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Abstract

Automatically predicting the level of second
language (L2) learner proficiency is an emerg-
ing topic of interest and research based on ma-
chine learning approaches to language learn-
ing and development. The key to the present
paper is the combined use of what we refer to
as ‘complexity contours’, a series of measure-
ments of indices of L2 proficiency obtained by
a computational tool that implements a slid-
ing window technique, and recurrent neural
network (RNN) classifiers that adequately cap-
ture the sequential information in those con-
tours. We used the EF-Cambridge Open Lan-
guage Database (Geertzen et al., 2014) with
its labelled Common European Framework of
Reference (CEFR) levels (Council of Europe,
2018) to predict six classes of L2 proficiency
levels (A1, A2, B1, B2, C1, C2) in the as-
sessment of writing skills. Our experiments
demonstrate that an RNN classifier trained on
complexity contours achieves higher classifica-
tion accuracy than one trained on text-average
complexity scores. In a secondary experiment,
we determined the relative importance of fea-
tures from four distinct categories through a
sensitivity-based pruning technique. Our ap-
proach makes an important contribution to the
field of automated identification of language
proficiency levels, more specifically, to the in-
creasing efforts towards the empirical valida-
tion of CEFR levels.

1 Introduction

The Common European Framework of Reference
(CEFR) is an internationally recognized standard
for describing language proficiency based on six
reference levels – A1, A2, B1, B2, C1 and C2
– the same letter pairs corresponding to a three
level distinction between beginner, intermediate
and advanced (Council of Europe, 2018). Each
proficiency level is related to specific linguistic fea-
tures and skills, establishing a progression from

rudimentary language to varied and sophisticated
language. The CEFR descriptors, available for all
four fundamental language skills (receptive skills:
reading & listening and productive skills: writing
& speaking), describe the expected competencies
in terms of functional can-do statements. For exam-
ple, a learner at a vantage or upper intermediate B2
level in the domain of writing is expected to have
“a sufficient range of language to be able to give
clear descriptions, express viewpoints and develop
arguments without much conspicuous searching for
words, using some complex sentence forms to do
so” (Council of Europe, 2018: 131). The can-do
descriptors formulated for each of the six CEFR
proficiency levels are typically vague and subjec-
tive and are only useful for orientation purposes.
Thus, there is an urgent need for research on em-
pirical validation of CEFR levels at the interface
between areas of language learning, testing and
assessment, and natural language processing and
machine learning (Wisniewski, 2017).

A closely related line of research has been di-
rected toward automated essay scoring (AES) (for
overviews see (Higgins et al., 2015; Ke and Ng,
2019; Klebanov and Madnani, 2020)). This line
of research has benefited from the increasing avail-
ability of publicly accessible learner corpora of
L2 writing, such as CLC-FCE (Yannakoudakis
et al., 2011), TOEFL11 (Blanchard et al., 2013),
MERLIN (Boyd et al., 2014) and EFCAMDAT
(Geertzen et al., 2014). Supervised approaches to
AES have recast the task as (1) a regression task
aimed at predicting the score of an essay (Yan-
nakoudakis et al., 2011; Klebanov and Flor, 2013),
(2) a classification task aimed at classifying a text as
belonging to one of a specified number of classes,
e.g. the three score levels (low, medium or high)
in the TOEFLL11 corpus or the six CEFR levels
(A1-C2) in the MERLIN corpus (Hancke and Meur-
ers, 2013; Pilán et al., 2016; Vajjala and Rama,
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2018; Weiß and Meurers, 2018; Caines and Buttery,
2020)1 or (3) a ranking task aimed at ranking two or
more texts based on their quality (Yannakoudakis
and Briscoe, 2012; Taghipour and Ng, 2016). Pre-
vious work on AES has taken both feature-based
approaches and neural approaches (see (Ke and
Ng, 2019) for a discussion of (dis)advantages of
these two approaches). The features employed are
diverse, ranging from the use of descriptive metrics
of the text related to word or sentence length to
more abstract features related to proficiency devel-
opment in the area of (second) language learning
((Vajjala, 2018) for a recent overview). The exist-
ing studies that have used a feature-based approach
have typically relied on text averages of a given
feature. However, the use of such aggregate scores
may obscure the considerable degree of variation
in distribution of feature values within the text.

In this paper, we present experiments geared
towards the automated assessment of written lan-
guage proficiency of non-native learners (L2) of
English. For the experiments, we take advantage of
the EF-Cambridge Open Language Database (EF-
CAMDAT, (Geertzen et al., 2014)), a large-scale
learner corpus consisting of 1.8 million texts la-
beled with the six CEFR proficiency levels (A1-
C2). The aim of the paper is twofold: (1) to ap-
ply a sliding window technique in a feature-based
modeling approach to automated proficiency clas-
sification and (2) to determine what features con-
tribute the most to the classification accuracy. The
features employed in this paper are derived from
numerous studies in the field of L2 acquisition cen-
tering around the notion of ‘complexity’2 (see e.g.
(Lu, 2010a, 2012; Bulté and Housen, 2012)). The
inclusion of such features is further motivated by
the fact that, according to the CEFR descriptors,
learners are expected to acquire the ability to pro-
duce increasingly varied and sophisticated written
language, as they progress through the six profi-
ciency levels. Such diverse and sophisticated lan-
guage use should be evident not only in vocabu-
lary growth, but also in the choice of individual

1The latter paper has been published in the context of a
recent shared task on Language Proficiency Scoring at the
LREC 2020 – REPROLANG Task D.2 https://lrec2020.lrec-
conf.org/en/reprolang2020/selected-tasks/

2Complexity – commonly defined as “the range of forms
that surface in language production and the degree of sophisti-
cation of such forms” (Ortega 2003:492) – is one of the three
dimensions of the ‘Complexity–Accuracy–Fluency’ triad that
has emerged as a prominent conceptual framework for L2
assessment (see e.g. (Wolfe-Quintero et al., 1998; Larsen-
Freeman, 2006)

words and multi-word phrases, and in the com-
plexity of sentence, clause, and phrase structures.
Through the sliding window technique we obtain
a series of measurements for a given feature track-
ing the progression of complexity within a text in
a sentence-by-sentence fashion. We refer to such
series of measurements as ‘complexity contours’.
These contours are then fed into recurrent neural
network (RNN) classifiers – adequate to take into
account the sequential information in the contours
– to perform grade-level classification tasks. We
demonstrate the utility of the approach by com-
paring the performance of ‘contour-based’ RNN
models against those of ‘means-based’ RNN mod-
els trained on text-average performance scores.

In a second step, we determine what features
drive classification accuracy through a Sensitivity-
Based Pruning (SBP) technique. The approach
taken in this paper was already successfully ap-
plied in the area of first language (L1) writing
development. Kerz et al. (2020) showed that
RNN classifiers trained on complexity contours
achieve higher classification accuracy in predicting
secondary school children’s grade levels in both
English and German (second-, sixth-, ninth- and
eleventh-grade in English schools and fifth- and
ninth-grade in German). Here we set out to ex-
tend the approach to automated proficiency clas-
sification in L2 English. The remainder of the
paper is organized as follows: In Section 2, we pro-
vide a concise overview of related work. Section
3 presents the dataset and Section 4 the features
used in the experiments. Section 5 describes the
sliding-window approach to generating complexity
contours. Sections 6 presents the architecture of
the RNNs and the training procedure. Sections 7
introduces the SBP method used to determine the
relative feature importance. Section 8 reports the
results before conclusions are drawn in Section 9
along with indications of future research directions.

2 Related work

In this section, we present two types of previous
work: L2 studies that have investigated the relation-
ship between certain linguistic features and profi-
ciency levels, and those that have used supervised
machine learning approaches to predict learner pro-
ficiency on the CEFR scale.

Numerous studies reveal that syntactic complex-
ity can be considered as one of the key skills that
strongly influence L2 proficiency (see e.g. (Ortega,
2003) for a synthesis of twenty-five studies, see
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also (Kuiken et al., 2019) for a recent special issue).
These studies have measured this multidimensional
construct along both global features, such as length
measures and subordination ratios, as well as more
specific features pertaining to the usage of particu-
lar structures. For example, Lu (2011) conducted
an evaluation of 14 features of syntactic complexity
in a corpus of English essays written by Chinese
L1 students and found that the complexity mea-
sures that best discriminated between proficiency
levels were the number of complex nominals per
sentence and the mean sentence length. Another
series of studies indicate the importance of lexi-
cal complexity (aka lexical richness) subsuming its
three sub-dimensions (lexical density, sophistica-
tion and variation) in the assessment of L2 profi-
ciency (see (Lu, 2012)). For example, Kyle and
Crossley (2014) showed 47.5% of the variance in
holistic scores of lexical proficiency and 48.7% of
the variance in holistic scores of speaking profi-
ciency can be explained using a range of lexical
sophistication indices. This study also introduced
the use of multi-word sequences (MWS) as an in-
dicator of language proficiency, operationalized
in terms of register-specific n-gram measures (bi-
grams and trigrams). The inclusion of such features
reflects the growing interest of MWS in language
learning and development. This interest stems from
an extensive body of evidence demonstrating that
both child and adult populations, including adult
second-language learner populations, can develop
the sensitivity to the statistics of MWS and rely
on knowledge of such statistics to facilitate their
language processing and boost their acquisition
(for overviews see e.g. (Shaoul and Westbury,
2011; Christiansen and Arnon, 2017)). Garner et al.
(2020), for instance, investigated the relationship
of the usage of MWS and human judgments of writ-
ing proficiency based on the CEFR-graded Yonsei
English Learner Corpus (Rhee and Jung, 2014)
and found that essays from higher CEFR levels
include a greater proportion of frequent academic
trigrams and more strongly associated spoken tri-
grams. Finally, in recent years the L2 literature has
introduced information-theoretic features based on
Kolmogorov complexity (Ehret, 2016; Ehret and
Szmrecsanyi, 2019). Ehret and Szmrecsanyi (2019)
investigated essays written by advanced learners of
English from International Corpus of Learner En-
glish (Granger et al., 2002) and showed that more
advanced learners use considerably more complex
texts than beginner learners, although this tendency

is not always reflected in a clear, linear relationship
between proficiency and complexity.

Studies that have employed supervised machine
learning approaches to predict proficiency on the
CEFR scale for different L2s have used numerous
linguistic features in combination with a host of
classifiers (Hancke and Meurers, 2013; Volodina
et al., 2016; Vajjala and Rama, 2018; Vajjala and
Lõo, 2014; Ballier et al., 2019; Caines and Buttery,
2020). The classification accuracy reported in these
studies ranged between 62.7% and 83.8%. Hancke
and Meurers (2013) reached a classification accu-
racy of 62.7% in predicting five (out of six) CEFR
levels of professionally rated free text essays from
the MERLIN database comprising CEFR exams
taken by second language learners of German based
on a total of 3821 lexical, morphological, and syn-
tactic features using the Sequential Minimal Opti-
mization (SMQ) algorithm implemented in WEKA.
Using the same SMQ algorithm, Volodina et al.
(2016) achieved an accuracy of 67% in correctly
identifying the CEFR level of L2 Swedish learner
essays on the basis of 61 count-based, lexical, syn-
tactic, morphological, and semantic features ex-
tracted from the linguistic annotation available in
the SweLL corpus3. Ballier and Gaillat (2019)
achieved 70% accuracy in predicting CEFR-levels
of L1 French and Spanish L2 English users on
the basis of manually annotated errors in the L1
French and Spanish subsets of the EFCAMDAT
corpus. Vajjala and Lõo (2014) reported a classi-
fication accuracy of 79% in an experiment on the
Estonian Interlanguage Corpus4.

In another study, Vajjala and Rama (2018) per-
formed experiments with cross-lingual and multi-
lingual classifiers on individual language classifi-
cation. The data used in their study included 2,286
manually graded texts (five levels, A1 to C1) from
the MERLIN learner corpus (German, 1,029 texts;
Italian, 803 texts, and Czech, 434 texts). Trained
on a wide range of feature, such as word and POS
n-grams, task-specific word and character embed-
dings, dependency n-grams, features pertaining to
lexical richness and error features, their classifi-
cation models obtained an accuracy of 0.68 for
German, 0.84 for Italian and 0.73 for Czech for
monolingual classification. For multilingual clas-
sification, their models reached classification ac-
curacy up to 0.73. The data set and findings ob-

3https://spraakbanken.gu.se/eng/
research/icall/swellcorpus

4http://evkk.tlu.ee/?language=en

https://spraakbanken.gu.se/eng/research/icall/swellcorpus
https://spraakbanken.gu.se/eng/research/icall/swellcorpus
http://evkk.tlu.ee/?language=en
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tained in this study have served as the baseline for
the REPROLANG 2020 shared task on ‘Language
proficiency scoring’5. In the context of this task,
Caines and Buttery (2020) reproduce and extend
the finding described in (Vajjala and Rama, 2018)
reaching a classification accuracy of up to 83.8%
for the Italian component. Their results indicate
that feature-based approaches perform better than
neural network classifiers for text datasets of the
given size.

3 Data

The data come from the EFCAMDAT, an open ac-
cess corpus compiled at Cambridge University in
collaboration with EF Education First, an interna-
tional school of English as a second/foreign lan-
guage (Geertzen et al., 2014). The corpus consists
of writing assignments submitted to the English-
town, the online school of EF Education First, sum-
ming up to a total of 1,180,309 individual writing
samples by 174,743 L2 learners. The curriculum of
Englishtown covers all six proficiency levels, from
CEFR A1 to C2 organized along 16 EF teaching
levels with each level subsuming 8 teaching units
and ending with an open-ended writing task (128
distinct writing assignments). The length of the
writing samples in the corpus increases monoton-
ically with Englishtown levels, ranging from an
average of 30.1 words at the lowest level (1) to
an average of 170 words at the highest level (16).
Since one of our main aims is to demonstrate the
usefulness of the sliding window technique and the
inclusion of a set of measurements per individual
feature (complexity contours), we filtered the orig-
inal dataset to obtain texts containing at least 100
words. This resulted in a total of 163,657 writing
samples. In addition, we removed texts that had
received exceptionally low scores on writing per-
formance, since their inclusion would add bias and
variance and may skew the results (Bøvelstad et al.,
2017). Specifically, texts whose writing score fell
more than 1.5 times the interquartile range below
the first quartile, corresponding to a threshold score
of 75%, were removed, which resulted in a loss of
7% of the data. The final dataset comprised a total
of 152,314 individual learner texts. whose distri-
butions across CEFR levels along with associated
text length statistics are shown in Table 1.

5http://www.lrec-conf.org/proceedings/
lrec2020/index.html

Table 1: Distribution of texts by CEFR proficiency
level and text length statistics (in words)

CEFR N texts Mean length SD
A1 8313 132.24 42.62
A2 19587 119.70 27.22
B1 61396 118.86 24.94
B2 48535 142.89 35.03
C1 12831 174.08 37.36
C2 1652 180.79 63.49

4 Features

The 57 features used in this paper fall into four
distinct groups: (1) measures of syntactic complex-
ity, (2) measures of lexical richness, (3) measures
pertaining to the usage of multi-word sequences
(MWS) and (4) information-theoretic measures.
The first group consists of 16 features used in the
past to measure syntactic complexity in writing and
its relation to writing proficiency reviewed in Sec-
tion 2. These features are implemented based on de-
scriptions in Lu (2010b) and using the Tregex tree
pattern matching tool (Levy and Andrew, 2006)
with syntactic parse trees for extracting specific
patterns. The second group subsumes 13 features
pertaining to lexical richness: five measures of
lexical variation, one measure of lexical density,
seven measures of lexical sophistication. The oper-
ationalizations of these measures follow those de-
scribed in Lu (2012) and (Ströbel, 2014). The third
group includes 25 n-gram frequency features that
are derived from the five register sub-components
of the Contemporary Corpus of American English
(COCA, (Davies, 2008)): spoken, magazine, fic-
tion, news and academic language6. Our frequency
n-gram measures differ from those used in the ear-
lier studies reviewed in Section 2. Instead of us-
ing only bigrams and trigrams, we extend them to
include longer word combinations (four- and five-
grams) and use a more nuanced definition to opera-
tionalize the usage of such combinations given in
equation (1):

Normn,s,r =
|Cn,s,r| · log

hQ
c2|Cn,s,r| freqn,r(c)

i

|Un,s|
(1)

Let An,s be the list of n-grams (n 2 [1, 5]) ap-
pearing within a sentence s, Bn,r the list of n-

6The Contemporary Corpus of American English is the
largest genre-balanced corpus of American English, which at
the time the measures were derived comprised of 560 million
words.

http://www.lrec-conf.org/proceedings/lrec2020/index.html
http://www.lrec-conf.org/proceedings/lrec2020/index.html
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gram appearing in the n-gram frequency list of
register r (r 2 {acad, fic,mag, news, spok}) and
Cn,s,r = An,s \Bn,r the list of n-grams appearing
both in s and the n-gram frequency list of register r.
Un,s is defined as the list of unique n-gram in s, and
freqn,r(a) the frequency of n-gram a according to
the n-gram frequency list of register r.

A total of 25 measures results from the combi-
nation of (a) a ‘reference list’ containing the top
100,000 most frequent n-grams and their frequen-
cies from one of five register subcomponents of
the COCA corpus and (b) the size of the n-gram
(n 2 [1, 5]). The fourth group includes three
information-theoretic measures that are based on
Kolmogorov complexity. These measures use the
Deflate algorithm (Deutsch, 1996) to compress a
text and obtain complexity scores by relating the
size of the compressed file to the size of the original
file (for the operationalization and implementation
of these measures see (Ströbel, 2014)).

5 A Sliding-Window Approach

Text complexity of the writing samples was auto-
matically assessed using the CoCoGen, a computa-
tional tool that implements a sliding-window tech-
nique to generate a series of measurements for a
given complexity measure (CM) (Ströbel 2014).
In contrast to the standard approach that repre-
sents text complexity as a single score, providing
a ‘global assessment’ of the complexity of a text,
the use of a sliding-window technique enables a
‘local’ (sentence-level) assessment of complexity
within a text. A sliding window can be conceived
of as a window of size ws, which is defined by
the number of sentences it contains. The window
is moved across a text sentence-by-sentence, com-
puting one value per window for a given CM. The
series of measurements generated by CoCoGen
captures the progression of linguistic complexity
within a text for a given CM and is referred here
to as a ‘complexity contour’ (see Figure 1). To
compute the complexity score of a given window,
a measurement function is applied to each sentence
in the window. The size of the window (ws) is
user-defined parameter whose optimal value de-
pends on the goals of the analysis: When complex-
ity is measured for each sentence, i.e. ws = 1,
the resulting complexity contour will typically ex-
hibit many sharp turns. By increasing the window
size, i.e. the number of sentences in a window, the
complexity contour can be smoothened akin to a

moving average technique.7 In this paper, the win-
dow size parameter was set to one sentence, mean-
ing that no smoothing of the curve was performed.
Figure 1 illustrates complexity contours on three
randomly selected texts across three CEFR levels
(A2, B2 and C2) for eight selected complexity mea-
sures. CoCoGen uses the Stanford CoreNLP suite
(Manning et al., 2014) for performing tokenization,
sentence splitting, part-of-speech tagging, lemmati-
zation and syntactic parsing (Probabilistic Context
Free Grammar Parser (Klein and Manning, 2003)).

6 Classification Models

We used a Recurrent Neural Network (RNN) classi-
fier, specifically a dynamic RNN model with Gated
Recurrent Unit (GRU) cells (Cho et al., 2014). A
dynamic RNN was chosen as it can handle se-
quences of variable length8. As shown in Figure 2,
the input of the contour-based model is a sequence
X = (x1, x2, . . . , xl, xl+1, . . . , xn), where xi, the
output of CoCoGen for the ith window of a docu-
ment, is a 57 dimensional vector, l is the length of
the sequence, n 2 Z is a number, which is greater
or equal to the length of the longest sequence in the
data and xl+1, · · · , xn are padded 0-vectors. The
input of the contour-based model was fed into a
RNN that consists of two layers of GRU cells with
200 hidden units for each. To predict the class of
a sequence, the last output of the RNN, i.e. the
output of the RNN right after the feeding of xl,
is transformed through a feed-forward neural net-
work. The feed-forward neural-network consists of
three fully connected layers, whose output dimen-
sions are 512, 256, and 6 respectively. The Rectifier
Linear Unit (ReLU) was used as an activation func-
tion. Before the final output, a softmax layer was
applied. For the mean-based model, we used the
same neural network as in the contour-based model,
except that the network was trained with vectors of
text-average complexity scores. The models were
implemented using PyTorch (Pytorch, 2019).

We evenly split our data into 10 folds and applied
a 10-fold cross validation, i.e. each time a fold
(10% of data) is taken out as test set and the rest
(90% of data) are used as the training set. In both

7When the window size is specified to be greater than 1,
CoCoGen returns complexity scores for a given measures as
fractions (wnm/wdm). In this case, the denominators and
numerators of the fractions from the first to the last sentence
in the window are added up to form the denominator and nu-
merator of the resulting complexity score of a given window.

8The lengths of the feature vector sequences depends on
the number of sentences of the texts in our corpus.
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Figure 1: Complexity contours (window size = 1 sentence) for eight selected measures of complexity for three
random texts from CEFR levels A2, B2 and C2.
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Figure 2: Roll-out of the contour-based RNN model
based on complexity contours

datasets, the distributions of classes were identical.
As the loss function for training cross entropy was
used:

L(Ŷ , c) = �
CX

i=1

p(yi) log(p(ŷi))

in which c is the true class label of the cur-
rent observation, C is the number of classes,
(p(y1), . . . , p(yC)) is a one-hot vector with

p(yi) =

(
1 i = c

0 otherwise

and Ŷ = (p(ŷ1), p(ŷ2), . . . , p(ŷC)) is the output
vector of the softmax layer, which can be viewed
as the predicted probabilities of the observed in-
stance falling into to each of the classes. Since
the EFCamDat dataset is hightly imbalanced, we
additionally assigned weights to the classes for the
cross entropy function, such that ak is weight for
class k:

ak =
N

100Nk

where N is the total number of instance in the
dataset and Nk is the number of instance in the
dataset with label k. For optimization, we used
Stochastic Gradient Descent (SGD) with a learning
rate ⌘ = 0.01 momentum = 0.9 and a learning
rate decay factor of 0.1. The minibatch size is 32,
which was shown as a reasonable value for modern
GPU (Masters and Luschi, 2018).

7 Feature Ablation

To determine the relative importance of the in-
dividual features, we conducted feature ablation
experiments for the contour-based RNN. Classi-
cal forward or backward sequential selection al-
gorithms that proceed by sequentially adding or
discarding features require a quadratic number of
model training and evaluation in order to obtain a
feature ranking (Langley, 1994). In the context of
neural network model training a quadratic number
of models can become prohibitive. To alleviate
this problem, we used an adapted version of the
iterative sensitivity-based pruning algorithm pro-
posed by Dı́az-Villanueva et al. (2010). This al-
gorithm ranks the features based on a ‘sensitivity
measure’ (Moody, 1994; Utans and Moody, 1991)
and removes the least relevant variables one at a
time. The classifier is then retrained on the result-
ing subset and a new ranking is calculated over the
remaining features. This process is repeated until
all features are removed (see Algorithm 1). In this
fashion, rather than training n(n+1)

2 required for se-
quential algorithms, the number of models trained
is reduced to n

m , where m is the number of fea-
tures that can be removed at each step. We report
the results obtained with m = 1, i.e. the removal
of a single feature at each step. The procedure of
finding the rank order of feature importance is de-
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scribed as following. To increase the robustness
of the feature importance rank order, k-fold cross-
validation is applied. At step t, neural network
models Mt,n, n 2 {1, . . . , k} are trained on the
training sets of a k-fold cross-validation, where n
is the fold ID. The training sets at step t consist of
instances with feature set Ft = {f1, f2, . . . , fDt}
where f1, . . . fDt are the remaining features at the
current step, whose importance rank is to be de-
termined. We define Xt,n as the test set of the
nth fold with feature set Ft and Xi

t,n as the same
dataset as Xt,n except we set the ith feature fi
of each instance within the dataset to its average.
Furthermore, we define g(X) as the classification
accuracy of Mt,n for a dataset X . The sensitivity
of feature fi on the nth fold at step t is obtained
from:

Si,t,n = g(Xt,n)� g(Xi
t,n)

The final sensitivity for a feature fi at step t is:

Si,t =
1

k

kX

n=1

Si,t,n

The most important feature at step t can be found
by:

fî : î = arg max
i:fi2Ft

(Si,t)

Then we set the rank for feature fî:
Rankî = t

In the end, feature fî is dropped from Ft and the
corresponding columns in training and test dataset
are also dropped simultaneously:

Ft+1 = Ft � {fî}
This procedure is repeated, until |Ft0 | = 1.

8 Results and Discussion

An overview of the performance statistics of the
models in terms of precision, recall and F1 scores
is presented in Table 2. The classification accuracy
results indicated that the inclusion of complexity
contours led to an increase in overall classification
accuracy of 9.3% from 66.1% for the means-based
RNN model to 75.4% for the contour-based RNN
model. Classification performance of the contour-
based RNN model was consistently higher than
those of the means-based RNN model across all
six CEFR proficiency levels. Its performance was
higher for the beginner and intermediate CEFR pro-
ficiency levels (A1 to B2) with F1 scores ranging
between 0.73 and 0.81 compared to the advanced
levels (C1 and C2) with F1 scores dropping to 0.61

Algorithm 1: Feature ablation algorithm
Input: N training instances with feature set

F = {f1, . . . , fD}
Input: m features to remove at each step
Result: list containing the feature

importance rank order
1 begin

2 t 0
3 list []
4 while |F | > 0 do

5 Train a classifier with |F | input
features;

6 Compute Si,t, i 2 F ;
7 Find fi1 , . . . , fim , where

Si1,t, . . . , Sim,t are m largest
among all Si,t(i 2 F ) in
descending order;

8 list list.append([fi1 , . . . , fim ]);
9 F  F � {fi1 , . . . , fim};

10 t t+ 1;

11 return list

for the C1 level and 0.42 for the C2 level. The
confusion matrix of the contour-based RNN model
is presented in Table 3. As is evident in this ta-
ble, most classification errors appeared in adjacent
categories, with few classification errors occurring
between distant categories.

The top 20 features that contributed most to
the classification accuracy of the contour-based
RNN model are shown in Table 2 (see the col-
umn ‘Acc after Del’). The results of the feature
ablation experiments revealed that classification ac-
curacy was mainly driven by frequency n-grams
measures pertaining to the usage of multiword se-
quences (MWS). The twelve of the top 20 features
are uni-, bi-, and trigram frequency measures from
all five register sub-components of the COCA cor-
pus. Writing samples from higher CEFR levels
exhibit higher scores for all five unigram measures.
A similar pattern can be observed for bigram scores
from the academic register. A more differentiated
pattern is apparent in trigram measures: For exam-
ple, trigram scores from the fiction register show a
U-shaped progression, such that they first increase
up to the B2 level and then decrease (see Table
5 and Figure 3 in the Appendix for an overview).
Overall, these findings indicate the importance of
including n-gram frequency measures for the task
of automated language performance classification.
Moreover, they are consistent with results reported



206

Table 2: Performance statistics of RNN classifiers (left) and results of feature ablation (right). Values in ‘()’ indicate
standard deviations. ‘Base Mod Acc’= Accuracy of baseline model; ‘Acc after Del’ = Accuracy of model after
deletion of feature (only top-20 features are shown).

Performance Means-based Contour-based

statistics RNN Model RNN Model
Accuracy train 0.938 (0.012) 0.976 (0.012)
Accuracy test 0.661 (0.004) 0.754 (0.004)
PrecisionA1 0.677 (0.021) 0.784 (0.016)
PrecisionA2 0.640 (0.013) 0.745 (0.007)
PrecisionB1 0.710 (0.005) 0.795 (0.005)
PrecisionB2 0.657 (0.007) 0.739 (0.004)
PrecisionC1 0.479 (0.008) 0.632 (0.014)
PrecisionC2 0.436 (0.050) 0.505 (0.043)
RecallA1 0.677 (0.021) 0.784 (0.016)
RecallA2 0.640 (0.013) 0.745 (0.007)
RecallB1 0.710 (0.005) 0.795 (0.005)
RecallB2 0.657 (0.007) 0.739 (0.004)
RecallC1 0.479 (0.008) 0.632 (0.014)
RecallC2 0.436 (0.050) 0.505 (0.043)
F1A1 0.634 (0.010) 0.744 (0.010)
F1A2 0.626 (0.009) 0.725 (0.007)
F1B1 0.713 (0.004) 0.803 (0.002)
F1B2 0.671 (0.006) 0.751 (0.003)
F1C1 0.467 (0.007) 0.614 (0.008)
F1C2 0.374 (0.044) 0.419 (0.038)

Feature importance

CM Base Mod Acc Acc after Del
Bigram fic 0.754 (0.004) 0.684 (0.005)
Bigram acad 0.748 (0.003) 0.686 (0.005)
ANC 0.744 (0.006) 0.691 (0.006)
MLWs 0.732 (0.003) 0.689 (0.002)
MLWc 0.728 (0.004) 0.675 (0.005)
Bigram spok 0.720 (0.002) 0.664 (0.004)
Unigram acad 0.712 (0.005) 0.659 (0.004)
Trigram fic 0.712 (0.004) 0.665 (0.005)
BNC 0.706 (0.004) 0.669 (0.004)
Bigram news 0.695 (0.004) 0.661 (0.004)
Unigram fic 0.691 (0.004) 0.660 (0.006)
NGSL 0.687 (0.005) 0.655 (0.005)
LD 0.681 (0.004) 0.646 (0.003)
Unigram spok 0.667 (0.004) 0.631 (0.006)
Trigram news 0.670 (0.005) 0.634 (0.006)
Unigram mag 0.666 (0.005) 0.634 (0.006)
Unigram news 0.667 (0.004) 0.604 (0.005)
Bigram mag 0.661 (0.004) 0.613 (0.005)
KolDef 0.655 (0.003) 0.626 (0.004)
KolDefMor 0.653 (0.003) 0.622 (0.005)

Table 3: Confusion matrix of the contour-based RNN
model (sum across 10-fold cross validation). The Ci;j

value is the number of predictions known to be in group
i and predicted to be in group j.

A1 A2 B1 B2 C1 C2
A1 5885 460 935 683 327 23
A2 428 13849 3754 1317 212 27
B1 526 2923 49842 7125 899 81
B2 428 1097 6951 37078 2715 266
C1 226 207 1115 3443 7652 188
C2 20 57 131 552 298 594

in numerous studies indicating that the knowledge
of MWS is a key component of both L1 and L2
writing and speaking skills (see e.g. (Christiansen
and Arnon, 2017; Garner et al., 2020; Saito, 2020).
Another group of features that figures prominently
in the top 20 list are five measures of lexical so-
phistication: Higher CEFR levels are characterized
by higher proportions of unusual/advanced words
and words of greater surface length (compare same
vs. equal vs. identical vs. tantamount). These
results replicate and extend the findings reported
in Durrant and Brenchley (2019) and (Kerz et al.,
2020). Both studies found that measures of lexi-
cal sophistication are good predictors of children’s

L1 writing development. And finally, the top-20
list includes two of the three information-theoretic
measures, indicating that more advanced learners
produce considerably more complex (i.e. informa-
tionally denser) texts than beginner learners. The
fact that two measures from the smallest subset of
CMs were ranked among the top-20 most impor-
tant features is an indication of their usefulness
in research on automated proficiency classifica-
tion. As discussed in detail in Ehret (2016) and
Ehret and Szmrecsanyi (2019), CMs based on Kol-
mogorov complexity have the potential to avoid
some of the known problems of traditional metrics
that are based on different measures of unit length
and that involve frequencies of various types of
forms, which gives rise to ‘concept reductionism’
(Ortega, 2012, 128).

9 Conclusion and Outlook

In this paper, we applied a sliding window tech-
nique in a feature-based modeling approach to au-
tomated classification of written proficiency lev-
els on the CEFR-scale (A1-C2 levels). We made
use of ‘complexity contours’ obtained through this
technique to represent the distribution of scores
per linguistic feature within a text in combination
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with RNN classifiers that exploit the sequential
information in those contours. We demonstrated
that an RNN classifier trained on complexity con-
tours achieved higher classification accuracy across
all six CEFR proficiency levels compared to one
trained on text-average scores with an increase in
performance of up to 14% in terms of precision
and 15% in terms of recall. We also showed that
iterative sensitivity-based pruning approach is a vi-
able way of assessing relative feature importance
in text classification tasks performed with neural
network models. This approach taken in our paper
has the potential to provide a valuable contribution
to increasing efforts to identify ‘criterial features’,
i.e. features that are characteristic and indicative
of language proficiency at each level (Hawkins and
Filipović, 2012). In our future work, we intend
to include additional sets of features of language
use based on crowd-sourced language metrics enti-
tled word prevalence (Johns et al., 2020) as well as
LIWC-style features that relate language use with
behavioral and self-reported measures of personal-
ity, social behavior, and cognitive styles (Tausczik
and Pennebaker, 2010). We also intend to take
into account the effects of task type on the features
of language use investigated in this paper (Alex-
opoulou et al., 2017).
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Bram Bulté and Alex Housen. 2012. Defining and oper-
ationalising l2 complexity. Dimensions of L2 perfor-
mance and proficiency: Complexity, accuracy and
fluency in SLA, pages 23–46.

Andrew Caines and Paula Buttery. 2020. Reprolang
2020: Automatic proficiency scoring of czech, en-
glish, german, italian, and spanish learner essays. In
Proceedings of The 12th Language Resources and
Evaluation Conference, pages 5614–5623.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. CoRR, abs/1409.1259.

Morten H Christiansen and Inbal Arnon. 2017. More
than words: The role of multiword sequences in lan-
guage learning and use. Topics in Cognitive Science,
9(3):542–551.

Mark Davies. 2008. The corpus of contemporary
american english (coca): 560 million words, 1990-
present.

Peter Deutsch. 1996. Deflate compressed data format
specification version 1.3. IETF RFC 1951.

Wladimiro Dı́az-Villanueva, Francesc J Ferri, and Vi-
cente Cerverón. 2010. Learning improved feature
rankings through decremental input pruning for sup-
port vector based drug activity prediction. In Inter-
national Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems,
pages 653–661. Springer.

Philip Durrant and Mark Brenchley. 2019. Develop-
ment of vocabulary sophistication across genres in
English children’s writing. Reading and Writing,
32(8):1927–1953.

Council of Europe. Council for Cultural Co-operation.
Education Committee. Modern Languages Division.
2018. Common European Framework of Refer-
ence for Languages: learning, teaching, assessment.
Cambridge University Press.

Katharina Ehret. 2016. An information-theoretic ap-
proach to language complexity: variation in natu-
ralistic corpora. Ph.D. thesis, Universität.

Katharina Ehret and Benedikt Szmrecsanyi. 2019.
Compressing learner language: An information-
theoretic measure of complexity in sla production
data. Second Language Research, 35(1):23–45.

James Garner, Scott Crossley, and Kristopher Kyle.
2020. Beginning and intermediate l2 writer’s use
of n-grams: an association measures study. Inter-
national Review of Applied Linguistics in Language
Teaching, 58(1):51–74.

http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259


208

Jeroen Geertzen, Theodora Alexopoulou, and Anna Ko-
rhonen. 2014. Automatic linguistic annotation of
large scale L2 databases: The EF-Cambridge Open
Language Database(EFCamDat).

Sylviane Granger, Estelle Dagneaux, and Fanny Meu-
nier. 2002. The international corpus of learner en-
glish. handbook and cd-rom.

Julia Hancke and Detmar Meurers. 2013. Exploring
CEFR classification for German based on rich lin-
guistic modeling. Learner Corpus Research, pages
54–56.

John A Hawkins and Luna Filipović. 2012. Criterial
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Ildikó Pilán, Elena Volodina, and Torsten Zesch. 2016.
Predicting proficiency levels in learner writings by
transferring a linguistic complexity model from
expert-written coursebooks. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
2101–2111.

https://doi.org/10.1017/cbo9781139649414.026
https://doi.org/10.1017/cbo9781139649414.026


209

Pytorch. 2019. Pytorch: Tensors and dynamic neural
networks in Python with strong GPU acceleration.
https://github.com/pytorch/pytorch.

Seok-Chae Rhee and Chae Kwan Jung. 2014. Com-
pilation of the yonsei english learner corpus (yelc)
2011 and its use for understanding current usage of
english by korean pre-university students. The Jour-
nal of the Korea Contents Association, 14(11):1019–
1029.

Kazuya Saito. 2020. Multi-or single-word units? the
role of collocation use in comprehensible and con-
textually appropriate second language speech. Lan-
guage Learning, 70(2):548–588.

Cyrus Shaoul and Chris Westbury. 2011. Formulaic
sequences: Do they exist and do they matter? The
mental lexicon, 6(1):171–196.
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