
Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, pages 180–184
April 20, 2021 ©2021 Association for Computational Linguistics

180

C-Test Collector: A Proficiency Testing Application
to Collect Training Data for C-Tests

Christian Haring, René Lehmann, Andrea Horbach and Torsten Zesch
Language Technology Lab, University Duisburg-Essen

(christian.haring|rene.lehmann)@stud.uni-due.de
(andrea.horbach|torsten.zesch)@uni-due.de

Abstract

We present the C-Test Collector, a web-based
tool that allows language learners to test their
proficiency level using c-tests. Our tool col-
lects anonymized data on test performance,
which allows teachers to gain insights into
common error patterns. At the same time, it
allows NLP researchers to collect training data
in order to be able to generate c-test variants at
the desired difficulty level.

1 Introduction

The c-test (Raatz and Klein-Braley, 1981) is a re-
duced redundancy exercise frequently used for lan-
guage proficiency testing. In a c-test, the second
half of every second word is replaced by a gap,
and the task of the test-taker is to reconstruct the
text. For example, the word redundancy would be
replaced with redun___.

C-tests are known to correlate well with general
language proficiency (Grotjahn, 2002) and are fast
to take and to evaluate. Thus, they are even used
in commercial systems such as onDaF (Grotjahn,
2010).

Despite these advantages, the creation of a well-
working c-test is a time-consuming task even for
language experts. One reason is that the gap
scheme is influenced e.g. by Named Entities or
other words that would be hard to guess for learn-
ers. Improved tool support for curating c-tests has
mitigated this problem to some extent (Zesch et al.,
2018).

Even with technological support, it is still hard
(even for experts) to judge the difficulty of a given
test without running a pilot study (Beinborn et al.,
2014). Thus, there has been research on predicting
(Beinborn et al., 2014) or manipulating (Lee et al.,
2019) the difficulty of c-tests. These approaches
heavily rely on the availability of training data, i.e.
c-tests which have been taken by enough learners

so that the solution probability for individual gaps
can be reliably estimated. Influencing factors on
the part of the student, such as the native language,
make the difficulty prediction even more dependent
on the availability of the right kind of training data.

In this paper, we present a web-application that
makes it easy to collect such training data, by pro-
viding an easy-to-use platform for taking a c-test
online. In the remainder of this paper, we describe
the two ways to interact with the system: (i) as
a user taking c-tests and receiving a proficiency
assessment, and (ii) as an administrator uploading
new tests and accessing the aggregated test results
of the users.

2 User Perspective

Figure 1 illustrates the interaction steps of a user
with the application.

Self Assessment To allow for an easy start with
the tool and to avoid data security issues, we do not
create user profiles, but ask users only for the lan-
guage they want to learn and a self-assessment into
one out of six proficiency levels, roughly meant to
correspond to the six CEFR levels (Council of Eu-
rope, 2009). Optionally, a user can provide age and
native language. This meta-information is stored
together with the solutions provided by the user for
a particular test.

Test Taking After selecting a language and pro-
ficiency level, the user is delivered a suitable c-test
(see step 2 in Figure 1). Figure 2 gives an exam-
ple of how a test looks for the user. Tests can be
skipped and revisited again at a later stage. If the
user has finished a test they are redirected to an
evaluation page.

A user may always update their language settings
to receive a new test (left-hand side of the upper
box). On the right hand side of the upper box, the



181

Figure 1: Interaction diagram of the user with the ap-
plication. Non-interactive sections are marked with
dashed lines.

user sees how many tests they have already passed,
failed or skipped per level. The system uses this
information to update the language proficiency of
the user and provides them with new tests whose
level matches that of the user.

Presentation of Results Once the user has sub-
mitted a c-test for evaluation, the results are pre-
sented. For wrongly answered gaps, the correct
solution is shown. It is also shown how a user
scored in relation to other users who took the same
c-test. In addition, they are provided with the cur-
rent assessment of their language level provided by
the application. At this point, the user can either
proceed to another c-test (or adjust their settings if
they feel the test is too hard or too easy).

3 Admin perspective

The administrator is responsible for adding new
tests with pre-set initial difficulty levels and can
access the test results of the users. Figure 3 shows
the administration view.

Adding Tests A c-test can be added in two ways:
First, we support the export format of the C-Test
Builder (Zesch et al., 2018), an authoring tool of-
fering technical support for creating a c-test from
raw text including automatic detection of Named
Entities, numeric expression and other words that

should be excluded from the gap scheme.1 The tool
also provides an automatic difficulty assessment as
described in Beinborn et al. (2014), the result of
which can be used as the initial value for the C-Test
Collector. Second, text can be entered manually
where those parts of a word that should appear as
gaps are manually indicated using a bracket nota-
tion, e.g. redun{dancy}.

For each newly imported or created test, the ad-
min has to provide the language, a title and an
initial difficulty (i.e. a CEFR level). As we have
already discussed that it is hard for teachers to cor-
rectly assign the difficulty level, this is only used at
the beginning and the difficulty is adjusted as soon
as more users have taken the test.

Test Overview The administrator is provided
with a complete overview of all c-tests currently
available in the application, as well as a graphical
representation of the language distribution of tests
(see Figure 3).

Test Details In the detailed view, information
about a particular test is displayed. For each gap,
an admin can inspect the distribution of errors made
by test takers.

4 Scoring Tests and Users

Adjusting proficiency levels of users and difficulty
levels of tests is a cold start problem: In the begin-
ning, each user only has a self-assigned language
proficiency and each test has only a rough difficulty
level assigned by the administrator. This section
describes how tests receive adjusted difficulty rat-
ings and how users’ proficiency assignments are
adapted throughout their interaction with the sys-
tem in order to present them with tests of a suitable
difficulty.

Whenever a user completes a c-test, their current
language level is adjusted. Similarly, the difficulty
prediction of the c-test is refined with every new
user taking the test, providing a larger basis for
the difficulty estimation. We currently use two
rating strategies (i) Mean Error Rate and, (ii) the
Elo rating system (Elo, 1978).

4.1 Mean Error Rate

Under this strategy, the difficulty of a c-test is deter-
mined by the average error rates of the respective

1https://github.com/zesch/ctest-builder



182

Figure 2: Screenshot from the application during the performance of a c-test. The three integration areas are visible:
settings, progress and the actual test.

gaps.

MER =
1

n

n∑
i=1

ei

n is the number of gaps in the respective c-test and
e is the difficulty of an individual gap. The diffi-
culty of a gap is approximated via the percentage
of users who can’t solve that gap.

Under this strategy, the user proficiency is only
indirectly adapted. A user is only presented with
tests matching their current proficiency level. If the
user correctly filled more than a certain threshold of
gaps from the most recent n tests, their proficiency
level is adapted to the next higher level. If they falls
below a certain threshold, their proficiency level is
adapted to the next lower level.

4.2 Elo Rating

The Elo strategy describes a system for calculat-
ing the level of a group of users relative to each
other. Usually, the Elo method is applied in compet-
itive sports such as chess or football (Hvattum and
Arntzen, 2010). However, the method is also used
in research (Lehmann and Wohlrabe, 2017) and
adaptive educational settings similar to our case
(Pelánek, 2016). In order to use the Elo strategy for
our scenario, some adjustments have to be made

that we describe in the following. We treat the user
and the c-tests like opponents, so that each user
and c-test receives a score. Informally speaking:
if a user ‘beats’ a hard test (operationalized in our
case as filling at least half of the gaps correctly),
their Elo ranking will improve more than if a user
correctly solves an easy test. Both ratings are in
the range of [1, 6] ⊂ N

More formally, we define the expectation of suc-
cess EU for the user as follows:

EU =
1

1 + 10(RT−RU )

where RU describes the rating of the user, RT the
rating of the c-test respectively and the success
expectation for the test ET is computed as 1−EU .

Starting from the self-assigned user proficiency
and admin assigned test difficulty, the ratings are
updated as follows during the evaluation of a user’s
performance on a c-test:

R′A = RA + (SA − EA), forA ∈ {T,U}

RA defines the old rating and R′A the updated value.
In order to translate the ratings back to the language
levels, we round R′A. In our version, SA is 1 for
winning and 0 for losing. The user "wins" if he has



183

Figure 3: Screenshot of the administration panel. In addition to an overview of all c-tests (Übersicht), it is also
possible to switch to a detailed view with e.g. language distributions (Sprachverteilung) and add new c-tests (C-Test
hinzufügen.

completed at least 50% correctly. This means, the
harder the test, the larger the update if the user can
beat it.

5 Implementation Details

Our tool is implemented through a REST backend
server and a separated frontend application. The
source code is publicly available.2

The frontend of the application is provided
through a VueJS application that communicates
with the provided REST server. The interface pro-
vides the functionality to interact with the appli-
cation and is more or less independent from the
backend.

The provided REST server connects and medi-
ates corresponding requests for the creation and
evaluation of c-tests. The server was implemented
using the Spring Boot Framework.

2https://gitlab.com/ctest-evaluator

6 Conclusion and outlook

We have presented an open-source implementation
of a data collection tool that provides c-tests for
language learners and collects training data for dif-
ficulty prediction tasks. The collected data, espe-
cially the individual incorrect solution attempts can
also be used to study misspellings and cognates for
learners of different L1s and L2s. So far, our proto-
type has only been tested with a small number of
users. Next steps thus involve the deployment with
a larger user base to start the actual data collection
process for c-tests. For many languages, this will
provide the first publicly available training data.

References

Lisa Beinborn, Torsten Zesch, and Iryna Gurevych.
2014. Predicting the difficulty of language
proficiency tests. Transactions of the Associ-

https://www.aclweb.org/anthology/Q14-1040
https://www.aclweb.org/anthology/Q14-1040


184

ation for Computational Linguistics 2:517–530.
https://www.aclweb.org/anthology/Q14-1040.

Council of Europe, editor. 2009. Common Euro-
pean Framework of Reference for Languages: learn-
ing, teaching, assessment. Cambridge Univ. Press
[u.a.], Cambridge, 10. printing edition. OCLC:
837109490.

Arpad E. Elo. 1978. The rating of chessplay-
ers, past and present. Arco Pub., New York.
http://www.amazon.com/Rating-Chess-Players-
Past-Present/dp/0668047216.

Ruediger Grotjahn. 2002. Konstruktion und Einsatz
von C-Tests: Ein leitfaden für die Praxis pages 211–
225.

Rüdiger Grotjahn. 2010. Der C-Test: Beiträge aus
der aktuellen Forschung - The C-Test: contributions
from current research. Peter Lang, Bern, Switzer-
land. https://www.peterlang.com/view/title/12445.

Lars Magnus Hvattum and Halvard Arntzen.
2010. Using ELO ratings for match result
prediction in association football. Interna-
tional Journal of Forecasting 26(3):460–470.
https://doi.org/10.1016/j.ijforecast.2009.10.002.

Ji-Ung Lee, Erik Schwan, and Christian M. Meyer.
2019. Manipulating the difficulty of C-tests. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, Florence, Italy, pages
360–370. https://doi.org/10.18653/v1/P19-1035.

Robert Lehmann and Klaus Wohlrabe. 2017.
Who is the ‘journal grand master’? a
new ranking based on the elo rating sys-
tem. Journal of Informetrics 11(3):800–809.
https://doi.org/10.1016/j.joi.2017.05.004.

Radek Pelánek. 2016. Applications of the elo rating
system in adaptive educational systems. Computers
& Education 98:169–179.

Ulhich Raatz and Christine Klein-Braley. 1981. The
c-test - a modification of the cloze procedure. In
Practice and Problems in Language Testing. Colch-
ester: University of Essex, Dept. of Language and
Linguistics, pages 113–138.

Torsten Zesch, Andrea Horbach, Melanie Goggin, and
Jennifer Wrede-Jackes. 2018. A flexible online sys-
tem for curating reduced redundancy language exer-
cises and tests, Research-publishing.net, pages 319–
324. https://doi.org/10.14705/rpnet.2018.26.857.

https://www.aclweb.org/anthology/Q14-1040
http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/0668047216
http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/0668047216
https://www.peterlang.com/view/title/12445
https://doi.org/10.1016/j.ijforecast.2009.10.002
https://doi.org/10.1016/j.ijforecast.2009.10.002
https://doi.org/10.1016/j.ijforecast.2009.10.002
https://doi.org/10.18653/v1/P19-1035
https://doi.org/10.18653/v1/P19-1035
https://doi.org/10.1016/j.joi.2017.05.004
https://doi.org/10.1016/j.joi.2017.05.004
https://doi.org/10.1016/j.joi.2017.05.004
https://doi.org/10.1016/j.joi.2017.05.004
https://doi.org/10.14705/rpnet.2018.26.857

