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Abstract

NLP has emerged as an essential tool to extract
knowledge from the exponentially increasing
volumes of biomedical texts. Many NLP tasks,
such as named entity recognition and named
entity normalization, are especially challeng-
ing in the biomedical domain partly because
of the prolific use of acronyms. Long names
for diseases, bacteria, and chemicals are often
replaced by acronyms. We propose Biomedi-
cal Local Acronym Resolver (BLAR), a high-
performing acronym resolver that leverages
state-of-the-art (SOTA) pre-trained language
models to accurately resolve local acronyms
in biomedical texts. We test BLAR on the
Ab3P corpus and achieve state-of-the-art re-
sults compared to the current best-performing
local acronym resolution algorithms and mod-
els.

1 Introduction

In the past decade, natural language processing
(NLP) has greatly advanced in the biomedical do-
main. Given the troves of biomedical texts, NLP
has emerged as a critical tool for knowledge extrac-
tion. NLP has been used to automatically analyze
clinical notes, electronic medical records, biolog-
ical literature, and other biomedical texts in the
hopes of unearthing new knowledge and deeper
insights.

Acronyms are especially common in science and
even more so in biomedical publications, as authors
regularly seek to shorten the long names for dis-
eases, bacteria, and chemicals. Barnett and Double-
day (2020) documented acronym use in more than
24 million scientific article titles and 18 million sci-
entific articles published between 1950 and 2019.
They report that 19% of titles and 73% of abstracts
contain acronyms. Of the more than one million
unique acronyms in their data, 0.2% appeared regu-
larly and most acronyms, 79%, appeared less than
10 times.

Acronym resolution (AR) can be performed by
either leveraging acronym definitions found in the
text (referred to as local AR) or by consulting ex-
ternal resources, such as ontologies (known as dis-
ambiguation or global AR). While a lot of progress
has been recently done on the latter, local AR has
seen surprisingly little recent work. In particu-
lar, the SOTA approaches in local AR are rule-
based or simple machine learning approaches from
more than a decade ago. As a result, this task has
not benefited from recent advances in transform-
ers (Vaswani et al., 2017). To address this issue, in
this work we focus on local AR where we try to an-
swer the question: Can transformers be leveraged
to further improve traditional local AR approaches?

To answer this question, we present Biomedical
Local Acronym Resolver (BLAR); a transformer-
based model designed to resolve local acronyms in
biomedical texts. In particular, this work makes the
following contributions:

1. Design of a novel transformer-based model
for local acronym resolution, which resolves
acronyms through a combination of a two-step
architecture and appropriate leveraging of pre-
trained language models. To the best of our
knowledge, this is the first transformer-based
approach for local AR.

2. Experimental evaluation of BLAR against
SOTA local AR approaches, showing that it
outperforms the latter. In particular, evalu-
ated on the Ab3P corpus (Sohn et al., 2008),
BLAR reaches an F1 score of 0.966 compared
to 0.899 of the best performing existing ap-
proach.

2 Background and Related Work

There are a few challenges inherent in acronym res-
olution that make a simple dictionary-lookup and
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Figure 1: Sub-tasks of acronym resolution (AR).
Our approach is applicable to both “Local AR” and
“Acronym Dictionary Compilation.”

other rule-based models less effective. First, short-
form acronym representations are rarely unique.
For instance, “CD” is an acronym for “Crohn’s dis-
ease” and “Cowden Disease.” A simple dictionary
lookup of “CD” using an acronym disease dictio-
nary will produce ambiguous results and requires
additional steps of acronym disambiguation. More-
over, the number of letters in a short-form may not
match the number of words in the corresponding
long-form (e.g. the short-form of “systemic scle-
rosis” is “SSc” ). Lastly, long-form entities can
have complicated short-forms. For example, the
short-form of “heparin-induced thrombocytopenia
type II” is “HIT type II,” a short-form that shortens
the first three words of the long-form and leaves
the last two words unmodified.

To address these challenges, approaches to
acronym resolution have been developed and can
be classified into three broad categories: local
acronym resolution (Schwartz and Hearst, 2003;
Sohn et al., 2008), disambiguation acronym res-
olution (also referred to as non-local or global
acronym resolution) (Jin et al., 2019; Jacobs et al.,
2020), and acronym dictionary compilation (Gross-
man et al., 2018). We refer to approaches that
resolve acronyms by leveraging their definitions
found in the containing text as local acronym reso-
lution techniques. In contrast, non-local or global
techniques resolve acronyms by using external re-
sources. These typically target acronyms whose
long-form is not contained within the text, which is
common among more established acronyms, such
as “mRNA” and “DNA.” Finally, acronym dic-

tionary compilation refers to the creation of an
acronym dictionary based on the source text or
external ontologies, or a combination of the two.
These three sub-categories of AR approaches are
depicted in Figure 1.

Our approach specifically targets local acronym
resolution and acronym dictionary compilation. Lo-
cal acronyms appear as a pair of entities featuring
a short-form (SF) entity and a corresponding long-
form (LF) entity. Historically, local acronym reso-
lution has been handled by rule-based algorithms.
From 2003 to 2009, Schwartz et al. (2003) and
Sohn et al. (2008) demonstrated the best perfor-
mance of local acronym resolution. They used a
combination of hand-crafted filters to identify SF-
LF pairs. Kuo et al. (2009) introduced the first
local acronym resolution model that leveraged ma-
chine learning. It produced SOTA results with the
help of four sets of hand-crafted features, includ-
ing rule-based text filters. Yeganova et al. (2011)
further improved upon local acronym resolution
by introducing a hybrid machine learning and rule-
base model that does not rely on labeled data. They
extract potential SF-LF pairs from PubMed articles
using rules similar to the rules developed by Sohn
et al. and train a classifier to identify SF-LF pairs.

Our approach to local acronym resolution is sim-
ple in its architecture yet novel in its application.
Our two-stage model leverages transfer learning
from modern, SOTA pretrained transformers and
is able to learn the features of short-form and long-
form acronym pairs without the help of a prede-
fined dictionary, hand-crafted features, filters, or
rules. Our model processes batches of documents,
such as abstracts from PubMed, and creates an
acronym dictionary specific to each inputted docu-
ment.

3 Method

The intuition behind local acronym resolution is
that authors of scientific publications commonly
define the acronyms that they employ later on in
the document. This is typically done by defin-
ing acronyms within the text in the form of pairs
of short-form (SF) and corresponding long-form
(LF) entities. We can then use the identified SF-
LF acronym pairs to either resolve the acronyms
appearing in the input document or populate an SF-
LF dictionary that can be used to accurately resolve
future uses of the SF versions of the acronyms in
the remainder of the text.
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Figure 2: Sample output of Step 2 showing the vari-
ous tagged entities of a short and long-form acronym
pair. We use a BILOU (Beginning, Inside, Last, Out-
side, Unit) tagging scheme (Ratinov and Roth, 2009)
to identify long-form (LF) entities, short-form (SF) en-
tities, and parenthesis (PR) enclosing a paired SF or LF
entity.

Identifying the definitions of SF-LF pairs poses
two major challenges: First, one has to identify
the location in the text where the definition of an
SF-LF pair is provided. Second, one has to identify
the exact span (i.e., text) of both the short and
long-form within the definition.

Two-step AR: Following the above structure,
BLAR splits the problem into two separate sub-
tasks:

• Step 1: Sentence Classification. Given the
input text, identify sentences containing defi-
nitions of SF-LF pairs. This is modeled as a
binary classification task.

• Step 2: SF-LF Acronym Tagging: Given a
sentence predicted to contain a definition
of an SF-LF pair, identify the exact form
(i.e., text) of the SF and LF entities. This is
modeled as a token classification task, where
each token in the sentence is classified as
being part of an acronym short-form, acronym
long-form, or the parenthesis enclosing a
paired entity. Token classification follows the
BILOU (Beginning, Inside, Last, Outside,
and Unit) encoding scheme (Ratinov and
Roth, 2009), as shown in Figure 2 through a
simple example.

Model architecture: The sentence classifica-
tion model (Step 1) leverages transfer learning by
fine-tuning the pretrained SciBERT model (Beltagy
et al., 2019) for the specific task of sentence clas-
sification. The sentences that have been predicted
as containing SF-LF pairs are given as input to the
SF and LF tagging model (Step 2). The tagging
model also leverages SciBERT by fine-tuning it on
the SF and LF tagging task. To avoid exposure bias
resulting from training on a set of perfect inputs
(e.g. sentences containing acronym pairs as labeled

in the dataset), we use the output from the sentence
classification model from Step 1 to train the tagging
model in Step 2. The output of the tagging model
is a dictionary that can then be used to replace all
the short-form acronyms with their corresponding
long-forms within a single source text.

Model training: We developed BLAR using the
BioADI corpus (Kuo et al., 2009) and tested it on
the Ab3P corpus (Sohn et al., 2008). BioADI in-
cludes 1,668 true SF-LF pairs from 1,200 annotated
PubMed abstracts and Ab3P includes 1,221 true SF-
LF pairs from 1,250 annotated PubMed abstracts.
Both provide span-level data identifying short and
long-form acronym pairs within PubMed abstracts
and differ only in the articles selected for anno-
tation. During development, we fine-tuned both
our sentence and acronym token classifiers on the
BioADI corpus randomly split into three subsets for
training (80% of the corpus), validation (10% of the
corpus), and testing (10% of the corpus). We use
BioADI as a training dataset and Ab3P as a testing
dataset to best compare our model’s performance
to existing SOTA benchmarks for local acronym
resolution which use the same train/test splits. The
BioADI and Ab3P corpora are described in Sec-
tion 4. Since the models in both steps are fine-tuned
versions of SciBERT, they are able to train fairly
quick on CPUs. Step 1 and Step 2 converged within
eight epochs, taking roughly 10 hours and 2 hours
to complete, respectively, on two Intel Xeon CPUs
(E5-2640 v3 @ 2.60GH) with 16GB of RAM.

Ablation study: To determine the importance
of the 2-step architecture, we conduct an ablation
study where we train a model to resolve acronyms
without the help of a sentence classification step.
This model is identical to the tagging model used
in Step 2, only, it is trained on raw sentences that
may or may not contain an acronym pair. This
single-step architecture must simultaneously learn
to detect and resolve an acronym pair. We refer to
this model variation as “BLAR (single step).”

4 Datasets

BioADI: We use the BioADI (Kuo et al., 2009)
corpus to train BLAR. It includes 1,668 true SF-LF
pairs from 1,200 annotated PubMed abstracts.

Ab3P: We use the Ab3P (Sohn et al., 2008) cor-
pus for testing. It includes 1,221 true SF-LF pairs
from 1,250 annotated PubMed abstracts.

At the time of writing, both datasets are available
for download on the BioC (Comeau et al., 2013)
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website.

5 Results and Discussion

To measure BLAR’s performance, we first compare
it against SOTA local AR approaches. As explained
in the Background and Previous Work section, to
the best of our knowledge, local acronym resolution
has not seen significant advances since 2009. More
recent acronym resolution works have focused in-
stead on disambiguation acronym resolution, still
relying on simpler rule-based algorithms for local
acronym resolution (Jin et al., 2019; Jacobs et al.,
2020). As a result, we compare BLAR to Kuo
et al. (2009), Sohn et al. (2008), and Schwartz and
Hearst (2003), which represent the SOTA in local
acronym resolution.

Table 1 depicts the performance of BLAR
against SOTA AR models. In this experiment, all
models were trained on the BioADI dataset and
tested on the Ab3P dataset. For each model, we
evaluate Precision, Recall, and F1 score based on
exact matches of long-form and short-form pairs.
The results show that BLAR significantly outper-
forms all previous approaches, achieving an F1
score of 0.966 compared to 0.899 of the next best
approach. We observe that, without a sentence
classification step, the single-step BLAR model
under-performs compared to the two-step archi-
tecture, highlighting the benefit of the sentence
classification step in the full two-step architecture.

AR Model P R F1
Schwartz et al. (2003) 0.950 0.788 0.861

Sohn et al. (2008) 0.970 0.836 0.898
Kuo et al. (2009) 0.959 0.846 0.899

Yeganova et al. (2011) 0.936 0.893 0.914
BLAR (single step) 0.950 0.957 0.953
BLAR (two step) 0.966 0.966 0.966

Table 1: Evaluation results of BLAR against SOTA
local acronym resolution models. All models, save
Yeganova et al., were trained on BioADI and tested
on Ab3P. Yeganova et al. is trained on 1M automati-
cally extracted potential SF-LF pairs from PubMed ab-
stracts.

Model Output Analysis: Finally, to further un-
derstand the performance of BLAR, we perform an
instance-level analysis of its output.

Analyzing the correct predictions, we see that
the model successfully overcomes some of the com-
plex challenges inherent in acronym resolution. For

example, it correctly resolves the acronyms “SSc”
to “systemic sclerosis” and “IUAG” to “intrauter-
ine growth retardation.” These examples show that
BLAR learns to resolve short-forms that contain a
different number of letters compared to the number
of words in the corresponding long-form. In an-
other example, BLAR correctly resolves “HIT type
II” to “heparin-induced thrombocytopenia type II”
which illustrates that the model was able to learn
more complex acronyms that consist of a mix of
short-form entities and complete words.

Moving to the incorrect predictions, we clas-
sify BLAR’s errors into three categories: missed
acronyms (false negatives), added acronyms (false
positives), and modified acronyms (i.e., acronyms
where the model correctly identifies a short-form
but either truncates or extends the corresponding
long-form).

A majority of the errors come from modified
acronyms. Analyzing the modified acronyms, we
find that 63.7% of cases are long-forms expanded
or truncated by a single word/token. We identify
that many of the erroneously expanded long-forms
add a word or words preceding the ground truth
long-form. For example, in the text “. . . heat stroke
by reducing iNOS-dependent nitric oxide (NO). . . ”,
BLAR identified “iNOS-dependent nitric oxide” as
the long-form expansion of the short-form “NO.”,
instead of the correct “nitric oxide.”

Another common error within the modified
acronyms category is a truncated long-form. For
example, BLAR predicts the long-form of “FVC”
to be “forced vital capacity” but the ground truth
is “forced expiratory volume in 1 s vital capacity.”
Here, BLAR predicts a simple long-form when the
ground truth long-form is actually more complex.
We plan to explore these insights in future work to
further improve the model.

6 Conclusion and Future Work

Local acronym resolution has seen limited progress
in recent years and has not benefited from the re-
cent advancements in machine learning approaches.
To address this problem, we develop BLAR; a deep-
learning model that leverages a two-step architec-
ture on top of pre-trained language models to iden-
tify SF-LF pairs in input documents. Our experi-
mental results show that BLAR outperforms other
local acronym resolution approaches and achieves
state-of-the-art performance. We release BLAR
and its source code for public use. As part of our
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future work, we will be exploring two threads: first,
further improving the model based on our error
analysis, and second, exploring how BLAR (which
in this case has been fine-tuned for the scientific
domain) can be extended to cover acronyms found
in other domains. We believe future work could
also focus on a hybrid model that leverages both
deep-learning and rule-based algorithms.
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