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Abstract
Medical question summarization is an impor-
tant but difficult task, where the input is often
complex and erroneous while annotated data is
expensive to acquire.

We report our participation in the MEDIQA
2021 question summarization task in which we
are required to address these challenges. We
start from pre-trained conditional generative
language models, use knowledge bases to help
correct input errors, and rerank single system
outputs to boost coverage. Experimental re-
sults show significant improvement in string-
based metrics.

1 Introduction

Question summarization for medical forum is im-
portant for medical knowledge discovery and re-
trieval and facilitates downstream tasks such as
biomedical question answering (Jin et al., 2021).
Medical questions are often complex, scattered
with non-medical information, and can sometimes
be erroneous because forum users are not domain
experts (Ben Abacha and Demner-Fushman, 2019).
In addition, annotation in the medical domain is
harder to acquire than in the general domain. These
challenges make medical question summarization
an important and difficult task where annotation is
often scarce.

The MEDIQA 2021 shared task 1 (Ben Abacha
et al., 2021), medical question summarization, re-
quires participants to build summarization systems
for noisy medical forum texts with limited anno-
tation data. The official training set of the task is
the MeQSum dataset (Ben Abacha and Demner-
Fushman, 2019), which is composed of 1,000 med-
ical questions and their corresponding summaries.
The validation and test sets consist of 50 and 100
questions respectively and topic words are some-
times misspelled.

Scarcity of data, noisy input, and complexity and
redundancy of text all pose challenges for ques-

tion summarization systems. We try to address
these challenges using a combination of knowledge-
based error correction, pre-trained generative lan-
guage models, and output reranking.

Knowledge-based error correction leverages
multiple levels of lexical resources and a high cov-
erage knowledge base to correct errors in input.
Our experiments show that knowledge-based error
correction helps downstream summarization per-
formance according to the Rouge metric.

Pre-trained generative language models are
transformer-based language models trained with
loss functions that facilitate sequence to sequence
generation. Models such as Pegasus (Zhang et al.,
2020a), BART (Lewis et al., 2020), and T5 (Raffel
et al., 2020) achieve state-of-the-art performance
on various text generation tasks and are shown
to perform well on few-shot generation scenar-
ios (Goodwin et al., 2020). We finetune pre-trained
language models to obtain baseline systems with
limited amount of training data.

Output reranking picks the best output among
multiple systems. The availability of different lan-
guage models offers a diverse set of summaries to
choose from. We observe difference in summariza-
tion styles between the training and the validation
set and devise a simple heuristic to pick the best
output based on this observation.

In the rest of the paper, we describe these compo-
nents and report evaluation results on the validation
and the test set.

2 Task and Architecture Overview

The MEDIQA question summarization task re-
quires participants to summarize user generated
medical queries into shorter, more focused ques-
tions. We present an example from the MEDIQA
2021 task 1 validation set in Figure 1 (a). We note
that the name of the disease “folliculitis” is spelled
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Hi, Please can you help - I am writing from South Africa. My daughter suffers 
with acute folliculitus, and has been since the age of 13. She is now 20 and is in 
so much distress as nothing seems to alleviate the itching and soreness... I am 
writing to you for any help you could give me to try and assist her. Could you 
recommend a specialist and someone who could help us with research? Please 
could you point us in the right direction? I am happy to send through her lab 
tests - please let me know. Thanks

How can we find a specialist or clinical trial for chronic folliculitis?

Question

Summary

Question
Input

Error
Correction

Pegasus
Summarizer

BART
Summarizer

T5
Summarizer

Generative LMs

Reranker Summary
Output

(a) Example from MEDIQA 2021 Task 1 Validation Set

(b) Architecture of our submission

Figure 1: Question-summarization example and sys-
tem architecture

incorrectly in the input question and the question
contains a lot of irrelevant information. We attempt
to correct misspellings with a dedicated module in
our system. As useful information is often scat-
tered in different sentences in the input, abstractive
summarization suits this task better than extractive
summarization. We perform abstractive summa-
rization with pre-trained language models.

We illustrate the architecture of our submission
in Figure 1 (b): we first try to correct spell errors
in the input; then summarize each question with
three generative LMs: Pegasus, BART, and T5;
finally, for each question, we pick the best output
with a feature-based reranker and the best output is
chosen as the summarization of the question.

3 Knowledge-based Error Correction

Misspellings are prevalent in medical forums,
where non-expert users discuss highly specialized
medical topics. Uncorrected misspellings can lead
to mismatch between the source text and the sum-
mary during training and cause errors if copied
verbatim during prediction. These errors are penal-
ized heavily by string matching-based metrics like
Rouge as they break n-grams.

In this shared task, we conservatively correct
misspelled words in input by reusing a cascade
of candidate generation modules from an entity
linking system. Entity linking is the task to link
entity mentions in text to entities in a knowledge
base (KB). Candidate generation is an intermediate
step in entity linking to generate candidate KB
entities from potentially abbreviated, misspelled,

or alias text mentions (see e.g. (Charton et al.,
2014)). Our method is also comparable to previous
work on Levenshtein distance-based (Levenshtein,
1966) medical query correction (Soualmia et al.,
2012), but we augment that approach with cascaded
knowledge sources and an alias table.

Error correction can be implemented easier and
with possibly higher quality if search suggestions
from online search engines (Zhou et al., 2015) are
utilized. We use in-house error correction to keep
the submission offline.

3.1 Resources
The error correction module relies on the following
resources:

• Medical word list. We collect tokens from
the English side of ~20K bilingual medical
phrases collected from dictionaries and drug
names.

• Wikipedia dump. We use a 20210101 dump
of the English Wikipedia as the knowledge
base and alias table.

• High frequency word list. We use the top
10,000 words in the Google 1T corpus 1.

We use Wikipedia instead of a medical KB be-
cause of its broad coverage. Edges (redirects, links
etc.) in the Wikipedia KB can be used as an alias
table to capture common misspellings and aliases.

Wiki IndexMed
Terms

Freq
Words

Spell
Checker

Wiki
Matcher

Med
Searcher

Freq
Searcher

Wiki
Searcherfolliculitus

pigmentousim
furhter
ureatha

Name
Resolution

folliculitis

pigmentosum further ureathra

Name
Resolution

urethra

Queries

Index
Construction

Figure 2: Example of error correction

3.2 Error correction steps
During error correction, we handle tokens com-
posed entirely of alphabetical characters and allow
at most 2 edits in similarity searches. We only con-
sider tokens that share 3-prefix or 3-suffix with the
query to limit search space.

1https://books.google.com/ngrams/info

https://books.google.com/ngrams/info
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Error correction consists of the following steps:

• Index construction. We build a token index
of Wikipedia. We only index titles with no
more than two tokens and tokens more than
5 characters long. We use the first token to
represent the title. When a token can map to
more than one titles, we map it to the title with
the lowest id.

• Spell checking. We pass the text through a
spell checker with medical terms2 to detect
potential errors. The flagged tokens are the
query words for the error correction pipeline.

• Wikipedia match. If the query has an exact
match in the Wikipedia token index, we link
the query to the token and its corresponding
Wikipedia title. Note that a title can either be
an entity or an alias, which we resolve later in
the name resolution step.

• Medical word search. We search the medi-
cal word list to find medical terms that spell
similarly to the query. We choose the medical
term if a result is found.

• Frequent word search. We search the high
frequency word list to recall common English
words that spell similarly to the query. We
choose the word if a result is found.

• Wikipedia search. We search the Wikipedia
token index for queries longer than 5. To fur-
ther constrain search space, we only consider
tokens that share 5-prefix, 5-suffix, or all con-
sonants with the query. We choose the token
with the highest sequence matching ratio3.

• Name resolution. For corrected tokens re-
trieved from the medical word list and the
Wikipedia, we search the Wikipedia dump to
check if it is an alias of another entity and
maps it to its canonical form.

Consider the example in Figure 2. Input queries
of the error correction pipeline are the misspelled
words identified by the spell checker. Wikipedia
match catches the common misspelling *folliculi-
tus and recovers its canonical form folliculitis.
Medical word search recovers pigmentosum from

2https://github.com/glutanimate/
hunspell-en-med-glut

3https://docs.python.org/3/library/
difflib.html

the medical dictionary. Frequent word search re-
covers misspellings of popular words, avoid send-
ing them to the noisy Wikipedia search. Finally,
Wikipedia search first map *ureatha to its closest
alias ureathra in Wikipedia and then maps ureathra
to the canonical form urethra.

On the validation set, the process is unable to
recover the word *preagnet (pregnant). We are
able to recover most other errors on the validation
set. Impact of error correction is evaluated in Sec-
tion 6.2.1.

4 Summarization with Pre-trained
Conditional Generative Language
Models

Pre-trained conditional generative language mod-
els have become the dominating paradigm for text
generation and especially summarization, with re-
cent models such as Pegasus (Zhang et al., 2020a),
BART (Lewis et al., 2020), T5 (Raffel et al.,
2020), and PALM (Bi et al., 2020) achieving state-
of-the-art results on standard benchmarks CNN-
Dailymail (See et al., 2017) and XSUM (Narayan
et al., 2018). Recent work has also shown that these
models achieve good performance in few-shot med-
ical summarization settings (Goodwin et al., 2020).

Following (Goodwin et al., 2020), we use Pega-
sus, BART, and T5 single systems as our baselines.

• Pegasus (Zhang et al., 2020a) is a condi-
tional language model designed specifically
for abstractive summarization and is pre-
trained with a self-supervised gap-sentence-
generation objective, where the model is pre-
trained to predict entire masked sentences
from the document.

• BART (Lewis et al., 2020) is a model combin-
ing bi-directional and auto-regressive trans-
formers, trained to both denoise and recon-
struct corrupted texts.

• T5 (Raffel et al., 2020) is pre-trained on multi-
ple objectives, including masking, translation,
classification, machine reading comprehen-
sion (MRC) and summarization, all formu-
lated as conditional generation tasks.

We use Pegasus-large, BART-large,
and T5-base respectively in our experiments.

https://github.com/glutanimate/hunspell-en-med-glut
https://github.com/glutanimate/hunspell-en-med-glut
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
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5 Output Reranking

Following previous work on reranking generative
LM outputs (Mi et al., 2021), we pick the best
summary for each question using the following
linear model from outputs of three heterogeneous
generative LMs,

T ∗ = argmax
T ′

∑
i

ψi(T, T
′, S)wi (1)

where T ′ is output of a single system, T is the set
of outputs of all single systems, and S is the input
text. T ∗ is the ensemble output, which is picked
from single system outputs by highest score.

The feature function ψ(T, T ′, S) is a function to
estimate the quality of T ′ using information from T
and S. wi is a weight of ψ(T, T ′, S). In sequence
generation tasks such as machine translation (Ku-
mar and Byrne, 2004), ψ is usually a combina-
tion of consensus and linguistic features and wi

can be tuned by optimization algorithms such as
MERT (Och, 2003) towards an automatic evalua-
tion metric.

Our approach. We use a simple and coverage-
oriented approach for reranking, based on the size
and characteristics of the validation data. We no-
tice that the writing style of the validation set is
different from the MeQSum data set which we use
for training: in MeQSum 18.5% sentences start
with “What are the treatments for”, 14.6% start
with “Where can I find”, and 2.5% start with “What
are the causes of ”. A model trained on MeQSum
tends to generate these topic-based boilerplates that
are not mentioned in the source text. But in the vali-
dation set, summaries do not have these boilerplate
texts and resemble the content of the source text
more closely, which inspires us to pick the output
with high coverage of the source.

We consider the validation set (50 sentences) too
small for automatic tuning, so we design a minimal
set of features and set the weights wi manually.

Features. We use fidelity, length, consensus and
wellformedness features:

• Fidelity (wf ). We calculate the Rouge-2
score between the input and the prediction.
A higher score indicate a high-coverage sum-
mary.

• Length (wl). The length ratio between the
prediction and the input.

Rouge-2 Rouge-L
Pegasus 0.187 0.333

Pegasus EC 0.206 0.344
BART 0.220 0.342

BART EC 0.227 0.342
T5 0.213 0.353

T5 EC 0.208 0.354

Table 1: Single system results on validation set. EC:
Input error correction

Rouge-2 Rouge-L
Best Single 0.220 0.342
Reranked 0.217 0.361

Best Single EC 0.227 0.342
Reranked EC 0.230 0.364

Table 2: Reranking results on validation set. EC: Input
error correction

• Consensus (wc). 1 if T ′ shares any bigram
with T− T ′, 0 otherwise.

• Wellformedness (ww). 1 if T ′ has less than
three subsentences and starts with one ques-
tion marker, 0 otherwise.

For our experiments on the validation set and
Rouge-2 experiments on the test set, we setwf = 1,
wl = 0.01, wc = 10, ww = 10. The idea is to
select the summary that has highest coverage of the
source that is a one sentence question, with at least
one bi-gram in common with other summaries.

The choice to favor high coverage summary is
based on this particular pair of training and valida-
tion data, rather than general ensemble principles
for text generation. We switch the weights for wf

and wl for length reranking experiments on the
test set. Impact of reranking is evaluated in Sec-
tion 6.2.2.

6 Experiments

6.1 Experimental settings

Our systems are based on the Transformers (Wolf
et al., 2020) package. We finetune baseline mod-
els on the MeQSum (Ben Abacha and Demner-
Fushman, 2019) dataset for 50 epochs, with batch
size 8 and learning rate 2e-5 with the AdamW
optimizer on Nvidia P100 GPUs. Finetuning
is indispensable for this task: without finetun-
ing, BART-large scores 0.06 Rouge-2 and 0.15
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ID R1 R2 P R2 R R2 F1 R-L HOLMS BERTScore
Single Systems

1 T5 0.296 0.122 0.109 0.107 0.267 0.541 0.673
2 BART 0.286 0.120 0.090 0.098 0.258 0.550 0.667
3 Pegasus 0.312 0.130 0.123 0.118 0.281 0.547 0.684

Length rerank
4 3 Sys 0.342 0.149 0.166 0.148 0.299 0.561 0.689
5 3 Sys EC 0.351 0.157 0.175 0.155 0.307 0.566 0.688
6 4 Sys EC 0.358 0.160 0.181 0.159 0.310 0.565 0.689

Coverage rerank
7 3’ Sys EC 0.350 0.177 0.169 0.161 0.313 0.571 0.691
8 4 Sys EC 0.351 0.173 0.173 0.161 0.313 0.568 0.689
- Best team 0.351 0.185 0.173 0.161 0.315 0.579 0.703

Table 3: Results on the test set. EC: Input error correction; R1/2/L: Rouge-1/2/L; P: Precision, R: Recall; Best
team: Best score among all teams; Scores in bold when our system achieves the best score.

Rouge-L on the validation set in preliminary exper-
iments.

For experiments on the test set, models for en-
semble are further finetuned for 50 epochs on the
validation set. Models for error-corrected input are
finetuned on an automatically corrected version of
the validation set.

6.2 Validation set experiments

We report single and reranking system performance
in Tables 1 and 2 respectively. Results are evaluated
by Rouge (Lin, 2004), which is based on n-gram
or longest common sequence (LCS) matching of
strings.

6.2.1 Single systems and error correction
Among the pre-trained LMs in Table 1, BART
performs the best on the validation set. Compar-
ing error-corrected (Pegasus/BART/T5 EC) and
original (Pegasus/BART/T5) inputs, we note that
error-corrected input significantly boosts the perfor-
mance of Pegasus. In addition to corrected entity
names, the fixed input also leads Pegasus to gener-
ate 5% longer output and results in a much higher
Rouge-2 score in this small dataset. This trend is
less significant on BART and T5, but adding error
correction has a positive impact in general.

6.2.2 Reranking
We compare the reranked systems against baselines,
with or without error-corrected input in Table 2.
In both cases, reranking does not have significant
effect on Rouge-2, but helps Rouge-L significantly.
We suspect that reranking does improve word and

style choice, but the room for increasing 2-gram
matches is small on the validation set.

6.3 Test set experiments

We run three sets of experiments on the test set and
report results in Table 3: single systems are the
same systems tested on the validation set and en-
sembles are reranked outputs from systems further
finetuned on the validation set.

In addition to string-based Rouge (Lin, 2004),
test set results are also evaluated by pre-trained
language model-based BERTScore (Zhang et al.,
2020b) and HOLMS (Mrabet and Demner-
Fushman, 2020) metrics:

• BERTScore (Zhang et al., 2020b) leverages
the pre-trained contextual embeddings from
BERT and matches words in candidate and ref-
erence sentences by cosine similarity, where
matching is performed greedily for each word
by choosing the most similar word in the other
sentence.

• HOLMS (Mrabet and Demner-Fushman,
2020) combines soft matching of contextual
embeddings derived from pre-trained LMs
and a string-based metric (Rouge-1 recall in
practice).

String-based and pre-trained language model-
based metrics rank summaries differently. We dis-
cuss the impact of the choice of metrics in Section
6.4.

We run two other experiments validating post-
processing and the UniLM language model (Dong
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et al., 2019), they perform inferior to their respec-
tive baselines and are not reported in Table 3.

We notice in single system experiments that the
characteristics of the test set is still different from
the validation set: all systems suffer from low re-
call, which leads us to perform more aggressive
length-based reranking.

Length reranking. We experiment with a base-
line approach that explicitly picks the longest out-
put sentence by switching the weight of length and
fidelity features in (1). The 3 systems in runs 4 and
5 are Pegasus and T5 finetuned on the validation
set and the Pegasus system in run 3. Run 6 adds
BART finetuned on the validation set.

We observe that this simple heuristic, together
with further finetuning on the validation set, leads
to significantly higher Rouge scores between runs
3 and 4 in Table 3. This change also improves
HOLMS and BERTScore, suggesting that recall /
coverage-based sentence selection does correlate
to summarization quality in this scenario. Rouge is
further improved by adding BART to the combina-
tion between runs 5 and 6.

Correcting input errors between runs 4 and 5
also helps Rouge significantly. BERTScore, which
is based on word matching and utilizes BERT em-
beddings, is much less sensitive to small spelling
errors and changes negatively. HOLMS changes
positively as it has a Rouge component.

The negative change of BERTScore also sug-
gests that we should be more cautious applying in-
put error correction to summarization: mistakes in
error correction might not hurt string-based metrics
(the word is often misspelled already), but they can
change the meaning of the sentence and degrade
summarization quality.

Coverage reranking. In runs 7 and 8, we exper-
iment with the the same setting as in Table 2. 3 sys-
tems are Pegasus, BART, and T5 finetuned on the
validation set. These runs achieve balanced Rouge
precision and recall, and the highest Rouge-2 score
across all runs. There are small improvement on all
metrics, which is expected, as Rouge-2 is a better
indicator of summarization coverage than length.

According to BERT-based metrics, coverage-
based reranking also leads to more steady improve-
ment than length-based reranking. The overall im-
provement in all metrics suggests that coverage-
based reranking does improve summarization qual-
ity in this task.

6.4 Lessons learned

In this shared task, we experimented with
knowledge-based input error correction and
coverage-oriented system reranking. These meth-
ods are effective in boosting string matching be-
tween the prediction and the reference summaries.
According to Rouge metrics, our submissiong
ranks first according to Rouge-1/2 metrics and
ranks second according to the Rouge-L metric.

According to BERT-based metrics, however,
reranking has a smaller impact on summarization
quality and error correction has little to no effect:
we are about 1 point below the best submission
according to BERTScore and HOLMS, which are
shown to often have higher correlation with hu-
man judgement (Zhang et al., 2020b; Mrabet and
Demner-Fushman, 2020).

The discrepancy between the string-based and
LM-based metrics makes the real improvement of
summarization quality hard to measure. It is ar-
guable that by focusing on misspellings and using
coverage as surrogate for summarization quality,
we might be optimizing more for the writing style
and spelling, rather than the content of the sum-
mary. This shows the need of an efficient, op-
timizable summarization evaluation metric with
high correlation with human judgement that our
field agrees upon. We plan to look more into the
choice of metric and optimization objectives for
summarzation tasks in future work.

7 Conclusion

We reported our experiments in MEDIQA 2021
shared task 1. We used knowledge-based error cor-
rection and coverage-oriented reranking improve
summarization. Our system performed well on
string-based Rouge metrics, but less so on BERT-
based semantic metrics. We plan to investigate
methods that improve summarization according to
human judgement.
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