-
racy of length prediction and translation quality is
investigated.

2 Related Work

Gu et al. (2018) predict target length with fertility
which essentially is an alignment of source and tar-
get tokens generated by a tool named IBM Model
2 (Brown et al., 1993). The hidden state of each
source token is used to predict the number of the
aligned target token. Then each source token is
copied one or multiple times as decoder input, de-
pending on the corresponding predicted length dur-
ing inference. However, it may introduce noise
during training as no ground truth alignment is
available. As such, noisy parallel decoding (NPD)
was proposed to ameliorate this issue, by applying
an autoregressive teacher model to select the best
translation from generated candidates sampled in
fertility space.

Instead of predicting aligned length token by to-
ken mentioned above, naive linear projection has
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been applied extensively due to its simplicity (Guo
et al., 2019; Wang et al., 2019; Li et al., 2019), that
is to learn a ratio α from the training set, mapping
source length M to the length of the target side:
N = α ·M . Obviously the frequentist statistical
notion of α neglects the uniqueness of each individ-
ual instance. Thus, classifiers based on the source
representation are used to predict target length or
length offset (Lee et al., 2018; Ghazvininejad et al.,
2019), but the fixed length determined in advance
still limits the flexibility during inference.

Aiming to alleviate this issue, insertion-based
models are proposed, they implicitly learn the la-
tent variable length by dynamic insertion. Stern
et al. (2019) generates text by inserting multiple to-
kens to readily existing unfinished sentence. Leven-
shtein Transformer (LevT) (Gu et al., 2019) extends
the model by incorporating the deletion operation
and decomposing the insertion operation into two
steps — first predicting insertion positions and then
specific tokens given the position.

Though various approaches are proposed to ad-
dress the length prediction either explicitly or im-
plicitly, comprehensive comparison, analysis on
potential factors affecting their accuracy and the
impact on final translation quality are not fully ex-
plored. In this work, we shall fill this gap.

3 Model and Dataset

In this section, we first introduce Conditional
Masked Language Model (CMLM) framework
(Ghazvininejad et al., 2019), on which we perform
all experiments throughout this work, followed by
datasets details and the experimental setup.

3.1 Conditional Masked Language Model

CMLM is a representative NAT model due to
both the simple implementation and the impres-
sive performance. It’s built up on the standard
Transformer architecture without the decoder self-
attention mask.

Formally, given source and target sentence X =
(x1, ..., xk) and Y = (y1, ...yn), the model first pre-
dicts target length with hidden state of the source
sentence: p(L|X), and initializes a sequence of
[MASK] ×L accordingly as decoder input. Then
it repeats an alternative between predicting and re-
masking tokens in sequence until all tokens are
well-predicted with high confidence, this mecha-
nism is referred as iterative refinement with mask-
predict.

Notably, at step t, for an unfinished sentence that
contains observed tokens Y (t)

obs and masked tokens
Y

(t)
mask, the model predicts masked token under the

condition of observed and source tokens:

L =
∑

yi∈Y
(t)

mask

logP (yi|X,Y (t)
obs ; θ). (1)

During training, the target sentence is corrupted by
randomly replacing tokens with [MASK], and the
model should learn to recover it. During inference,
at step t, it predicts tokens of Ymask with the argmax
operation:

y
(t)
i = arg maxP (yi = w|X,Y (t)

obs ) (2)

p
(t)
i = maxP (yi = w|X,Y (t)

obs ), (3)

and keeps the probability and token unchanged for
Yobs. When prediction finishes, k tokens with the
lowest probabilities are re-masked, and the remain-
ing tokens are considered as observation in the next
iteration:

Y
(t+1)

mask = arg min(p
(t)
i , k) (4)

Y
(t+1)

obs = Y (t) \ Y (t+1)
mask , (5)

where k is determined by a linear decay function
with respect to current t and max step T :k =
L × T−t

T . For the first step, the model creates a
sequence full of [MASK]s with length of L and
predicts entire target sequence with it.

3.2 Datasets
We perform experiments on two commonly-used
corpora for convenient comparison, including
WMT14 En↔De (train=4.5M / valid=3k / test=3k)
and WMT16 En↔Ro (train=2.8M/ valid=2k/
test=2k). Following Gu et al. (2018); Zhou et al.
(2020), we employ knowledge distilled (KD) data
to train our NAT model. The KD data is generated
with a pre-trained autoregressive Transformer-big
teacher model by completely translating the source
text into the target language. We set beam size
as five in distillation and only keep the first candi-
date to make KD data equally sized with raw data.
Corpus for all language pairs are tokenized into
subwords with BPE (Sennrich et al., 2016), the
vocabulary sizes are 42k and 40k for En↔De and
En↔Ro respectively.

3.3 Experimental setup
We use the implementation of fairseq (Ott et al.,
2019) for AT and NAT models, with similar model
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En-De De-En En-Ro Ro-En

αref,train 1.0982 1.0043 1.0665 0.9580
αKD,train 1.0333 0.9312 1.0258 0.9410
αref,test 1.0401 0.9894 1.0704 0.9570
αKD,test 1.0606 0.9620 1.0757 0.9341

αD
hyp,test 1.0530 0.9419 1.0700 0.9275
αR

hyp,test 1.0779 0.9613 1.0824 0.9267

Table 1: The average length ratio for each language
pairs: α

{D|R}
{ref|KD|hyp},{train|test} = Ltgt/Lsrc, where sub-

scripts represent for the length of reference, knowledge
distilled (KD) data or hypothesis, computed on training
or testing set, and the superscripts represent for model
trained on KD or raw (R) data.

configuration in (Vaswani et al., 2017; Ghazvinine-
jad et al., 2019). Transformer-big with 6/6 layers,
16 heads and 1024/4096 dimensions is used as our
AT model. The NAT model is CMLM-base with
6/6 layers, 8 heads and 512/2048 dimensions.

All models are trained on 4 Tesla-V100 GPUs
with gradient accumulation for 2 batches per up-
date. Batch size is set to be maximum of 8k tokens
per card. All AT models are trained for 100k up-
dates and NAT models are trained for 300k updates.
Adam (Kingma and Ba, 2015) is used as optimizer
and inverse-sqrt is used as scheduler. The max
learning rate and number of warmup steps are set
to be 1e-4 and 4000 for AT models, 5e-4 and 20000
for NAT models.

4 Length Prediction Method

Modelling target length can be implemented in
either simple or complex manners depending on
learnable parameters, but it’s mathematically de-
fined as below:

JL(θ) = P (L|X; θ), (6)

As such, it can be solved by any maximum likeli-
hood estimation (MLE) algorithms.

4.1 Length to Length
The most straightforward intuition is to estimate
a mapping from the length of source to target in
training set: Ly = αLx, which can be inferred by
optimization and also directly measured through
a statistical ratio α from the averaged length of
source sentences to averaged length of target sen-
tences of training set. We discuss four interesting
findings below, acting as prior knowledge for fur-
ther investigation on length prediction.
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Figure 1: The distribution of the length ratio α with
respect to the source length Lx (Lsrc) for raw and KD
training set, where frequency is converted with loga-
rithm. Outliers with more than 200 tokens are removed.
µ and σ are mean and standard deviation of α where
values are shown on the left axis. Right axis is the log
frequency.

Analysis of Statistical Length Ratio Table 1
and Figure 1 show the statistical results and the
distribution of the length ratio α = Ltgt/Lsrc. We
summarize our findings as follows:

• De and Ro sentences are usually longer than
En sentences.

• For all language pairs, the length ratio changes
(often decreases) with the increase of source
length, which means using a linear model to
fit the ratio is not enough.

• There is usually a gap between the length ratio
of training and testing set which might be a
causality of the length prediction error.

• For En↔De language pair, the standard de-
viation and the slope of the mean value for
raw data is consistently larger than distilled
data, demonstrating the cleanness and simplic-
ity of the distilled data. For En↔Ro the gap
of mean and standard deviation is not that big.

This method is simple and time-efficient, but the
frequentist α is too generalized to ignore the dis-
tinction of each instance. Furthermore, the length
of target side is not merely associated with the
length of source, but various linguistic properties,
such as syntax and semantics.
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4.2 Latent Features to Length

Naturally, the hidden state of source sentence em-
bedded rich information is used to incorporate la-
tent linguistic features into target length prediction,
instead of just the property of length. They ex-
plicitly or implicitly model the target length con-
ditioned on the representation of source X , for
example, Ly = f(X; θ) to predict the absolute
length, Ly = f(X; θ)Lx to predict length ratio
and length offset by Ly = Lx + f(X; θ), as well
as fine-grained manners such as the fertility (Gu
et al., 2018): Ly =

∑N
i f(xi).

4.3 Latent Features to Latent Variables

If we consider two paradigms above as 1→ 1 and
N → 1 respectively, the third direction is to model
N → N . That is, each source sentence is translated
into multiple targets in different lengths, which
largely increases the potential to generate optimal
translations by multiple candidates. In practice, it
is implemented by introducing a latent variable
to control length prediction p(Ly|X,Z)p(Z|X)
which has not been fully investigated yet due to
the limitation of reference number in existing open
sourced corpora. The closest prior work is sam-
pling from length space and then selecting such as
length beam and NPD (Gu et al., 2018).

The second category of approaches are exten-
sively explored partially because current dataset
and evaluation metrics applied are more friendly
to them, i.e. higher performance is liable to be ob-
tained in comparison, but in our view, the third one
is a significantly promising direction to investigate.

5 Error Analysis

In this section, we analyse the predicted length of
NAT models trained on distilled (denoted as D) and
raw (denoted as R) data, as well as the length of
the hypothesis from the teacher model (denoted as
KD). We define the following metrics to quantify
the error for each sentence and average them over
the corpus:

ε = Ly − L̂y (7)

ε+ = |Ly − L̂y| (8)

ε% = 1− L̂y

Ly
(9)

ε%+ = |1− L̂y

Ly
| (10)

Error Model En-De De-En En-Ro Ro-En

ε
D -0.0513 1.2188 -0.0426 0.7382
R 0.0793 0.8418 -0.4727 0.8671
KD -0.4392 0.6890 -0.1943 0.6735

ε+
D 2.5534 2.6787 2.6124 2.6359
R 2.7093 2.9790 2.6610 2.6444
KD 2.8528 2.7995 2.7802 2.7277

ε%
D -0.0170 0.0341 -0.0119 0.0180
R -0.0176 0.0224 -0.0241 0.0191
KD -0.0319 0.0143 -0.0168 0.0116

ε%+
D 0.0950 0.0965 0.0933 0.0961
R 0.1003 0.1065 0.0949 0.0974
KD 0.1069 0.1026 0.0985 0.1015

Table 2: The average value of four error types of all
language pairs. In the model column, D and R indicate
models trained with the distilled or raw data, and KD
represents for the performance of the teacher model.

where the ε is the length error, ε+ is the absolute
error regardless of the skew, ε% is the error ratio
that excludes the influence of the sentence length
(e.g. 3 tokens error in a 5 tokens target and a 50
tokens target is different), and ε%+ is the absolute
error ratio. All errors are measured in the sub-
tokens level.

Table 2 is the statistical result for each error type.
The ε+ shows that NAT models usually have better
performance, and the model trained with distilled
data outperforms the teacher in a large margin. We
speculate that NAT explicitly models the distribu-
tion of length. It is reasonable for NAT to have
better performance compared with the implicit way
of AT model. Intuitively, the model trained with
raw data should perform better in length prediction
because of the identical distribution in the train-
ing and testing set. But the result is the opposite.
The reason behind we guess is that distilled data
is cleaner and more monotonous than the raw data.
Although length error is larger, it still makes the
model easier to fit the length distribution compared
with the raw data. Figure 2 shows the distribu-
tion of length error, indicating that the most errors
(75%) are within 5 tokens, and there are slight dif-
ferences between distributions of D, R and KD
especially in the large error zone.

6 Influence on Translations

After investigating the performance of length pre-
diction, we move forward to associate it with the
performance of translation and try to answer the
question of how length prediction influences the
translation. In this section, we use BLEU (Pap-
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Figure 2: The distribution of the length error on the
test set for each language pair, note that the error has
been clipped between -20 to 20 and the logarithm of
the frequency is used for clearness. The dashed line,
dashed dot line and dotted line represents for the mean,
1 × std and the 75% quantile.

Lang Data (0, 10] (10, 20] (20, 30] (30, 40] (40, 150]

En-De
D 22.67 24.52 24.35 25.68 26.30
R 20.23 22.67 23.14 24.39 23.81
KD 22.36 26.36 27.41 28.01 29.51

De-En
D 22.73 29.82 28.97 31.35 30.56
R 21.17 27.40 27.66 29.41 28.14
KD 24.12 31.63 31.22 34.14 33.32

En-Ro
D 25.02 27.63 28.74 29.59 31.99
R 25.31 27.17 27.87 28.52 31.05
KD 27.29 29.31 29.51 31.39 33.41

Ro-En
D 24.18 31.72 31.94 32.13 33.12
R 22.05 29.46 30.88 31.40 32.45
KD 25.85 31.85 32.30 32.36 33.63

Table 3: The BLEU scores for the length interval on
test set for NAT and AT model.

ineni et al., 2002) and TER (Snover et al., 2006) as
the corpus and sentence level metrics, respectively.
Two additional factors are also discussed including
the sentence length and the number of refinements.

6.1 Correlation to the Source Length

First of all, we use source length to group hypothe-
sises into several buckets with equal interval size,
then calculate BLEU for each bucket to find out
to what extent source length can affect translation
result. Table 3 shows the BLEU of each interval.
We find that the first interval has relatively low
BLEU which is caused by the imbalanced sample
size. Later intervals don’t show clear trends which
means the translation performance is not quite sen-
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Figure 3: The BLEU scores for each error interval on
test set for NAT and AT model.

sitive to the sentence length thanks to the capabil-
ity of Transformer architecture for modelling long
term dependency (Vaswani et al., 2017), as well as
the robustness of CMLM tested in (Ghazvininejad
et al., 2019). From this result, we can basically
exclude the influence of source length or consider
it as a minor factor.

6.2 Correlation to the Length Error
Then, we group hypotheses with the ε%+ and cut
several equal sized intervals to calculate BLEU
and TER for each of them. Figure 3 reveals the
clear trend that with the increase of the error, the
BLEU score decreases almost linearly. This result
is consistent with intuition that the negative corre-
lation between length error and the BLEU is not
only applicable for AT model but also for the NAT
model.

6.3 Upper-Bound of Translations
We basically conclude that incorrect length pre-
diction has negative impact on the translation, but
another question arises: if the oracle length is pro-
vided, what is the upper-bound the model could
reach?

Table 4 shows the overall performance of the
model trained and tested on KD or raw data with
predicted (L̂) or oracle length (L∗). Except for
Ro-En result, there are clear improvements on the
BLEU and TER for both types of models. In terms
of the Ro→En, the contradictory result happens
only on the raw test set. And noticeable unreason-
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Lang En-De De-En En-Ro Ro-En
Length Type L∗ L̂ L∗ L̂ L∗ L̂ L∗ L̂

Trained on Metric Tested on

D
BLEU

R 25.84 25.32 31.01 30.15 30.50 30.04 31.99 32.41
D 56.41 53.09 61.81 57.95 59.32 55.93 79.09 74.88

TER
R 0.54 0.58 0.48 0.50 0.50 0.53 0.48 0.50
D 0.26 0.30 0.23 0.27 0.24 0.28 0.11 0.15

R
BLEU

R 24.56 23.58 29.21 28.17 29.81 29.09 31.66 31.42
D 48.98 45.59 54.20 49.83 54.19 50.31 72.88 68.74

TER
R 0.54 0.59 0.49 0.53 0.50 0.54 0.48 0.51
D 0.31 0.36 0.28 0.34 0.27 0.32 0.14 0.19

Transformer-big R 28.03 32.64 32.21 32.76

Table 4: The overall performance of the NAT model trained and tested on distilled (D) or raw (R) data, with
predicted (L̂) or oracle (L∗) length. The last row shows the BLEU score of the autoregressive teacher model.
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Figure 4: The difference value of the BLEU (∆BLEU =
BLEUL∗ − BLEUL̂) with or without oracle length for
each error interval.

able translations are observed in generated outputs
amongst samples with higher TER, their L∗ causes
negative influences. This suggests that the mod-
eling of length and token prediction are strongly
related, as the length can be considered a discrete la-
tent variable. We suspect that this counter-intuitive
result is due to the overfitting of the model to the
KD data and resulting in inability to correctly use
the latent variable (length) from the unseen distri-
bution (ground truth).

To further investigate the upper-bound of the per-
formance beyond the oracle length, we perform
another set of experiments with length beam to find
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Figure 5: The heatmap of the averaged TER for candi-
dates of length beam with respect to the oracle length.

the maximum BLEU at which a model could peak.
To control the search space, we narrow search can-
didates within the area between the predicted length
and oracle length i.e. with the beam size of |L∗−L̂|
including L∗ and L̂. We take En→De as the exam-
ple and plot the averaged TER for translations with
same reference length for each beam candidates in
Figure 5. In the heatmap, x axis is the oracle length
and y axis is the predicted length, averaged TER
for beam candidates are plotted as an vertical area.
Without choosing the one with highest probability,
we directly calculate the TER for all candidates
towards the reference. Then, we filter hypothesises
with the lowest TER for each sentence pair and cal-
culate the corpus BLEU, which is 28.688, and the
averaged ε+ is 1.567. The searched upper-bound is
better than those hypothesis with oracle length with
approximately 3 BLEU (28.69 to 25.84), and the ε+

is small than the predicted length. Through the em-
pirical experiment results, it should be highlighted
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oracle length (asterisk or hat), where R and D repre-
sents for training on raw or distilled data.

that potential improvements can be obtained if the
optimal length for the model can be inferred.

6.4 Correlation to Refinement

It has been known that with multiple iterations of re-
finement in decoding, the translation performance
could be dramatically improved. Therefore, we
want to investigate the role of the length predic-
tion during refinement. In CMLM, the refinement
is achieved by re-masking predicted tokens with
low confidence. Assuming we set the max step to
T , at step i, (1 − i+1

T ) × 100% of tokens will be
re-masked and predicted again at next step, note
that the prediction of i-th step for different max
step T might be different. In the experiment, we
set maximum step as 10, run the model from 1 to
10 refinement iterations and compute the BLEU in
each iteration. We also observe the translation for
each iteration in 10-th run.

Figure 6 depicts the BLEU score of each run.
We find that decoding with fewer iteration can be
negatively scored with L∗ compared to L̂. This
also happens in step wise BLEU shown in Figure 7.
From this case study, we find that translations at ini-
tial several steps or with fewer refinement iterations,
often have many repeated tokens. We then statis-
tics the average repetition rate of the first step, the
result shows that translations with L∗ have higher
repetition rate compared with using L̂ (15.43% to
12.84% for En→De), which confirms our assump-
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Figure 7: BLEU scores of each step with or without or-
acle length (asterisk or hat) when max refinement step
is set to 10. R and D represents for training on raw or
distilled data.
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Figure 8: The heat map of the delta BLEU for each
error interval and each refinement step while given the
oracle length or not (max refinement step = 10).

tion that when given the oracle length, the model
may not be able to correctly use it. However, af-
ter few steps of refinement, the incompatibility to
the oracle length can be eliminated thereby makes
translations with correct length can be more similar
to the reference. Figure 8 is the increase of BLEU
∆BLEU = BLEUL∗ − BLEUL̂ for each error inter-
val at each step, which also reveals that increases
in later steps are more significant.

7 Conclusion

From the analysis of length prediction as well as
related factors, we have a deeper understanding of
it and draw following conclusions:
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• Length is an important latent variable for full
or iterative based NAT models, it strongly
affects the ultimate translation quality, so it
should be paid more attention and emphasised
in future work of the community.

• Accurately predicting the target side length is
beneficial to achieving better BLEU, but it’s
far from the upper-bound BLEU score bonus
brought by length variable.

Specifically, even if 100% accuracy is
achieved, it still can’t peak the best BLEU
when only judged by reference translation
which is not the unique ground truth, because
it ignores the linguistic diversity. We find sig-
nificant improvement can be obtained by a
flexible length beam search by over 3 BLEU.

This reveals that, with regard to improving the NAT
translation, flexible decoding strategies are more ef-
fective than exhausting towards accurate length pre-
diction, since essentially no ground truth of length
exists owing to the complexity and diversity of
languages. Elegant parallel decoding methods are
more promising, such as dynamically changing the
length as we evaluated, and meanwhile retaining
the simplicity of mask predicting of NAT.
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