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Abstract

Classical approaches to question calibration
are either subjective or require newly created
questions to be deployed before being cali-
brated. Recent works explored the possibility
of estimating question difficulty from text, but
did not experiment with the most recent NLP
models, in particular Transformers. In this
paper, we compare the performance of previ-
ous literature with Transformer models experi-
menting on a public and a private dataset. Our
experimental results show that Transformers
are capable of outperforming previously pro-
posed models. Moreover, if an additional cor-
pus of related documents is available, Trans-
formers can leverage that information to fur-
ther improve calibration accuracy. We char-
acterize the dependence of the model perfor-
mance on some properties of the questions,
showing that it performs best on questions end-
ing with a question mark and Multiple-Choice
Questions (MCQs) with one correct choice.

1 Introduction

Question Difficulty Estimation (QDE), also re-
ferred to as “calibration”, is a crucial task in ed-
ucation. Indeed, since question difficulty can be
leveraged to assess the skill level of students un-
der examination, wrongly calibrated questions are
cause of erroneous estimations. Also, an accurate
calibration enables to detect and discard questions
that are too easy or too difficult for certain stu-
dents. Traditionally, QDE is performed manually
or with pretesting. Manual calibration is intrinsi-
cally subjective and inconsistent. Pretesting leads
indeed to an accurate and consistent calibration, but
i) introduces a long delay between question gener-
ation and when the question can be used to score

students, and ii) requires to deploy the new ques-
tions before actually using them for scoring. To ad-
dress the issues of the traditional approaches to cal-
ibration, recent research tried to leverage Natural
Language Processing (NLP) techniques to perform
QDE from question text: the idea is to use some
pretested questions to train a model that performs
QDE from text and thus eliminates (or at least re-
duces) the need for pretesting of new questions. Al-
though such works showed promising results, none
of them experimented with the latest NLP research,
such as Transformer-based models (Vaswani et al.,
2017). In this work, we aim at filling that gap,
studying how different Transformers, also trained
with different approaches, compare with the current
state of the art. We evaluate several models built
upon the pre-trained BERT (Devlin et al., 2019)
and DistilBERT (Sanh et al., 2019) language mod-
els on the publicly available ASSISTments dataset
and the private CloudAcademy dataset. By using
data from two different domains, we add to the
growing body of evidence showing that item text
can be used to perform QDE. More precisely, we
show that - after being fine-tuned on the task of
QDE from text - Transformer models are capable
of calibrating newly generated questions more ac-
curately than previously proposed approaches. On
top of that, we explore the possibility of leverag-
ing additional textual information which might be
available (e.g. transcript of video lectures) to per-
form an additional pre-training of the Transformers
before fine-tuning them for QDE, and show that
such approach can be used to further improve the
accuracy. Overall, Transformer-based models are
capable of reducing the RMSE by up tp 6.5%, with
respect to previous approaches. Lastly, we perform
an analysis of the best performing model to under-
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stand whether some question characteristics (e.g.
text length, question type) particularly affect its per-
formance. Code is available at https://github.
com/aradelli/transformers-for-qde.

2 Related Work

There is a large interest in understanding how tex-
tual features affect item difficulty (El Masri et al.,
2017; Hickendorff, 2013), and this is not limited
to the educational domain: for instance Wang et al.
(2014) focus on difficulty estimation in community
question answering systems. The first works ad-
dressing QDE from text focused on MCQs and
used deterministic approaches based on bag of
words and similarities between question, answer,
and distractors (Alsubait et al., 2013; Yaneva et al.,
2018; Kurdi et al., 2016). Recent works mostly use
machine learning approaches.

Huang et al. (2017) proposed a neural network
for QDE of “reading” problems, in which the an-
swer has to be found in a text provided together
with the question. The model receives as input both
the text of the question and the document, thus it
actually estimates the difficulty of finding the cor-
rect answer in the provided document. This is a
major difference from all other works, in which the
difficulty depends on the questions only.

Yaneva et al. (2019) introduced a model to es-
timate the p-value of questions from text. The
p-value of a question is defined as the fraction
of students who correctly answered it and does
not account for different skill levels. This model
was trained using the text of questions and a large
dataset of medical documents, thus it cannot be
used if an analogous dataset is not available. Simi-
larly, the model proposed in (Qiu et al., 2019) re-
quires for training a dataset of medical documents
in addition to the question texts. The model is made
of two neural architectures to estimate the wrong-
ness (i.e. 1− p-value) of newly-generated MCQs,
considering it as made of two components which
indicate i) how difficult it is to choose between the
possible choices, and ii) how difficult it is to recall
the knowledge required to answer the question.

Benedetto et al. (2020b) proposed R2DE, a
model that estimates the difficulty and discrimi-
nation, as defined in Item Response Theory (IRT)
(Hambleton et al., 1991), of newly generated
MCQs. R2DE computes TF-IDF features from
the text of the questions and the text of the possible
choices, and feeds two Random Forest regressors

with such features. The performance of R2DE was
improved in (Benedetto et al., 2020a), with the
addition of readability and linguistics features.

To the best of our knowledge, (Xue et al., 2020)
is the first work that explored the effects of trans-
fer learning for QDE from text. Specifically, the
authors fine-tune pre-trained ELMo embeddings
(Peters et al., 2018) for the task of response time
prediction, and subsequently perform a second fine-
tuning for the task of p-value estimation. Differ-
ently from all the other models, this one and R2DE
can be trained using only question text, without
needing an additional dataset of related documents.

Our approach differs from previous research in
several ways. First of all, we adopt transfer learning
on Transformers, which are yet to be explored for
QDE from text. Secondly, similarly to (Benedetto
et al., 2020b,a), we perform the estimation of the
IRT difficulty which, differently from wrongness
and p-value, models students’ skill levels as well.
Specifically, we consider the one-parameter model
(Rasch, 1960), a logistic model that associates a
skill level to each student and a difficulty level
to each question (both represented as scalars). A
brief introduction to the one-parameter IRT model
is given in Appendix A. Thirdly, the Transformer
models presented here do not necessarily require
an additional dataset of documents from the same
topics as the questions, and they can be trained
using only question texts; however, if such dataset
is available, it can be leveraged to further improve
the accuracy of calibration. Lastly, each previous
work experimented on one private dataset; we ex-
periment on two datasets (one being publicly avail-
able), showing that Transformers can be success-
fully used for QDE in different domains.

3 Introduction to BERT and DistilBERT

BERT (Devlin et al., 2019) is a pre-trained lan-
guage model that reached state of the art perfor-
mance in many language tasks. Its key technical in-
novation was the application of the Transformer, a
popular self-attention model (Vaswani et al., 2017),
to language modeling. BERT is originally trained
to address two tasks: Masked Language Model-
ing (MLM) and Next Sentence Prediction (NSP).
MLM consists in removing one word from the in-
put text and asking the model to fill the gap, while
in NSP the model is asked - given two input sen-
tences - to tell whether the second sentence is a
reasonable continuation to the first one. Crucially,

https://github.com/aradelli/transformers-for-qde
https://github.com/aradelli/transformers-for-qde
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Figure 1: Fine-tuning of the pre-trained language model for the task of question difficulty estimation.

BERT can be used for many different downstream
tasks, as we do here for QDE: starting from the
pre-trained model, it is sufficient to stack an addi-
tional layer on top of the original network and then
retrain it on the desired task (process named “fine-
tuning”). During fine-tuning, the internal weights
of the pre-trained model are updated and adapted
to the desired task (together with the weights of
the added layer), which is both more efficient than
training the whole network from scratch and ca-
pable of better results, as the knowledge of the
pre-trained model is not discarded.

BERT is a large model and therefore requires
many resources for training and fine-tuning. For
this reason, we also experiment with DistilBERT
(Sanh et al., 2019), which is a language model
obtained by distilling BERT. Knowledge distilla-
tion is a compression technique in which a small
model is trained to reproduce the full output dis-
tribution of a larger model (Hinton et al., 2015).
With this approach, DistilBERT is able to retain
95% of BERT’s performance on several language
understanding tasks using about half the number
of parameters of BERT. Similarly to BERT, Distil-
BERT can be fine-tuned on downstream tasks and
it is therefore worth exploring for QDE from text.

4 Models

This section describes how we build the different
models which are compared with the current state
of the art of QDE from text. These models are built
upon the two pre-trained language models, fine-
tuning them with two different approaches. The
first approach consists in directly fine-tuning the
pre-trained model for the task of QDE from text.

The second approach is made of two steps: we i)
further pre-train the pre-trained model on the task
of Masked Language Modeling (MLM) to improve
domain knowledge, and subsequently ii) fine-tune
it on the task of QDE from text. This is all done
separately for the two datasets: we do not perform
any experiments across the two datasets.

4.1 Fine-tuning for QDE from text

This is the simplest of the two approaches; the ar-
chitecture used for fine-tuning is shown in Figure
1. Given the pre-trained language model, we stack
an additional fully connected layer on top of the
network, in order to use that as the new output. Fol-
lowing the fine-tuning guidelines in (Devlin et al.,
2019), we use only the first output of the pre-trained
language model. This works since the first out-
put correspond to the special token [CLS] which
is added at the beginning of the input text and is
the only one used for regression and classification.
Since question calibration is a regression task, the
additional output layer has one neuron, and the
weights of the connections with the previous layer
are randomly initialized. During fine-tuning, both
the weights of the additional layer and the internal
weights of the pre-trained language model are up-
dated. For the input, we use the same tokenization
and the same encoding as the original models. That
is, all the input samples start with the special to-
ken [CLS] and contain two sentences, separated
by the [SEP] token (another special token): the
first sentence is the (tokenized) question while the
second one contains the (tokenized) choices’ text1.

1It is possible to have a question made of several sentences.
In that case, the whole question is considered as “Sentence 1”,
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Specifically, we experiment with three different
encodings for the second sentence: i) Q only, we
leave it empty, thus considering only the text of
the question, ii) Q+correct, we use the text of the
correct choice(s) (as in Figure 1), iii) Q+all, we use
the text of all the possible choices, concatenating
them in a single sentence. For the ASSISTments
dataset, only the first encoding is possible as the
text of the choices (correct answer and distractors)
is not available. We also experimented a fourth
approach, considering all the possible choices us-
ing several [SEP] tokens between each choice;
however, this approach performed largely worse
that the others, thus we do not report it here. We
believe that the model, in that case, does not have
enough training questions to learn the meaning of
the additional separators (BERT and DistilBERT
are pre-trained to use only one [SEP] token).

4.2 Pre-training for MLM

Masked Language Modeling (MLM) is a fill-in-the-
blank task, where a word of the input text is substi-
tuted by a [MASK] token and the model is trained
to use the surrounding words to predict the word
that was masked. We leverage MLM to perform
an additional pre-training of the pre-trained lan-
guage models before the fine-tuning on QDE from
text. Our goal is to let the model learn the ques-
tions’ topics more accurately than how it would
do with the fine-tuning on QDE only. In order for
MLM to be effective, though, we need an addi-
tional dataset of documents about the same topics
that are assessed by the questions: this is available
only for the CloudAcademy dataset, which contains
the transcript of some of the video-lectures on the
e-learning platform. In practice, we perform pre-
training with MLM as follows. We randomly mask
15% of the words of the available lectures, then
train the language model to predict the masked
words sentence by sentence. The actual predic-
tion is performed by stacking a fully connected
layer and a softmax layer on top of the original
pre-trained model: for each masked sentence, this
additional layer consumes as input the contextual
embedding corresponding to the [MASK] token,
and tries to predict the word that should be inserted
in its place. After pre-training the model on the task
of MLM, the additional dense and softmax layers
are removed from the network, thus leaving us with

and the [SEP] token is still used only to indicate the end of
the question. We use this naming (“Sentence 1” and “Sentence
2”) since it is the one used in the original paper.

a pre-trained model which has the same architec-
ture as the original one, with the only difference
that all the internal weights were updated during
the additional MLM pre-training. The architecture
for the final fine-tuning for QDE from text is the
same as the one shown in Figure 1.

5 Experimental Datasets

In this work we use the publicly available data col-
lection provided by ASSISTments and the private
CloudAcademy data collection. Both data collec-
tions are made of two datasets: i) the Answers
dataset (referred to as A) and ii) the Questions
dataset (Q). It is important to remark that A and
Q are abstract names: we have one A dataset for
CloudAcademy and one A dataset for ASSISTments
(similarly for Q). A contains the students’ answers:
for each one, it stores the user ID, the question ID,
the correctness of the answer and a timestamp. Im-
portantly, A contains only “first timers”, meaning
that we consider only the first interaction between
a student and a question. Q contains the textual
information about the items: question ID, ques-
tion text and, in the case of CloudAcademy, the
text of the possible choices. For the experiments
on CloudAcademy data, we also have access to an
additional dataset - referred to as Lectures (L) -
which contains the transcripts of some online lec-
tures available on the platform and is used for the
additional MLM pre-training.

5.1 ASSISTments dataset

ASSISTments2 is an online tutoring system that pro-
vides instructional assistance while assessing stu-
dents (Feng et al., 2009). In practice, this means
that questions - called problems - can be broken
down into steps: if the student does not get the orig-
inal problem correctly, he has to answer a sequence
of scaffolding questions that break the problem
down into steps. In the current work, we consider
both original and scaffolding problems for QDE
from text. An example problem and the correspond-
ing scaffolding questions are shown in Appendix
B. We filter the dataset to keep only questions that
are answered by at least 50 students, to improve the
reliability of the estimation of ground truth latent
traits with IRT; on average, each item is answered
by 151 students and each student answers to 64
different items. We also remove the questions that
require external resources and the system messages

2https://new.assistments.org/

https://new.assistments.org/


151

(e.g. “Submit your answer from the textbook.”,
“Sorry, that is incorrect. Let’s go to the next ques-
tion!”). After removal of the unsuitable questions,
the final dataset used for QDE from text contains
11,393 different items. A is publicly available for
download3; Q is publicly available under request4.

5.2 CloudAcademy dataset

CloudAcademy5 is an e-learning provider offering
online courses about IT technologies. All the ques-
tions are MCQ and we have access to the text of the
possible choices. An example question is shown in
Appendix B. The dataset used in our experiments is
a sub-sample of the CloudAcademy data collection
and it was generated in order to have only ques-
tions answered by at least 50 students. A contains
7,323,502 interactions, involving 34,696 students
and 13,603 unique questions; on average, each item
is answered by 304 students and each student an-
swers to 115 different items. The overall correct-
ness is 66%. L contains the transcript of some of
the online lectures offered by CloudAcademy about
the same topics (i.e. cloud technologies) assessed
by the questions. L contains a total of 159,563
sentences and 3,228,038 words.

6 Experimental Setup

As displayed in Figure 2, training is performed in
two steps, repeated for the two datasets: i) the IRT
model is trained in order to calibrate the questions
and obtain the ground truth difficulties, then ii)
these ground truth latent traits are used as target
values to train the model on QDE from text.

The first step consists in using A to estimate
with IRT the target difficulty of all the questions.
Specifically, we use pyirt6 for the estimation and
consider [−5; 5] as the possible range of difficulties.
Difficulties estimated at this stage will later be used
as ground truth and therefore are inserted as target
values in Q. Then, Q is split into a train dataset
(QTRAIN), used to train our model on QDE from
text, and a test dataset (QTEST), which is used for
the final evaluation of the model; we keep 80% of
the questions for training and 20% for testing. At

3https://sites.google.com/
site/assistmentsdata/home/
2012-13-school-data-with-affect

4https://sites.google.com/
site/assistmentsdata/home/
assistments-problems

5https://cloudacademy.com/
6https://pypi.org/project/pyirt/

training time, we keep a portion of QTRAIN (10%)
as development set, for hyperparameter tuning.

When L is used for pre-training the model, the
setup is very similar. The only difference is that the
regression model, before being fine-tuned on the
task of QDE from text using QTRAIN, is pre-trained
on the task of MLM on L. Being an unsupervised
task, we use the whole L for this.

Transformers are implemented with the trans-
formers7 library from HuggingFace; fine-tuning
and pre-training are performed with TensorFlow8.
Hyperparameters are shown in Appendix C.

7 Results

7.1 Evaluation of the input configurations
Before comparing the Transformer models with the
state of the art, we show here the performance of
the different configurations, both with and without
the additional pre-training on MLM. Table 1 dis-
plays the Mean Absolute Error (MAE) and the Root
Mean Squared Error (RMSE) of the different con-
figurations; the error is the difference between the
IRT difficulty and the estimation of the Transformer
model. The input configurations are the ones pre-

Table 1: Comparison of different Transformer models
on CloudAcademy, with (Y) and without (N) additional
MLM pre-training.

Model (MLM) Input MAE RMSE

DistilBERT (N) Q only 0.805 1.017
DistilBERT (N) Q + cor. 0.799 1.019
DistilBERT (N) Q + all 0.794 1.013
BERT (N) Q only 0.807 1.022
BERT (N) Q + cor. 0.789 0.999
BERT (N) Q + all 0.811 1.027
DistilBERT (Y) Q only 0.801 1.016
DistilBERT (Y) Q + cor. 0.788 0.998
DistilBERT (Y) Q + all 0.795 1.009
BERT (Y) Q only 0.809 1.023
BERT (Y) Q + cor. 0.774 0.981
BERT (Y) Q + all 0.794 1.005

sented in Section 4: i) Q only, ii) Q+correct, iii)
Q+all. We show the mean of the errors, measured
over three independent runs with different random
initializations. The results shown here are obtained
on QTEST for CloudAcademy; indeed, for ASSIST-
ments the text of the possible choices is not avail-

7https://huggingface.co/transformers
8https://www.tensorflow.org/

https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/home/assistments-problems
https://sites.google.com/site/assistmentsdata/home/assistments-problems
https://sites.google.com/site/assistmentsdata/home/assistments-problems
https://cloudacademy.com/
https://pypi.org/project/pyirt/
https://huggingface.co/transformers
https://www.tensorflow.org/
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Figure 2: Experimental setup.

able and therefore the only possible input config-
uration is Q only. Even though there is not one
model configuration which clearly outperforms all
the others, it can be seen that both the additional
pre-training and the textual information of the pos-
sible choices are helpful in improving the accuracy
of the estimation. For DistilBERT without the ad-
ditional MLM pre-training the best configuration
is Q+all, while in all the other cases the best input
configuration is Q+correct.

7.2 Comparison with state of the art
As baselines, we use: i) ZeroR: predicts for all
the questions the average difficulty of the training
questions. ii) R2DE (Benedetto et al., 2020b): per-
forms difficulty estimation in two steps: the input
texts are converted into feature arrays with TF-IDF
and then the feature arrays are given as input to
a Random Forest regression model, that performs
the actual estimation. We implemented R2DE us-
ing the available code9. iii) ELMo (Xue et al.,
2020): we re-implement this model to adapt it to
our experimental datasets, and show here the re-
sults obtained with all the input configurations (on
our dataset, the best performing input configuration
is different than the one in the original paper).

Table 2 and Table 3 show the results of the ex-
periments on QDE for CloudAcademy and ASSIST-
ments, by displaying the MAE and the RMSE ob-
tained on QTEST by the Transformer models and
the chosen baselines (all the possible input config-
urations are considered for the baselines). For each
Transformer model, only one input configuration
is shown, as obtained in subsection 7.1. In order to
understand how well the models estimate the diffi-
culty of very easy and very challenging questions,
we also show the MAE and RMSE measured on
the questions whose difficulty b is such that |b| > 2
(also referred to as “extreme” questions). The re-
sults shown are the mean and the standard deviation
of the errors over three independent runs.

9https://github.com/lucabenedetto/
r2de-nlp-to-estimating-irt-parameters

Table 2 shows that also R2DE and ELMo are
able to leverage the text of the possible choices
to improve the accuracy of the estimation; indeed,
the best performing input configuration is Q+all
for R2DE and Q+correct for ELMo. The table
shows that the Transformer models generally out-
perform the proposed baselines on both metrics,
both with and without the additional pre-training
on MLM. The model that consistently and signif-
icantly outperforms all the others is BERT with
Q+correct and the additional MLM pre-training. It
is also interesting to remark that ELMo seems to
perform estimations a bit biased towards high and
low difficulties: indeed, considering overall MAE
and RMSE it performs at the same level of R2DE
but it is better for the estimation of “extreme” ques-
tions. This might also be the reason why ELMo
performs better than DistilBERT without MLM on
“extreme” questions but worse overall. All models
have larger errors on “extreme” questions than on
general ones, but the increase is different for each
of them: the best performing model has an increase
in the MAE of 1.19, which is lower than the other
Transformers (from 1.28 to 1.41), ELMo (1.37) and
R2DE (1.52). Results are similar for the RMSE:
the increase is 1.19 for the best model, between
1.19 and 1.30 for the other Transformers, 1.23 for
ELMo (Q+correct) and 1.37 for R2DE (Q+all).

Table 3 shows results similar to Table 2: BERT
is the best performing model and both Transformer
models outperform the baselines. However, we
can see that the errors are larger than in the previ-
ous experiment, thus suggesting that all the models
are less capable at estimating the difficulty of the
questions in ASSISTments. There could be several
reasons for this, but we believe that this limitation
is mainly due to two aspects: i) the platform allows
the creation of question with images (not available
to us); ii) the language used in the dataset is ”less
natural” than in CloudAcademy (e.g. many ques-
tions are equations with no additional text).

https://github.com/lucabenedetto/r2de-nlp-to-estimating-irt-parameters
https://github.com/lucabenedetto/r2de-nlp-to-estimating-irt-parameters
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Table 2: Comparison with the state of the art on CloudAcademy.

Model Input MLM MAE MAE, |b| > 2 RMSE RMSE, |b| > 2

ZeroR - - 0.845 ± 0.000 2.527 ± 0.000 1.069 ± 0.000 2.568 ± 0.000
R2DE Q only - 0.826 ± 0.001 2.397 ± 0.004 1.051 ± 0.001 2.468 ± 0.005
R2DE Q + cor. - 0.819 ± 0.001 2.320 ± 0.005 1.033 ± 0.002 2.391 ± 0.005
R2DE Q + all - 0.813 ± 0.001 2.331 ± 0.008 1.034 ± 0.001 2.405 ± 0.008
ELMo Q only - 0.833 ± 0.002 2.286 ± 0.032 1.053 ± 0.002 2.373 ± 0.025
ELMo Q + cor. - 0.831 ± 0.008 2.184 ± 0.033 1.048 ± 0.010 2.276 ± 0.018
ELMo Q + all - 0.839 ± 0.004 2.213 ± 0.025 1.057 ± 0.007 2.308 ± 0.015
DistilBERT Q + all N 0.794 ± 0.005 2.203 ± 0.044 1.013 ± 0.007 2.309 ± 0.036
BERT Q + cor. N 0.789 ± 0.010 2.118 ± 0.130 0.999 ± 0.017 2.222 ± 0.110
DistilBERT Q + cor. Y 0.788 ± 0.005 2.067 ± 0.074 0.998 ± 0.007 2.187 ± 0.061
BERT Q + cor. Y 0.774 ± 0.011 1.962 ± 0.042 0.981 ± 0.015 2.079 ± 0.047

Table 3: Comparison with the state of the art on ASSISTments.

Model Input MLM MAE MAE, |b| > 2 RMSE RMSE, |b| > 2

ZeroR - - 1.066 ± 0.000 2.882 ± 0.000 1.424 ± 0.000 3.033 ± 0.000
R2DE Q only - 0.966 ± 0.001 2.408 ± 0.005 1.304 ± 0.001 2.700 ± 0.003
ELMo Q only - 0.933 ± 0.013 2.025 ± 0.052 1.255 ± 0.017 2.375 ± 0.036
DistilBERT Q only N 0.919 ± 0.009 1.864 ± 0.059 1.239 ± 0.010 2.259 ± 0.037
BERT Q only N 0.911 ± 0.003 1.849 ± 0.074 1.228 ± 0.003 2.243 ± 0.038

7.3 Analysis of the best performing model

We analyze here some of the characteristics of the
best performing model (i.e. BERT), trying to under-
stand whether there are some question properties
which particularly influence its accuracy. We per-
form the same analysis for R2DE, to understand
whether such characteristics are a peculiarity of
BERT or are shared among different models; the
choice of R2DE is motivated by the fact that it is
the second best performing model on the CloudA-
cademy dataset (excluding the other Transformer
models) and it uses TF-IDF to create the features,
thus a non-neural approach. We report here the
results of three analyses, studying possible differ-
ences in the accuracy of QDE depending on i) input
length and question difficulty, ii) number of correct
choices, and iii) whether it is a cloze question.

First of all, in Figure 3 we show for the two
datasets the distribution of questions depending on
the input length and the true difficulty; the num-
ber of questions in each bin is represented by its
color. The two figures show that the distribution
is far for uniform and in many areas there are not
enough questions to obtain significant results from
this analysis. We do not show here the distribu-
tion of CloudAcademy for the Q+all input config-

uration, which is the one used by R2DE, but it is
qualitatively similar to the ones displayed. Consid-
ering this distribution, we decided to focus only on
some of the questions while analyzing the error de-
pending on the input length and the true difficulty.
Specifically, we keep questions i) with |b| < 3 and
len <= 110 for CloudAcademy and BERT (96.4%
of the questions); ii) with |b| < 3 and len <= 110
for CloudAcademy and R2DE (96.9%); iii) with
|b| < 4 and len <= 80 for ASSISTments (94.3%),
there is no difference between BERT and R2DE
because they use the same input configuration.

Figure 4 shows how the estimation error (repre-
sented by the color) of BERT and R2DE depends
on the input length and the target difficulty of the
questions. The error heavily depends on the target
difficulty: this suggests that the two models tend to
estimate difficulties closer to 0 than the target val-
ues (especially R2DE). Indeed, we have observed
that both the target difficulties and the estimated dif-
ficulties follow a Gaussian distribution, with higher
variance for the target difficulties. There is no clear
correlation between error and input length, but in
some cases it seems that the error increases with
the input length (e.g. row b = −1 in BERT). Figure
5 shows the same analysis as Figure 4 for ASSIST-
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Figure 3: Distribution of questions per input length and difficulty.
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(b) R2DE.

Figure 4: CloudAcademy, estimation error depending on input length and target difficulty.

ments. The findings are very similar, but it is even
more evident the fact that R2DE tends to perform
predictions close to 0; the error of BERT depends
less heavily on the difficulty. Again, there are no
clear correlations between the input length and the
accuracy of the estimation.

In CloudAcademy, there are i) cloze questions, in
which the correct choice goes in place of an under-
score in the text, and ii) questions with a question
mark at the end. Of the 1259 test questions, 222
are cloze questions. From the average errors for
the different types of questions, we observed that
both BERT and R2DE perform slightly worse on
cloze questions: BERT’s MAE is 0.804 on cloze
questions and 0.756 on the other questions; sim-
ilarly, R2DE’s MAE is 0.893 on cloze questions
and 0.794 on the other questions.

Lastly, we looked at the average error depending
on the number of correct choices: we compared

questions with multiple correct choices (there are
141 of them in the test set) and the questions with
one correct choice. For BERT, the overall MAE is
0.774 and on the questions with multiple correct
choices it is 0.764; in the case of R2DE, the MAE
is 0.813 overall and 0.750 for questions with mul-
tiple correct choices. This difference between the
two models might be due to the nature of R2DE
itself: indeed, it uses a bag of words approach thus
it does not care about the position of each word.
Instead, BERT uses contextual embeddings which
depend on the position of each word and the en-
coding of multiple correct choices we performed
(i.e. concatenation) might not be the better choice,
especially considering that probably there are not
enough questions to learn the encoding.
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Figure 5: ASSISTments, estimation error depending on input length and target difficulty.

8 Conclusions

In this paper we have performed a study of how
Transformer models perform in the task of QDE
from text, and have proposed a model which out-
performs previous approaches. Specifically, the
proposed model is built upon a pre-trained BERT
language model, which is fine-tuned for the task
of QDE from text. Previous approaches either re-
quire an additional dataset of documents about the
same topics assessed by the questions or cannot
leverage such information; differently from them
the proposed model is capable of outperforming
state of the art approaches being trained only on the
text of the questions, and can be further improved
if such additional dataset is available. As an out-
come from our analysis, we can say that: i) if an
additional dataset is available, BERT with MLM
pre-training seems to be the best performing model;
ii) if the only available data is the text of the ques-
tions, DistilBERT might be a better option, as it
has basically the same performance as BERT but at
a fraction of the computational cost. Furthermore,
we studied the effect of some questions charac-
teristics on BERT and R2DE, comparing the two
models. We have observed that the magnitude of
the error naturally increases with the magnitude of
the difficulty (especially for R2DE), but there is not
a clear correlation between the input length and the
accuracy of the estimation. We have also observed
that both models are less accurate in estimating the
difficulty of cloze questions, compared to questions
that end with a question mark, and that the decrease
in accuracy is lower for BERT. We believe that this
happens because underscores are not frequent in

natural language and thus the model has a chance
of learning them only during the fine-tuning on
QDE, not during MLM pre-training. This is proba-
bly not enough data for learning (from scratch) the
meaning of underscores in exam questions. Lastly,
BERT performs better on questions with only one
correct choice than on questions with multiple cor-
rect choices (for the latter, it is also outperformed
by R2DE). This might be due to the encoding we
used for multiple correct choices, and it is worth ex-
ploring in future research. Future works could con-
tinue to dig deeper into the analysis of the model, as
we believe that the accuracy of the estimation could
be further improved by using an ensemble model
in which different sub-models are used depending
on some characteristic of the question under cali-
bration. Also, future works will try to explore the
attention layers of the proposed model, as it might
provide useful information about the reasons why
the model works better on some questions.
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A Introduction to IRT

We model question difficulty as defined in the one-
parameter IRT model (also named Rasch model
(Rasch, 1960)), which associates a skill level θ to
each student and a difficulty level b to each question.
For a given question j, its latent trait bj define the
item response function (i.r.f.), which indicates the
probability (PC) that a student i with skill level θi
correctly answers the question. The formula of the
i.r.f. is as follows:

PC =
1

1 + e−1.7·(θi−bj)
(1)

According to the intuition, a student with a given
skill θi has a lower probability of correctly an-
swering more difficult questions. Also, if a ques-
tion is too difficult or too easy (i.e. bj → ∞ or
bj → −∞), all the students will answer in the
same way (i.e. PC → 0 or PC → 1) regardless of
θi. Given some students’ answers to a set of ques-
tions, with IRT it is possible to estimate both the
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Table 4: Example questions from ASSISTments.

ID Question Type

330 The computer game Peter wants to buy will cost at least $50 and not more
than $70. He earns $3 an hour running errands for his grandmother. Which
inequality shows the number of hours, n, he will have to work to pay for the
game?

Original

326 What is the minimum cost of the game? Scaffolding
327 What is the maximum cost of the game? Scaffolding
328 Write an expression that represents the amount of money Peter earns in n hours. Scaffolding
329 Which inequality shows the number of hours, n, Peter will have to work to pay

for the game?
Scaffolding

Table 5: Example question from CloudAcademy.

Role Text

Question A user has launched an EBS backed EC2 instance in the US-East-1 region. The
user wants to implement a disaster recovery (DR) plan for that instance by creating
another instance in a European region. How can the user accomplish this?

Correct choice Create an AMI of the instance and copy the AMI to the EU region. Then launch the
instance from the EU AMI.

Distractor Use the “Launch more like this” option to copy the instance from one region to
another.

Distractor Copy the instance from the US East region to the EU region.
Distractor Copy the running instance using the “Instance Copy” command to the EU region.

skill levels of the students and the difficulty of the
questions via likelihood maximization, by selecting
the configuration (i.e.the θs and bs) that maximizes
the probability of the observed results. Also, it is
possible to assess the knowledge level θ̃i of a stu-
dent i from the correctness of its answers to a set
of calibrated assessment items Q = q1, q2, ..., qNq .
This is done by maximizing the results of the mul-
tiplication between the i.r.f. of the questions that
were answered correctly and the complementary
(i.e. 1− PC) of the i.r.f. of the questions that were
answered erroneously.

B Example questions

An example problem from ASSISTments and the
corresponding scaffolding questions are shown in
Table 4.

An example question from CloudAcademy, with
its correct answer and distractors, is given in Table
5.

C Hyperparameters

For fine-tuning on QDE from text we select the
hyperparameters from the following pool of candi-

dates:

• batch size = 16, 32, 64;

• learning rate = 1e-5, 2e-5, 3-5;

• patience early stopping = 10 epochs;

• dropout additional layer = 0.1, 0.2, 0.3, 0.4,
0.5;

• internal dropout = 0.1, 0.2, 0.3, 0.4, 0.5.

For the additional pre-training on MLM, the hy-
perparameters are selected between the following
candidates:

• batch size = 64;

• learning rate = 1e-5;

• number of epochs = 4, 12, 24, 36;

• dropout = 0.1.

In both cases we use sequence length = 256 and
the Adam optimizer.


