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Abstract

Unlike traditional unsupervised text segmen-
tation methods, recent supervised segmenta-
tion models rely on Wikipedia as the source of
large-scale segmentation supervision. These
models have, however, predominantly been
evaluated on the in-domain (Wikipedia-based)
test sets, preventing conclusions about their
general segmentation efficacy. In this work,
we focus on the domain transfer performance
of supervised neural text segmentation in the
educational domain. To this end, we first intro-
duce K12SEG, a new dataset for evaluation of
supervised segmentation, created from educa-
tional reading material for grade-1 to college-
level students. We then benchmark a hierar-
chical text segmentation model (HITS), based
on RoBERTa, in both in-domain and domain-
transfer segmentation experiments. While
HITS produces state-of-the-art in-domain per-
formance (on three Wikipedia-based test sets),
we show that, subject to the standard full-
blown fine-tuning, it is susceptible to domain
overfitting. We identify adapter-based fine-
tuning as a remedy that substantially improves
transfer performance.

1 Introduction

Organizing long texts into coherent segments facil-
itates human text comprehension as well as down-
stream tasks like text summarization (Angheluta
et al., 2002; Bokaei et al., 2016), passage retrieval
(Huang et al., 2003; Prince and Labadié, 2007;
Shtekh et al., 2018), and sentiment analysis (Xia
et al., 2010; Li et al., 2020). Text segmentation
is very important in the educational domain as it
enables large-scale passage extraction. Educators,
for example, need to extract coherent passage seg-
ments from books to create reading materials for
students. Similarly, test developers must create
reading assessments at scale by extracting coherent
segments from a variety of sources.

Most segmentation models allow for (i.e., se-
quential) segmentation (Hearst, 1994; Choi, 2000;
Riedl and Biemann, 2012; Glavaš et al., 2016;
Koshorek et al., 2018; Glavaš and Somasundaran,
2020), though methods for hierarchical segmenta-
tion have been proposed as well (Eisenstein, 2009;
Du et al., 2013; Bayomi and Lawless, 2018). Ow-
ing to the absence of large annotated datasets,
(linear) text segmentation has long been limited
to unsupervised models, relying on various mea-
sures of lexical and semantic sentence overlap
(Hearst, 1994; Choi, 2000; Utiyama and Isahara,
2001; Fragkou et al., 2004; Glavaš et al., 2016) and
topic modeling (Brants et al., 2002; Misra et al.,
2009; Riedl and Biemann, 2012). More recently,
Koshorek et al. (2018) automatically created a large
segment-annotated dataset WIKI727 by leveraging
the headings structure in Wikipedia articles, effec-
tively enabling supervised text segmentation; they
then trained a hierarchical recurrent neural segmen-
tation model on WIKI727. In subsequent work,
Glavaš and Somasundaran (2020) improved on
their segmentation performance by (i) replacing re-
current components of the hierarchical model with
transformer networks (Vaswani et al., 2017) and (ii)
adding an auxiliary self-supervised coherence ob-
jective. Although both Koshorek et al. (2018) and
Glavaš and Somasundaran (2020) report massive
gains over unsupervised baselines, their models
have mostly been subject to in-domain evaluation
on test sets also derived from Wikipedia.

In this work, in contrast, we concern ourselves
with domain transfer of supervised text segmenta-
tion models, with a focus on the educational do-
main. To investigate the effects of domain transfer
in supervised text segmentation, we first introduce
K12SEG – a segment-annotated dataset which we
automatically created from educational texts de-
signed for grade-1 to college-level student popu-
lation. We then benchmark a hierarchical neural
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Figure 1: Architecture of the adapter-augmented hier-
archical model for supervised text segmentation.

text segmentation model (HITS) in a range of in-
domain and domain-transfer segmentation experi-
ments involving WIKI727 (Koshorek et al., 2018)
and our new K12SEG dataset.

Our HITS model, illustrated in Figure 1, though
similar to the hierarchical segmentation models of
Glavaš and Somasundaran (2020), differs in two
crucial aspects. First, we initialize the parame-
ters of the lower (token-level) transformer with
the weights of the pretrained RoBERTa (Liu et al.,
2019). Secondly, aiming to prevent both (1) for-
getting of distributional information captured in
RoBERTa’s parameters and (2) overfitting to the
training domain – we augment the layers of the
token-level transformer with adapter parameters
(Rebuffi et al., 2018; Houlsby et al., 2019) before
segmentation training. Adapter-based fine-tuning
only updates the additional adapter parameters
and the original transformer parameters are frozen:
this fully preserves the distributional knowledge
obtained in transformer’s pretraining. Encoding
out-of-domain segmentation knowledge (e.g., from
the WIKI727 dataset) separately from the distribu-
tional information (original RoBERTa parameters)
allows to combine the two types of information
more flexibly during the secondary segmentation
training in the target domain (e.g., on K12SEG),
resulting in more effective domain transfer.

Experimental results confirm the above expecta-
tions. Our adapter-augmented HITS model trained
on WIKI727, besides yielding state-of-the-art in-
domain (Wikipedia) segmentation performance, fa-
cilitates domain transfer and leads to substantial
gains in our target educational domain (K12SEG).

2 Segmentation Model

Hierarchical Transformer-Based Model. Our
base segmentation model (Figure 1) consists of
two hierarchically linked transformers: the lower
transformer contextualizes tokens within sentences
and yields sentence embeddings; the upper trans-
former then contextualizes sentence representa-
tions. An individual training instance is a sequence
of N sentences, {s1, . . . , sN}, each consisting of
T (subword) tokens, si = {wi,1, . . . , wi,T }. We
initialize the lower transformer with the pretrained
RoBERTa weights (Liu et al., 2019).1 We then
use the transformed vector of the sentence start to-
ken (<s>), si, as the embedding of the sentence
si. The purpose of the randomly initialized upper
sentence-level transformer is to contextualize the
sentences in the sequence with one another. Let
xi be the transformed representation of the sen-
tence si, produced by the upper transformer. The
segmentation prediction for the sentence si is then
made by the simple feed-forward softmax classi-
fier: yi = softmax (Wxi + b). We minimize the
binary cross-entropy loss.

Adapter-Based Training. Unlike Koshorek
et al. (2018); Glavaš and Somasundaran (2020),
we initialize the lower transformer with RoBERTa
weights, encoding general-purpose distributional
knowledge. Full fine-tuning, in which all trans-
former parameters are updated in downstream
training, may overwrite useful distributional signal
with domain-specific artefacts, overfit the model to
the training domain, and impede domain transfer
for the downstream task (Rücklé et al., 2020).
Alternative, adapter-based fine-tuning (Rebuffi
et al., 2018; Houlsby et al., 2019; Pfeiffer et al.,
2020), injects additional adapter parameters into
transformer layers and updates only them during
downstream fine-tuning, keeping the original
transformer parameters unchanged. We adopt
the bottleneck adapter architecture of Houlsby
et al. (2019), reported effective for a wide range
of downstream task. Concretely, in each layer of
the lower transformer, we insert two bottleneck
adapters: one after the multi-head attention
sublayer and another after the feed-forward
sublayer. Let X ∈ RT×H stack contextualized
vectors for the sequence of T tokens in one of the
transformer layers, input to the adapter layer. The
adapter then yields the following output:

1We use the 12-layer Base RoBERTa model
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X′ = X+ g (XWd + bd)Wu + bu.

The parameter matrix Wd ∈ RH×a down-projects
the token vectors from X to the adapter size a <
H , and Wu ∈ Ra×H up-projects the activated
down-projections back to transformer’s hidden size
H; g is the non-linear activation function.

Training Instances and Inference. We train the
model with sequences of N sentences as instances
which we create by sliding the window of size
N over document’s sentences, with a sliding step
of N/2. At inference, for each sentence s, we
make predictions for all of the windows that con-
tain s. This means that we obtain (at most) N
segmentation probabilities for each sentence (for
the i-th sentence, we get predictions from windows
[i−N+1 : i], [i−N+2 : i+1], . . . , [i : i+N−1]).
We average the sentence’s segmentation probabili-
ties obtained across different windows and predict
that it starts a new segment if the average is above
the threshold t. We treat the sequence length N and
threshold t as hyperparameters and optimize them
using the development datasets. For brevity, we
describe the optimization details in the Appendix.

3 Evaluation

3.1 Data

WIKI727. To the best of our knowledge,
WIKI727 (Koshorek et al., 2018) is the only large
segment-annotated dataset designed for supervised
text segmentation. It consists of 727K Wikipedia
articles (train portion: 582K articles), automati-
cally segmented according to the articles’ heading
structure.

K12SEG. To empirically evaluate domain trans-
fer in supervised text segmentation, we introduce
a new dataset, dubbed K12SEG, created from edu-
cational reading material designed for grade-1 to
college-level students (Zeno et al., 1995). The orig-
inal dataset, the Educators Word Frequency, was
created by standardized sampling of reading ma-
terials from a variety of content areas (e.g. sci-
ence, social science, home economics, fine arts,
health, business etc.). Each sample is 250-325
words long. We create one synthetic K12SEG in-
stance by selecting and concatenating two samples
from (a) the same book, (b) different books from

the same content area (e.g., science) or (c) differ-
ent books from different content areas. In contrast
to WIKI727, in which the number and sizes of
segments greatly vary across Wikipedia articles,
K12SEG documents are more uniform: with two
segments (samples) each and minor variation in
sentence length (mean: 30 sentences). Besides the
different genre between WIKI727 and K12SEG,
this stark difference between their distributions of
segment numbers and sizes poses an additional
challenge for the domain transfer. We split the total
of 18,906 K12SEG documents into train (15,570
documents), development (3,000), and test portions
(336). An example 2-segment document from from
K12SEG is shown in Table 1.

Wikipedia-Based Test Sets. For the in-domain
(Wikipedia) evaluation, we use three small-sized
test sets. WIKI50 is an additional test set consist-
ing of 50 documents, created by Koshorek et al.
(2018) in the same manner as WIKI727. Chen et al.
(2009) similarly created the CITIES (64 articles)
and ELEMENTS (117) from Wikipedia pages of
world cities and chemical elements, respectively.

3.2 Experimental Setup
Experiments. We carry out two sets of experi-
ments. We first benchmark the performance of
our HITS model “in domain”, i.e., by training it
on WIKI727 and evaluating it on WIKI50, EL-
EMENTS, and CITIES. Here we directly compare
HITS (with full and adapter-based fine-tuning) with
state-of-the-art segmentation models: the hierar-
chical Bi-LSTM (HBi-LSTM) model of Koshorek
et al. (2018), and two hierarchical transformer vari-
ants of Glavaš and Somasundaran (2020) – with
(CATS) and without (TLT-TS) the auxiliary co-
herence objective. The second set of experiments
quantifies the efficacy of HITS in transfer for the
educational domain. We compare the performance
of “in-domain” training on K12SEG with trans-
fer strategies: (i) zero-shot transfer: HITS vari-
ants (full and adapter-based fine-tuning) trained on
WIKI727 and evaluated on the K12SEG test set
and (ii) sequential training: HITS variants sequen-
tially trained first on WIKI727 and then on the train
portion of K12SEG.

Training and Optimization Details. We initial-
ize the weights of the lower transformer network in
all HITS variants with the pretrained RoBERTa
Base model, having LL = 12 layers (with 12
attention heads each) and hidden representations
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First segment Second segment

Traveling familiar routes in our family cars we grow
so accustomed to crossing small bridges and viaducts
that we forget they are there. We have to stop and think
to remember how often they come along. Only when a
bridge is closed for repairs and we have to take a long
detour do we realize how difficult life would be with-
out it. Try to imagine our world with all the bridges
removed. In many places life would be seriously dis-
rupted, traffic would be paralyzed, and business would
be terrible. Bridges bring us together and keep us to-
gether. They are a basic necessity for civilization. The
first structures human beings built were bridges. Be-
fore prehistoric people began to build even the crudest
shelter for themselves, they bridged streams. Early pre-
historic tribes were wanderers. Since they did not stay
in one place they did not think of building themselves
houses. But they could not wander far without finding
a stream in their way. Nature provided the first bridges.
Finding themselves confronted with some narrow but
rapid river, humans noticed a tree that had fallen across
the river from bank to bank. The person who first
scrambled across a fallen log, perhaps after watching
monkeys run across it, was the first human being to
cross a bridge. Eventually, when they had learned how
to chop down a tree, they also learned how to make
a tree fall in the direction they wanted it to fall. The
wandering tribe that first deliberately made a tree fall
across a stream were the first bridge-builders.

Working in the mud and water of a river bottom was
difficult and dangerous. People were often crushed or
maimed by the pile driver or the piles. But the work on
the foundations is the most important part of bridge-
building. The part of a bridge that is underwater, the
part we never see, is more important than the part we
do see, because no matter how well made the super-
structure may be, if the foundation is not solid the
bridge will fall. Not only did the pier foundations have
to be solid, they also had to be protected as much as
possible from wear. A flowing river constantly stirs
up the bottom, so that the water’s lower depths are a
thick soup filled with mud and sand and pebbles which
grind against anything in the path of the current. This
action is called scour. to reduce the wear and tear of
the current, the Romans built the fronts of their piers
in the shape of a boat’s prow. The Romans used only
one kind of arch, the semicircular. The arch describes
a full half-circle from pier to pier. Each end of the
half-circle rests on a pier, and the two piers will hold
the arch up by themselves, even before the rest of the
bridge is built, provided each pier is at least one third as
thick as the width of the arch. Thus a bridge could be
built one arch at a time, and if the work had to stop the
partial structure would stay in place until work could
be resumed. The Romans built their bridges during the
summer and fall, when the weather was best and the
water level was generally lowest, and stopped during
winter and spring.

Table 1: An example 2-segment document from the K12SEG dataset.

of size H = 768. Our upper-level transformer
for sentence contextualization has LU = 6 layers
(with 6 attention heads each), and the same hid-
den size H = 768. We apply a dropout (p = 0.1)
on the outputs of both the lower and upper trans-
former outputs. In adapter-based fine-tuning we
set the adapter size to a = 64 and use GeLU
(Hendrycks and Gimpel, 2016) as the activation
function. In all experiments, we limit the sentence
input to T = 128 subword tokens (shorter sen-
tences are padded, longer sentences trimmed). We
optimize models’ parameters using the Adam al-
gorithm (Kingma and Ba, 2015) with the initial
learning rate of 10−5. We train for at most 30
epochs over the respective training set (WIKI727
or K12SEG), with early stopping based on the loss
on the respective development set. We train in
batches of 32 instances (i.e., 32 sequences of N
sentences) and have found (via cross-validation on
respective development sets) the optimal sequence
length to be N = 16 sentences and the optimal

average segmentation probability threshold at in-
ference time to be t = 0.35.

3.3 Results and Discussion

We report the results in terms of PK , the standard
evaluation metric for text segmentation (Beeferman
et al., 1999). PK is the percentage of wrong predic-
tions on whether or not the first and last sentence in
a sequence of K consecutive sentences belong to
the same segment. As in previous work (Koshorek
et al., 2018; Glavaš and Somasundaran, 2020), we
set K to one half of the average gold-standard seg-
ment size of the evaluation dataset.

In-Domain Wikipedia Evaluation. We report
the results of the in-domain Wikipedia evaluation
on WIKI50, CITIES, and ELEMENTS in Table 2.
Our HITS model variants, which we start training
with the pretrained RoBERTa as the token-level
transformer, outperform the hierarchical neural
models from (Koshorek et al., 2018) and (Glavaš
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Model Fine-tuning WIKI50 CITIES ELEM.

HBi-LSTM – 18.24 19.68 41.63
TLT-TS – 17.47 19.21 20.33
CATS – 16.53 16.85 18.41

HITS (ours) Full 14.50 15.03 17.06
HITS (ours) Adapter 15.17 14.11 14.67

Table 2: “In-domain” performance of hierarchical neu-
ral segmentation models, trained on the large WIKI727
dataset, on three Wikipedia-based test sets (smaller val-
ues of the error measure PK mean better performance).

and Somasundaran, 2020), which start from a ran-
domly initialized token-level encoder. This is con-
sistent with findings from many other tasks: fine-
tuning pretrained transformers yields better results
than task-specific training from scratch, even if
the dataset is large (as is the case with WIKI727).
Full fine-tuning produces better results on WIKI50,
whereas adapter-based fine-tuning exhibits stronger
performance on CITIES and ELEMENTS. Since the
articles in WIKI50 come from a range of Wikipedia
categories, much like in the training set WIKI727,
whereas CITIES and ELEMENTS each contain arti-
cles from a single category, we believe these results
already indicate that full fine-tuning is more prone
to domain (genre, topic) overfitting than adapter-
based tuning. Remarkably, HITS (Full) surpasses
the human WIKI50 performance, reported to stand
at 14.97 PK points (Koshorek et al., 2018).

Domain Transfer Results. Table 3 shows the
performance of both in-domain and transferred
HITS model variants on the K12SEG test set.
Interestingly, with Full fine-tuning, we observe
the same performance regardless of whether we
train the model on the out-of-domain (but much
larger) WIKI727 dataset or the (smaller) in-domain
K12SEG training set. More interestingly, adapter-
based fine-tuning in the zero-shot domain transfer
yields better performance than in-domain adapter
fine-tuning. Poor performance of in-domain train-
ing could mean that K12SEG is either (a) insuffi-
ciently large or (b) contains such versatile segmen-
tation examples over which it is hard to generalize.
Gains from sequential domain transfer, in which
the model is exposed to exactly the same K12SEG

training set but only after it was trained on a much
larger out-of-domain WIKI727 dataset, point to (a)
as the more likely explanation. In both in-domain
and zero-shot setups, adapter-based fine-tuning pro-
duces better segmentation than full fine-tuning, con-

Setup Fine-tuning Freeze K12SEG (test)

In domain Full – 25.5
Adapter – 23.9

Zero-shot Full – 25.5
Adapter – 20.7

Sequential

Full No 12.9
Full Yes 14.8

Adapter No 13.3
Adapter Yes 10.4

Table 3: Segmentation performance in domain trans-
fer. Evaluation on K12SEG test set. In domain: train-
ing on the K12SEG train set; Zero-shot: training on
the train portion of WIKI727; Sequential: sequential
training, first on WIKI727 and then on the train por-
tion of K12SEG. For Sequential training, the column
Freeze specifies whether the the lower transformer’s pa-
rameters were frozen during secondary, in-domain fine-
tuning (on the train portion of K12SEG).

tributing to the conclusion that adapter-based fine-
tuning curbs overfitting to domain-specific arte-
facts, improving the model’s generalization ability.
Finally, the sequential training in which we freeze
the lower transformer’s parameters (including the
adapters) during the (secondary) in-domain train-
ing, gives the best result overall. We speculate
that the relatively small K12SEG train set gives
the advantage to the model variant that uses that
limited-size data to fine-tune fewer parameters (i.e.,
only the upper, sentence-level transformer).

4 Conclusion

Supervised text segmentation has been limited to a
single large-scale segmentation dataset, WIKI727,
built automatically from Wikipedia. In this work,
we studied domain transfer for supervised text seg-
mentation: we introduce K12SEG, a new dataset
for supervised text segmentation built from educa-
tional reading materials (grade-1 to college-level
students), and use it together with WIKI727 in
our domain transfer experiments. Our hierarchical
segmentation model (HITS) couples the pretrained
RoBERTa with the upper-level transformer that
provides sentence contextualization. We show that
HITS obtains state-of-the-art performance on stan-
dard Wikipedia-based evaluation datasets, but over-
fits to the training domain (Wikipedia). We finally
substantially improve model’s transfer capabilities
through adapter-based fine-tuning.
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