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Abstract

The distributed and continuous representations
used by neural networks are at odds with repre-
sentations employed in linguistics, which are
typically symbolic. Vector quantization has
been proposed as a way to induce discrete neu-
ral representations that are closer in nature to
their linguistic counterparts. However, it is not
clear which metrics are the best-suited to an-
alyze such discrete representations. We com-
pare the merits of four commonly used met-
rics in the context of weakly supervised mod-
els of spoken language. We compare the re-
sults they show when applied to two different
models, while systematically studying the ef-
fect of the placement and size of the discretiza-
tion layer. We find that different evaluation
regimes can give inconsistent results. While
we can attribute them to the properties of the
different metrics in most cases, one point of
concern remains: the use of minimal pairs
of phoneme triples as stimuli disadvantages
larger discrete unit inventories, unlike met-
rics applied to complete utterances. Further-
more, while in general vector quantization in-
duces representations that correlate with units
posited in linguistics, the strength of this cor-
relation is only moderate.

1 Introduction

The dominant machine learning paradigm for pro-
cessing spoken language is based on neural net-
work architectures, such as recurrent nets and trans-
formers, inducing a hierarchy of hidden represen-
tations which are distributed and continuous. In
contrast, human history has repeatedly seen the dis-
covery and wide adoption of discrete, symbolic rep-
resentations of speech in the form of writing. These
systems commonly represent basic units of lan-
guage such as morphemes, syllables or phonemes
while discarding other information contained in the
speech signal such as emotion or speaker identity.

Symbolic representation of speech has proven
tremendously useful for storage and transmission
of information, and it also plays a crucial role in
systems dealing with spoken language such as spo-
ken dialog systems: these typically employ an au-
tomatic speech recognition (ASR) module to tran-
scribe the speech signal into written form, which
is then used as input to upstream language under-
standing modules. While some attempts have been
made to train such systems end-to-end, pipelines
are still very competitive (see Haghani et al., 2018;
Higy et al., 2020), which strengthens the point that
a symbolic encoding of spoken language contains
most of the information relevant for this task.

It may thus be desirable to incorporate simi-
lar representations in neural architectures. Ac-
cordingly, multiple efforts have been made to de-
sign neural networks with discrete hidden repre-
sentations and to apply them to spoken language
data. This is evident in the recent editions of the
ZeroSpeech challenge (Dunbar et al., 2019) on
unit discovery, which have featured many such ap-
proaches. Specifically, Vector Quantization (VQ)
has proven to be a simple and effective method to
induce discrete neural representations (e.g., van den
Oord et al., 2017; Harwath et al., 2020a; Chung
et al., 2020; Liu et al., 2021). VQ layers are added
to neural architectures in order to map continu-
ous activation vectors onto a finite set of discrete
units, often referred to as codes, via a dictionary (or
codebook) associating these codes with their vector
embeddings; the number of entries in the codebook
is the codebook size. Such symbolic codes have
been claimed to correspond to phonemes and/or
words. What is still lacking though is a detailed
analysis of how much the reported equivalence is
affected by details of the architectures such as the
size and placement of the VQ layers, learning ob-
jectives and dataset, as well as by the evaluation
metrics used to quantify it. The present study aims
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to fill this gap.
We study two approaches to modeling spoken

language: learning driven by language-internal
structure, and learning driven by grounding in
the extra-linguistic world. These two approaches
are exemplified by two types of models with VQ
layers: the self-supervised model for unit discov-
ery of van Niekerk et al. (2020), and a visually
grounded model similar to Harwath et al. (2020a).
The datasets used to train each model, Zerospeech
2020 (Dunbar et al., 2020) and Flickr8K (Harwath
and Glass, 2015; Rashtchian et al., 2010) are also
typical of the task they are used for. Using these
two models as our test cases, we systematically
investigate the impact of the following factors: (i)
the codebook size for the VQ layer, and (ii) the
level of placement of the VQ layer. Furthermore,
we apply and check the consistency across four
different metrics for evaluating the correspondence
of the representations with phonemes.

Findings The self-supervised model shows high
variability, but with some of the evaluation metrics
(especially ABX and RSA, see Section 3.3 for the
definition of the metrics) there is a trend for better
correspondence to phonemes for smaller codebook
sizes (32-128). The visually grounded model, on
the other hand, generally shows the closest match
with phonemes for the largest codebook sizes (512
or 1024) when evaluated on full utterances. In con-
trast, smaller codebooks score higher for the short
utterance segments used by the ABX metric (i.e.
minimal pairs of phoneme triples). We also ob-
serve inconsistencies in the relative performance
of VQ layers placed at different levels in the model
for RSA vs. the other metrics. As discussed in
Section 5, we attribute those inconsistencies to the
properties of the different metrics. Thus, the con-
clusions drawn using a single metric, even a widely
used one like the ZeroSpeech ABX metric, should
be treated with caution, and further corroborated.

2 Related work

The domain of speech processing has seen recent
efforts to modify existing neural architectures to en-
able the induction of discrete latent representations.
These developments are promising for boosting
performance, improving interpretability, and mod-
eling the acquisition and processing of linguistic
knowledge in humans.

Applying Vector Quantization (VQ) techniques
for this purpose was pioneered by van den Oord

et al. (2017), who propose generative models based
on the variational auto-encoder (VAE) architecture
and use VQ to induce discrete latent representa-
tions. They apply this method to images, videos,
and speech, and show that the models can learn
discrete latent representations without supervision.
When applied to raw speech, the VQ-VAE archi-
tecture learns high-level discrete representations
that are invariant to low-level features of the audio
signal such as prosody and speaker identity, and
mostly encode the content of the speech. Classifi-
cation of the discrete representations into phoneme
classes (based on majority ground truth label) sug-
gests they capture phonemes to some extent.

Learning discrete instead of (or in addition to)
continuous representations can facilitate unit dis-
covery in unsupervised models of speech. In the
2015 Zero Resource Speech Challenge (Versteegh
et al., 2015), Badino et al. (2015) present a bina-
rized auto-encoder, certain variants of which out-
perform its continuous counterpart. In the 2017,
2019, and 2020 editions of this challenge (Dunbar
et al., 2017, 2019, 2020), following the work of
van den Oord et al. (2017), several models include
at least one VQ layer (see e.g. Chorowski et al.,
2019; Eloff et al., 2019; Tjandra et al., 2019, 2020).
These studies demonstrate the benefit of using VQ
layers for phoneme classification and for learning
speaker-invariant representations, focusing on the
ABX phoneme discrimination metric to evaluate
the encoding of phonemic information. However,
little analysis on the impact of the size and configu-
ration of the employed VQ layers is performed. For
example, van Niekerk et al. (2020) train a VQ-VAE
model for reconstructing audio waveforms, and a
VQ-CPC (Contrastive Predictive Coding) model
for predicting future acoustic units. They evaluate
these architectures on the ABX phoneme discrimi-
nation task, voice conversion and speaker classifi-
cation and show that VQ-CPC performs better than
VQ-VAE overall, but they do not manipulate the
configuration or the dimension of the VQ layers.

Chung et al. (2020), however, report the im-
pact on phoneme and speaker classification of sys-
tematic manipulation of VQ-related factors. They
train an Autoregressive Predictive Coding (APC)
model to predict upcoming frames, and use VQ as
a methodology to limit the model’s capacity. Using
a frame-wise diagnostic classifier (namely linear
logistic regression), they show that under restricted
configurations (only one VQ layer inserted at the
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Table 1: A comparison of studies of VQ-based speech models. RAW (Reconstructing Audio Waveform); VAE
(Variational Autoencoder); APC (Autoregressive Predictive Coding); CPC (Contrastive Predictive Coding); DC
(Diagnostic Classifier).

Study Objective Model Analysis Manipulated factors

van den Oord et al. (2017) RAW VAE Phoneme (majority label) None
Chorowski et al. (2019) RAW (V)AE, VQ-

VAE
Phoneme (ABX, frame-wise
DC), gender, speaker

VAE latent dimensions

Chung et al. (2020) Predicting next
frame

APC Phoneme (frame-wise DC),
speaker

VQ layer number, posi-
tion, codebook size

van Niekerk et al. (2020) RAW, predicting
future frames

VQ-VAE,
VQ-CPC

Phoneme (ABX), speaker, voice
conversion

None

Harwath et al. (2020a) Visual ground-
ing

ResDAVEnet Phoneme (ABX), bitrate, word
(F1 scores)

VQ layer number, posi-
tion, training regime

top), phoneme prediction using discrete represen-
tations improves over using continuous representa-
tions learned by an APC model without VQ. In this
configuration, larger codebook sizes lead to better
performance in phoneme classification but not in
speaker identification.

In contrast to the work cited above, which dis-
cusses uni-modal speech models, Harwath et al.
(2020a) use VQ layers within the setting of learning
spoken language via grounding in the visual modal-
ity, where the speech signal is associated to images
(for an overview of visually grounded speech mod-
els, see Chrupała, 2021). They hypothesize that
discrete representations learned by such models are
more likely to capture higher-level semantic infor-
mation. Their analyses suggest that the trained mul-
timodal models can learn discrete linguistic units at
both word and sub-word levels, with quantization
layers inserted at the lower levels of the network
showing correspondence to sub-word (i.e. phone-
mic) units, and those inserted at the higher level
corresponding to word-level units. Analyses are
based on the Zerospeech ABX metric for phoneme
encoding and F1 scores for word detection. Simi-
larly, Liu et al. (2021) propose a framework based
on VQ to discover discrete concepts in models of
visually grounded language trained on video and
text, video and audio or image and audio. Evidence
of a correspondence between the learned concepts
and visual entities/actions or words are given but
no detailed analysis is performed.

When evaluating the encoding of phonemic in-
formation in continuous representations from mod-
els of spoken language, recent work has shown
that different metrics may yield different outcomes.
Chrupała et al. (2020) show that representational
similarity analysis (RSA) and diagnostic classifier
(DC) applied to pooled representations disagree
with the results of DC applied on local representa-

tions for RNN-based architectures, while they are
all in agreement when applied to transformer-based
representations. Algayres et al. (2020) compare the
aforementioned ABX metric and the mean-average-
precision (MAP) metric (which uses representa-
tions to predict whether two stimuli have the same
ground-truth label) to each other and to a down-
stream frequency estimation task. Performance on
the three metrics is correlated, but not to a high
degree, and marked discrepancies are found for
particular models.

Table 1 summarizes some of the representative
studies that use VQ layers and their specifications
and reported analyses. As can be seen from this
summary, existing work on learning VQ-based dis-
crete representations does not easily lead to a co-
herent picture due to the wide range of the training
objectives and modeling architecture they use, the
analyses they perform, the evaluation metrics they
employ and the VQ-related factors they manipulate.
In this paper, we aim to provide this overview by
employing different discretized speech modeling
approaches and consistently comparing architec-
tural parameters and evaluation metrics.

3 Methods

3.1 Vector quantization

We investigate evaluation metrics for the analy-
sis of discrete representations induced through
vector quatization. Since phoneme classifica-
tion/identification has been the dominant analysis
task for discrete representations of speech, we use
this as our main task. We do so through the specific
case of speech representations learned by two dif-
ferent models: a self-supervised model of speech
trained to reconstruct the audio waveform, and
a visually-supervised model of spoken language
which maps audio representations of spoken ut-
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terances and visual representations of their corre-
sponding images to a shared semantic space. Both
models employ VQ layers in their architecture to in-
duce discretized representations. A VQ layer takes
as input a continuous distributed representation in
the form of a vector h ∈ Rd, and returns the clos-
est of K prototype vectors contained in a trainable
codebook {e1, e2, . . . , eK} where ei ∈ Rd. For
a sequence of continuous vectors (h1, h2, . . . , hn)
the discrete codes are given by the sequence of
indices of the prototype vectors returned by the
VQ layer. Since the argmax operation needed to
select the nearest vector is not differentiable, the
gradient for backpropagation is approximated by
using the straight-through estimator (Bengio et al.,
2013), which replaces each non-differentiable op-
eration with the identity function for the backward
pass. For further details, consult van den Oord et al.
(2017).

3.2 Target models

Self-supervised Our self-supervised model is the
VQ-VAE model introduced in van Niekerk et al.
(2020).1 The model consists of an encoder built
out of a stack of five convolutional layers, a bottle-
neck comprising a linear projection and a VQ layer,
and a decoder comprising an embedding layer and
a stack of upsampling and recurrent layers; the de-
coder attempts to reconstruct the original waveform.
For details of the architecture, see van Niekerk et al.
(2020). In the experiments reported here, we vary
the size of the codebook, but keep the placement
of the VQ layer constant as the encoder contains
only one fully connected layer after which the VQ
layer can be placed.

Visually-supervised A visually-supervised
model of spoken language with discrete represen-
tations was introduced by Harwath et al. (2020a):
they adapted an existing model (Harwath et al.,
2020b) by inserting one or more VQ layers within
the speech encoder stack. We similarly adapt
the architecture used in Merkx et al. (2019) and
Chrupała et al. (2020) by inserting a single VQ
layer at one of three levels: either following the
first, second or third GRU layer of the speech
encoder. In addition to VQ layer placement, we
also vary the size of the codebook. Note that
unlike Harwath et al. (2020a) we do not use a
pre-training stage which by-passes the VQ layers;

1We use the authors’ implementation available at
github.com/bshall/ZeroSpeech.

rather, we train the complete network from scratch.
This model thus consists of an image encoder,
which takes as input image features extracted
via a pre-trained ResNet-152 model (He et al.,
2016) and maps these features via a learned
affine transform into a joint visual-language space.
The audio input are MFCC features with total
energy and delta and double-delta coefficients with
combined size 39. The speech encoder consists
of one 1D convolutional layer (with 64 output
channels) which subsamples the input by a factor
of two, four bidirectional GRU layers (each of
size 2048), with a VQ layer inserted between a
single pair of GRU layers. This stack is followed
by a self-attention-based pooling layer. The
objective function is a version of the triplet loss
with negative examples from the current batch.
The model is trained with the Adam optimizer
(Kingma and Ba, 2015) with a cyclical learning
rate schedule (Smith, 2017).

3.3 Evaluation methods

Different evaluation methods have been used for
analyzing the nature of information captured by
VQ-based discrete representations in different stud-
ies. We present here a thorough examination of
their formal similarities and differences as well as
their sensitivity to different conditions. In this sec-
tion we introduce the methods commonly used to
evaluate the learned representations.

Chrupała et al. (2020) study the effect represen-
tation scope, i.e. activation vectors retrieved at the
level of frames (local) or pooled over whole utter-
ances (global), concluding that it can affect results.
Following their recommendations, and for the sake
of simplicity, we include one measure for each
scope. Since their findings suggest that local RSA
lacks sensitivity, we use local DC (which is also
the most widely used) as well as global RSA in our
experiments. Global RSA has the double advan-
tage of not using any trainable parameters and not
requiring any alignments.

Normalized Mutual Information (NMI) An
information-theoretically motivated measure of the
association between two random variables is mu-
tual information. In the general case of vector-
valued neural representations, computing mutual
information with the target annotation is intractable.
In the special case where the representation is
discrete-valued, we can use the standard empiri-
cal estimate. Given discrete random variables X

https://github.com/bshall/ZeroSpeech
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with image X and Y with image Y (i.e. frame-wise
codes and phoneme labels in our case), the mutual
information I(X;Y ) is

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
(1)

It is often more informative to use mutual infor-
mation normalized by the arithmetic mean of the
entropies of the two random variables:

NMI(X;Y ) = 2
I(X;Y )

H(X) +H(Y )
(2)

where H(X) is the entropy of X . This definition
of normalized mutual information (NMI) is equiva-
lent to the V-measure (Rosenberg and Hirschberg,
2007).

Diagnostic Classifier (DC) A diagnostic model,
also known as a probe, is a classifier or regres-
sor trained to predict some information of inter-
est (such as a linguistic annotation) given a neural
representation. To the extent that the model suc-
cessfully predicts the annotation, we conclude that
the neural representation encodes this information.
Informally, such a diagnostic classifier can be seen
as quantifying the amount of easily-accessible – or
in the extreme case, linearly decodable – informa-
tion about the target annotation (Adi et al., 2017;
Alishahi et al., 2017; Hupkes et al., 2018; Conneau
et al., 2018, among others).

As argued by Pimentel et al. (2020), without the
qualification that information be easily accessible,
probing should aim to approximate the mutual in-
formation between the neural representation and
the target annotation, and thus should use the best-
performing probe possible. Furthermore, it is not
possible for the neural representation to contain
more information about the target annotation than
the source utterance itself, due to the information
processing inequality, and thus, in the general case,
probing with an unrestricted classifier is not a well-
founded exercise. In the special case of probing
a discrete-valued variable (as is the case in our
study) the situation is simpler: the accuracy of a
linear classifier is closely related to the empirical
estimate of the mutual information between the
representation and the target annotation; see the
formal argument in Appendix A.1 as well as our
empirical results.

Representational Similarity Analysis (RSA)
RSA is a second-order technique originating in

neuroscience (Kriegeskorte et al., 2008) where sim-
ilarities between pairs of stimuli are measured in
two representation spaces: e.g. neural activation
pattern space and a space of symbolic linguistic
annotations such as sequences of phonemes or syn-
tax trees. The correlation between these pairwise
similarity measurements quantifies how much the
two representations are aligned. This approach
requires a similarity or distance metric for pairs
of stimuli within each representation space, but
does not need a way of mapping from one space to
the other. It generally does not have any trainable
parameters. As a consequence, it is sensitive to
the purity of the representation with regard to the
variable of interest: unlike DC, the RSA metric
will penalize representations for encoding any in-
formation unrelated to the target variable. See for
example Bouchacourt and Baroni (2018); Chrupała
and Alishahi (2019); Abnar et al. (2019); Abdou
et al. (2019); Chrupała et al. (2020); Fereidooni
et al. (2020); Davis and van Schijndel (2020) for
uses in NLP and speech processing.

When the neural representations of the stimuli
evaluated are sequences of vectors, we need to
make a choice regarding how to measure similar-
ities or distances between them. Here we focus
on neural representations which take the form of
sequences of symbolic codes, which makes mea-
suring distances simple: a natural choice is the
Levenshtein edit distance normalized by the length
of the longer string. We can thus apply the same
edit-distance metric on both the neural representa-
tions and on the reference sequences of phonemes
or words (for efficiency we collapsed code repeti-
tions).

ABX discriminability (ABX) The ABX
phoneme discriminability metric (Schatz, 2016) as
used in the Zerospeech challenge (Dunbar et al.,
2019) is based on triples of stimuli (A,B,X)
where A and X belong to the same category and
B and X belong to different categories. The ABX
error is a function of d(A,X) and d(B,X) where
d(·, ·) is a distance metric for the representation
being evaluated:2

abx(A,B,X) =


1 if d(A,X) > d(B,X)
1
2 if d(A,X) = d(B,X)

0 otherwise
(3)

2The ABX error is thus similar to a discretized version of
the triplet loss.
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Metric Triples Align Train Distance

RSA X
ABX X X X
NMI X
DC X X

Table 2: Summary of the main features of the evalua-
tion metrics used.

The categories are determined by gold annota-
tion: in the case of Zerospeech they are phoneme
labels. The stimuli are presented in context in the
form of minimal pairs: (A =/beg/1, B =/bag/,
X =/beg/2), where /beg/1 and /beg/2 are two dif-
ferent utterances of this phoneme sequence. In our
use case, alignments between the gold phoneme
transcriptions and the evaluated representations are
required to extract the stimuli for ABX. Here we
use the same distance metric as for RSA: Leven-
shtein edit distance normalized by the length of the
longer string.

The ABX error is loosely related to the RSA
score. With RSA, pairwise distances are measured
between gold representations of stimuli (e.g. their
phonemic transcriptions) as well as between system
representations of the same set of stimuli. The
correlation coefficient between these two sets of
distance measurements is the RSA score. With
RSA there is no notion of a stimulus triple, but
rather the score reflects distances between all pairs
of stimuli. Likewise, the representation of stimuli
according to the gold standard is typically not in
the form of atomic categorical labels but can be
any representation with an associated distance (or
similarity) metric. Thus RSA can be seen as more
general than ABX, while being less controlled.

Summary of metrics Table 2 summarizes the
main characteristics of the evaluation metrics de-
scribed above in the context of analyzing neural rep-
resentations of speech, along the following facets:
the need to arrange input in the form of minimal-
paired stimulus triples, the need for alignment be-
tween input/codes and phonemic transcriptions, the
presence of trainable parameters, and reliance on
a distance metric between stimuli. According to
these criteria, RSA and NMI are the least restricted
in their applicability, requiring only a distance func-
tion or alignment, respectively. In addition to a dis-
tance metric, ABX needs minimal-paired stimulus
triples to be extracted. In addition to alignment DC

has trainable parameters, and in the case of analyz-
ing discrete codes, it behaves like an approximation
to the NMI metric.

3.4 Evaluation procedure

We evaluate the induced discrete representations by
applying the trained networks on the relevant ex-
amples – either full utterances, or speech segments
corresponding to sequences of three phonemes
(triplets) – and extract the sequences of codes from
the VQ layer. We do the same for randomly ini-
tialized (untrained) versions of the networks, in
order to provide a baseline score, following the
methodology of Chrupała et al. (2020). In Sec-
tion 4, we include in the plots both the baseline
scores and the scores with the trained models. For
the self-supervised target model we vary only the
size of the codebook in the VQ layer,3 using sizes
2n for n ∈ [5, 10]. For the visually-supervised tar-
get model we use the same sizes and also vary the
placement of the VQ layer between one of three
levels (following first, second or third GRU layer).
For both target models, each variant was trained
three times with a different random initialization;
the scatter plots in Section 4 show each of these
runs, as well as a LOESS fit (Cleveland, 1979) to
each combination of codebook size and level.

3.5 Datasets

Training target models Following van Niekerk
et al. (2020) we train the self-supervised model
on about 15 hours of speech from over 100 speak-
ers provided by Zerospeech 2020 (Dunbar et al.,
2020).4 The visually-supervised model is trained
on the Flickr8K Audio Caption Corpus (Harwath
and Glass, 2015; Rashtchian et al., 2010)5, which
consists of 8,000 images of daily scenes each paired
with five spoken captions. The training portion of
this dataset contains 6,000 images and about 34
hours of speech.

Evaluation We encode the development captions
of Flickr8K (5,000 captions) using the encoders of
the trained and untrained target models, and for
each utterance extract the sequence of codes output
by the VQ layer. We split this data in half, and use

3The self-supervised model has the VQ layer as part of its
original architecture, in a bottleneck composed of only one
linear layer making it hard to manipulate the level of the layer
without disrupting the model.

4https://zerospeech.com/2020/
5https://groups.csail.mit.edu/sls/downloads/flickraudio/

https://zerospeech.com/2020/
https://groups.csail.mit.edu/sls/downloads/flickraudio/


169

one half for training the DC, and the other half for
computing the scores for DC, RSA and NMI.

As ABX (and one experiment with RSA) is not
computed on full utterances but on phoneme tri-
grams, we prepare this data by sampling 1,000 cap-
tions from the Flickr8K development set, and cut-
ting the audio into non-overlapping segments corre-
sponding to a sequence of three phonemes. We then
use the ZeroSpeech code to generate minimal-pair
stimulus triples.

In order to obtain reference phonemic transcrip-
tions we use forced alignment with the Gentle
toolkit,6 based on Kaldi (Povey et al., 2011). This
fails for a small number of utterances, which we
remove from the data.

3.6 Repository
The code for replicating our experiments is avail-
able at https://github.com/bhigy/discrete-repr under
Apache License 2.0.

4 Experimental results

Here we report experiments examining how VQ
layers encode phonemes in each target model ac-
cording to different evaluation metrics. The im-
pact of VQ layers on performance of the visually-
supervised model in image retrieval is reported in
Section A.2 of the Supplementary Material.

4.1 Visually-supervised representations
We extract codes from visually-supervised VQ
models trained on the Flickr8K data while varying
VQ layer placement and codebook size. We evalu-
ate how much these codes correspond to phonemes
according to four metrics: DC, NMI, RSA and
ABX. These results are shown in Figure 1.

DC vs. NMI As expected on theoretical grounds,
diagnostic classifiers and mutual information give
very similar results. Overall, VQ layers at level 1
and 2 perform significantly better than VQ layers
at level 3 or equivalent untrained models. Larger
codebook sizes also tend to perform better than
smaller ones.

DC and NMI vs. RSA RSA differs from the
other two metrics on three main aspects: (i) VQ
layers at level 3 perform comparably to level 2, (ii)
medium codebook sizes give better performances
for VQ layers at level 1, and (iii) untrained mod-
els show very poor performance. The three points

6http://lowerquality.com/gentle/

Model RSA input r

VS triplet 0.93
VS complete 0.16
SS triplet 0.92
SS complete 0.93

Table 3: Correlation between the ABX and RSA
scores, with RSA computed on complete utterances
and phoneme triplets, for the visually supervised (VS)
and self-supervised (SS) models.

can be explained by the sensitivity of RSA to the
purity of the representations. Focusing on the last
point first, while representations extracted from
untrained models can still contain meaningful in-
formation, it will be less explicit and mixed with
information that is not relevant for the task of inter-
est. A similar explanation might also hold for the
first two points; in particular, we observed that the
VQ layers at level 1 retain much more information
on the speaker than the other two levels and that
the encoding of speaker information increases with
the size of the codebook (see Section A.4 of the
Supplementary Material for related experiments).

ABX vs. rest ABX is the most divergent metric.
While VQ layers at level 1 and 2 still perform bet-
ter, the gap with equivalent untrained models is
smaller. The effect of codebook size is also much
less pronounced and layer-specific. The difference
in patterns of results between the metrics might be
due to the different testing stimuli used by ABX
versus the other three metrics: whereas DC, NMI
and RSA are tested on full utterance audio files,
ABX is tested on small phoneme trigram files.

Role of stimulus size To disentangle the impact
of the metric and the size of the stimulus it is ap-
plied on, we run two additional experiments. First,
we re-calculate RSA using the same phoneme tri-
gram files used for ABX. The correlation coeffi-
cient between ABX and this version of RSA is
much stronger (see Table 3), suggesting that the
type of stimulus used to test the model does play a
role.

The other experiment goes in the opposite di-
rection and brings the ABX evaluation closer to
the other three metrics. Training the target model
on full sentences but applying it to short segments
could play a role. Thus, we run an additional set
of experiments where we apply the models to full
utterances and generate the representation used in

https://github.com/bhigy/discrete-repr
http://lowerquality.com/gentle/
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Figure 1: Correspondence of codes to phonemes according to four different metrics as a function of codebook size,
type of model, and level of VQ layer placement (in the visually-supervised case).
Top left: Accuracy of the DC.
Top right: NMI between codes and phoneme labels.
Bottom left: RSA score measured against phonemic transcriptions.
Bottom right: Accuracy on the ABX task.
RSA is computed on full utterances; ABX on phoneme-triple segments. DC and NMI are computed frame-wise
on full utterances forced-aligned to the phonemic transcriptions. Higher scores are better for all metrics. Trained
models are represented by black icons and solid lines. Dashed lines and white filled icons represent randomly
initialized models.

ABX by extracting the portion of the code sequence
corresponding to each phoneme trigram from the
full sequence of activations. The correlation with
RSA is still low (0.14) indicating that the problem
is intrisic to the evaluation relying on phoneme
triplets and not train/test mismatch. This impact
of stimulus size on results is likely related to the
fact that, with very short stimuli, most normalized
edit distances will be maximum, or near maximum,
and this will especially be the case for large code-
book sizes, giving very skewed and long-tailed edit
distance distributions (see details in Section A.3 in
the Supplementary Material).

4.2 Self-supervised representations

We extract codes from a number of self-supervised
VQ-VAE models trained on the Zerospeech 2019
challenge dataset with varying codebook sizes
(note that the VAE model has only one possible
placement for the VQ layer). We compare how well
these codes correspond to phonemes according to
the same four metrics, as displayed in Figure 1. In

contrast to what we see for visually-supervised rep-
resentations, here RSA and ABX scores are largely
consistent and suggest that a larger codebook leads
to weaker encoding of phonemic information. The
effect is more pronounced for ABX though with
the largest codebook performing similarly to the
baseline. DC and NMI are relatively insensitive to
the size of the codebook.

The self-supervised model does not show the
discrepancy observed with the visually-supervised
model when RSA and ABX scores are run on test-
ing input of different size. This is confirmed by
the correlation coefficients between the ABX score
and RSA computed on complete utterances and
phoneme triplets shown in Table 3. The VQ layer
in the self-supervised model only has access to a
limited context, which provides enough informa-
tion to subsequently reconstruct the input audio
frame. The visually-supervised architecture on the
other hand builds a representation for the whole
utterance, supported by recurrent layers. This core
difference may explain the pattern of results we
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report here.

5 Discussion

To summarize, the different metrics we compared
give divergent views of the same representations.
This should not necessarily be interpreted as one
metric being right while the others are flaweded.
It is likely that the different metrics account for
somewhat different properties of the representa-
tion. The differences between RSA and DC/NMI
are probably related to the purity of the representa-
tion. RSA is based on the correlation of distances
between pairs of stimuli and is thus sensitive to
the presence of additional information in the rep-
resentation. If the model’s representation contains
information that is not related to the representa-
tion that is the target of the analysis (in our case
phonemes identification), this will be reflected in
lower RSA scores.

An obvious example of such information that a
model of speech is likely to encode is speaker iden-
tity. As pointed out in Section 4.1, the pattern of
results obtained with a classifier trained to predict
speaker identity supports this view. The encoding
of speaker information could lead to comparatively
lower scores with RSA, especially for level 1 and
large codebooks where speaker identity is better
encoded.

In general, our results suggest that different met-
rics might be preferred depending on the question
that one is trying to answer. RSA scores are a bet-
ter indicator of the exact match between two rep-
resentations while DC/NMI better evaluate the ex-
tent to which a given information can be extracted
from a model’s representation, irrespective of other
sources of information that might be encoded at
the same time. This could be confirmed through
white-box experiments, where the different metrics
would be applied to hand-crafted representations
with different properties (e.g. in term of purity).
We leave this to future work.

The only remaining point of concern that arises
from our results is the interaction between code-
book size and input size. Larger codebook sizes
tend to be disadvantaged when short input seg-
ments are used as input, such as minimal pairs of
phoneme triplets. This is particularly relevant for
ABX where the use of minimal pairs of phoneme
triplets is a common practice. Analysis of discrete
representations using short segments should prefer-
ably be carried with diagnostic classifiers or NMI,

especially if codebooks or different sizes are com-
pared.

It is also important to highlight that the impor-
tance of this effect is dependent on the architecture
and the training objective of the model, as our ex-
periments with a self-supervised model show.

6 Conclusion

We compared four different metrics for discrete
representations induced by VQ layers in weakly-
supervised models of spoken language, and while
the results are broadly consistent, some differences
did emerge. RSA tends to show a bigger gap be-
tween trained and untrained models as it is more
sensitive to the purity of representations with re-
spect to the information of interest. More surpris-
ing is the divergent results we observe when eval-
uation is performed on minimal pairs of phoneme
trigrams: this is likely due to the skew of distance
distributions with large codebooks sizes.

This is an important finding as some previous
work on discrete representations focused exclu-
sively on the ABX metric. In contrast, we recom-
mend corroborating results with multiple analytical
approaches, as currently their behavior in different
settings is incompletely understood.

Overall, our findings do support the idea that
vector quantization is an effective way to induce
discrete representations, and that these correlate
with symbolic representations assumed in linguis-
tics. However, it is worth noting that the absolute
values of our metrics measuring correspondence
to phonemes are moderate at best.7 It is thus im-
portant to keep in mind that these symbolic units
are not exact analogs of the concepts familiar from
linguistic theory and psycholinguistic studies.
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A Supplementary material

A.1 Loss of a logistic diagnostic classifier
The most general measure of the amount of infor-
mation about the value of a random variable Y
obtained through the observation of the value of
random variable X is mutual information I(Y ;X).
Here we relate the loss of a logistic diagnostic
classifier predicting Y from X in the special case
where both Y and X are discrete, with image Y
and X respectively.

We can construct a logistic classifier which out-
puts the empirical probability P̂ (Y = y|X = x)
with y ∈ Y and x ∈ X , by using a one-hot encod-
ing of the categorical predictor variable X as x and
by setting the classifier coefficients W as

Wy,x = ln P̂ (Y = y|X = x). (4)

The softmax of the logistic classifier with these
coefficients simplifies to the empirical estimates of
conditional probabilities of Y :

py|x =
exp(ln P̂ (Y = y|X = x))∑
z∈Y exp(ln P̂ (Y = z|X = x))

(5)

= P̂ (Y = y|X = x). (6)

The cross entropy of the predictions of this classifer
is then:

J(w) = − 1

N

N∑
n=1

ln P̂ (Y = yn|X = xn) (7)

where yn and xn are the values taken by the ran-
dom variables Y and X for the nth example. The
loss is equivalent to the empirical estimate of the
conditional entropy H(Y |X), and related to the
mutual information between I(Y ;X) via:

I(Y ;X) = H(Y )−H(Y |X). (8)

To the extent that the scores of the logistic diag-
nostic classifier and normalized mutual information
applied to the same data are not perfectly correlated,
this would be due to the stochasticity of training,
regularization, as well as the use of accuracy rather
than cross entropy to measure performance.

A.2 Overall performance of the visually
supervised model

Since the visually-supervised model is trained and
optimized for matching images and their corre-
sponding spoken captions, we measure the re-
call@10 of retrieving the correct image for a given
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Figure 2: Recall@10 as a function of codebook size
and level of placement.

Model Input Size Skew Kurtosis

SS complete 32 0.14 0.21
SS triplet 32 -0.67 0.55
SS complete 1024 -0.20 0.29
SS triplet 1024 -2.79 8.99
VS complete 32 0.04 0.35
VS triplet 32 -1.66 3.20
VS complete 1024 -1.40 4.71
VS triplet 1024 -7.92 87.20

Table 4: Skew and excess kurtosis of edit distance
distributions, for the self-supervised (SS) and visually-
supervised level 1 (VS) models.

spoken utterance as a function of the size of the
learned codebook and the placement of the VQ
layer. Figure 2 shows these results. We observed
the following patterns:

• Most models perform worse than a model
without the VQ layer, with the exception of
the models with the VQ layer at level 1 and a
codebook of size 512 or 1024.

• Performance on the image retrieval task is neg-
atively correlated with the level of placement
of the VQ layer.

• VQ layers with larger codebooks perform bet-
ter.

A.3 Edit distance distribution

Table 4 presents skew and excess kurtosis of edit
distance distributions for both target models, us-
ing codebooks of size 32 and 1024 and trained on
long and short segments, confirming the hypothesis
that the combination of short segments and large
codebooks leads to skewed distributions.
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A.4 Speaker identification
Figure 3 shows accuracy of diagnostic classifiers
trained on code sequences encoded as vectors of
code frequencies. For visually-supervised models,
speaker identity is represented to some degree in
untrained models, for codebooks of all sizes and
at all levels, and most strongly for large codebook
sizes at level 1. After training, we observe differ-
entiated patterns for VQ layers at level 1 versus
2 and 3. While speaker identity is emphasized in
codebooks at level 1 compared to the untrained
models, it is weakened for subsequent layers, to the
point of being effectively removed at level 3. These
results indicate that VQ layers at level 1 represent
speaker-dependent information, possibly encoding
acoustic rather than phonemic information. The
self-supervised models show results similar to the
visually-supervised models with the VQ layer at
level 1 when trained, but capture nearly no speaker
information before training.
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Figure 3: Accuracy of speaker classification on code-
books for the self-supervised and visually-supervised
models. Trained models are represented by black icons
and solid lines. Dashed lines and white filled icons rep-
resent randomly initialized models.


