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Abstract

This paper presents a study on parsing the
argumentative structure in English-as-foreign-
language (EFL) essays, which are inherently
noisy. The parsing process consists of two
steps, linking related sentences and then la-
belling their relations. We experiment with
several deep learning architectures to address
each task independently. In the sentence
linking task, a biaffine model performed the
best. In the relation labelling task, a fine-
tuned BERT model performed the best. Two
sentence encoders are employed, and we ob-
served that non-fine-tuning models generally
performed better when using Sentence-BERT
as opposed to BERT encoder. We trained our
models using two types of parallel texts: orig-
inal noisy EFL essays and those improved by
annotators, then evaluate them on the original
essays. The experiment shows that an end-to-
end in-domain system achieved an accuracy
of .341. On the other hand, the cross-domain
system achieved 94% performance of the in-
domain system. This signals that well-written
texts can also be useful to train argument min-
ing system for noisy texts.

1 Introduction

Real-world texts are not always well-written, es-
pecially in the education area where students are
still learning how to write effectively. It has been
observed that student texts often require improve-
ments at the discourse-level, e.g., in persuasive-
ness and content organisation aspects (Bamberg,
1983; Zhang and Litman, 2015; Carlile et al., 2018).
Worse still, texts written by non-native speakers are
also less coherent, exhibit less lexical richness and
more unnatural lexical choices and collocations
(Johns, 1986; Silva, 1993; Rabinovich et al., 2016).
Our long-term goal is to improve EFL essays from
the discourse perspective. One way to do this is by
recommending a better arrangement of sentences,

which enhances text coherence and comprehension
(Connor, 2002; Bacha, 2010). This may serve as
feedback for students in the educational setting (In-
vanic, 2004). The first step to achieve this goal,
which is discussed in the current paper, is parsing
argumentative structure in terms of dependencies
between sentences. This is because the relation-
ships between sentences are crucial to determine
the proper order of sentences (Grosz and Sidner,
1986; Hovy, 1991; Webber and Joshi, 2012).

This paper describes the application of Argu-
ment Mining (AM) to EFL essays. AM is an
emerging area in computational linguistics which
aims to explain how argumentative discourse units
(e.g., sentences, clauses) function and relate to each
other in the discourse, forming an argument as a
whole (Lippi and Torroni, 2016). AM has broad
applications in various areas, such as in the legal
(Ashley, 1990) and news (Al-Khatib et al., 2016)
domains. Also in the education domain, AM is
beneficial for many downstream tasks such as text
assessment (Wachsmuth et al., 2016), text improve-
ment (as described above) and teaching (Putra et al.,
2020). It is common in AM to use well-written
texts written by proficient authors, as do Peldszus
and Stede (2016), Al-Khatib et al. (2016), among
others. However, there are more non-native speak-
ers of English than native speakers in the world,
and their writings are often noisy as previously
described. Yet, EFL is a niche domain in AM.

This paper presents three contributions. First,
this paper presents an application of AM to EFL es-
says. We parse the argumentative structure in two
steps: (i) a sentence linking step where we iden-
tify related sentences that should be linked, form-
ing a tree structure, and (ii) a relation labelling
step, where we label the relationship between the
sentences. Several deep learning models were eval-
uated to address each step. We do not only evaluate
the model performance based on individual links



98

but also perform a structural analysis, giving more
insights into the models’ ability to learn different
aspects of the argumentative structure.

The second contribution is showing the effec-
tiveness of well-written texts as training data for
argumentative parsing of noisy texts. Many AM
corpora exist for well-written texts because past
studies typically assumed well-written input. Cor-
pora with noisy texts, such as the EFL one we use
here, exist, but are far more infrequent. In the
past, well-written and noisy texts have been treated
as two separate domains, and AM systems were
trained separately on each domain. We want to
investigate how far the existing labelled corpora
for well-written texts can also be useful for train-
ing parsers for noisy texts. To this end, we train
parsers on both in-domain and out-of-domain texts
and evaluate them on the in-domain task. For our
out-of-domain texts, we use the improved versions
of noisy EFL texts. These improvements were pro-
duced by an expert annotator and have a quality
closer to those of proficient authors.

The third contribution of this paper is an eval-
uation of Sentence-BERT (SBERT, Reimers and
Gurevych (2019)) in AM as a downstream appli-
cation setting. BERT (Devlin et al., 2019) is a
popular transformer-based language model (LM),
but as it is designed to be fine-tuned, it can be sub-
optimal in low-resource settings. SBERT tries to
alleviate this problem by producing a more uni-
versal sentence embeddings, that can be used as
they are in many tasks. The idea of training em-
beddings on the natural language inference (NLI)
task goes back to Conneau et al. (2017), and this
is the SBERT variant we use here. The NLI task
involves recognising textual entailment (TE), and a
TE model has been previously used by Cabrio and
Villata (2012) for argumentation. We will quan-
tify how the two encoders perform in our task. All
resources of this paper are available on github.1

2 Related Work

Argumentative structure analysis consists of two
main steps (Lippi and Torroni, 2016). The first step
is argumentative component identification (ACI),
which segments a text into argumentative discourse
units (ADUs); then differentiates them into argu-
mentative (ACs) and non-argumentative compo-
nents (non-ACs). ACs function argumentatively
while non-ACs do not, e.g., describing a personal

1https://github.com/wiragotama/BEA2021

episode in response to the given writing prompt.
ACs can be further classified according to their
communicative roles, e.g., claim and premise. The
second step is argumentative structure prediction,
which contains two subtasks: (1) linking and (2)
relation labelling. In the linking task, directed rela-
tions are established from source to target ACs to
form a structured representation of the text, often
in the form of a tree. In the relation labelling task,
we identify the relations that connect them, e.g.,
support and attack.

In the education domain, argumentative struc-
ture interrelates with text quality, and it becomes
one of the features that go into automatic essay
scoring (AES) systems (Persing et al., 2010; Song
et al., 2014; Ghosh et al., 2016; Wachsmuth et al.,
2016). End-to-end AES systems also exist, but hy-
brid models are preferred for both performance and
explainability reasons (Uto et al., 2020).

Eger et al. (2017) formulated AM in three ways:
as relation extraction, as sequence tagging and
as dependency parsing. They performed end-to-
end AM at token-level, executing all subtasks
in AM all at once. Eger et al. achieved the
highest performance in their experiments with
the relation extraction model LSTM-ER (Miwa
and Bansal, 2016). We instead use their se-
quence tagging formulation, which adapts the exist-
ing vanilla Bidirectional Long-short-term memory
(BiLSTM) network (Hochreiter and Schmidhuber,
1997; Huang et al., 2015), as it can be straightfor-
wardly applied to our task. The dependency parsing
formulation is also a straightforward adaptation as
it models tree structures. The biaffine model is
the current state-of-the-art of syntactic dependency
parsing (Dozat and Manning, 2017), and it has been
adapted to relation detection and labelling tasks in
AM by Morio et al. (2020). In a similar way, we
also adapt the biaffine model to our argumentative
structure. However, we use sentences instead of
spans as ADU, trees instead of graphs.

Most work in AM uses well-written texts in the
legal (e.g., Ashley, 1990; Yamada et al., 2019) and
news (e.g., Al-Khatib et al., 2016) domains, but
there are several AM studies that concentrate on
noisy texts. For example, Habernal and Gurevych
(2017) focused on the ACI task in web-discourse.
Morio and Fujita (2018) investigated how to link
arguments in discussion threads. In the education
domain, Stab and Gurevych (2017) studied the ar-
gumentation in persuasive essays. One of the prob-

https://github.com/wiragotama/BEA2021
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lems with the existing corpora is the unclear dis-
tinction between native and non-native speakers.
Additionally, to investigate and bridge the gap of
performance between AM systems on noisy and
well-written texts, it is necessary to use a parallel
corpus containing both versions of texts. However,
none of the above studies did.

3 Dataset

We use part of the “International Corpus
Network of Asian Learners of English”
(Ishikawa, 2013, 2018), which we annotated
with Argumentative Structure and Sentence
Reordering (“ICNALE-AS2R” corpus).2 This
corpus contains 434 essays written by college
students in various Asian countries. They are
written in response to two prompts: (1) about
banning smoking and (2) about students’ part-time
jobs. Essays are scored in the range of [0, 100].
There are two novelties in this corpus: (1) it uses a
new annotation scheme as described below and (2)
contains a parallel version of essays which have
been improved from the discourse perspective.
Therefore, this corpus can be used in many
downstream tasks, e.g., employing argumentative
structures for assessing and improving EFL texts.
It is also possible to extend the improved version
of texts on other linguistic aspects.

The corpus was annotated at sentence-level, i.e.,
a sentence corresponds to an ADU.3 In our annota-
tion scheme, we first differentiate sentences as ACs
and non-ACs, without further classification of AC
roles. Annotators then establish links from source
to target ACs, forming tree-structured representa-
tions of the texts. Then, they identify the relations
that connect ACs. We instructed annotators to use
the major claim, the statement that expresses the
essay author’s opinion at the highest level of ab-
straction, as the root of the structure. As there are
no further classification of AC roles, the term “ma-
jor claim” here refers to a concept, not an explicitly
annotated category. As the last step, annotators
rearrange sentences and performed text repair to
improve the texts from a discourse perspective.

There are four relations between ACs: SUPPORT

(sup), ATTACK (att), DETAIL (det) and RESTATE-

2A full description of the corpus and the annotation study
we performed is available in a separate submission.

3Texts written by proficient authors may contain two or
more ideas per sentence. However, our targets are EFL learn-
ers; pedagogically, they are often taught to put one idea per
sentence.

MENT (res). SUPPORT and ATTACK relations are
common in AM. They are used when the source
sentence supports or attacks the argument in the
target sentence (Peldszus and Stede, 2013; Stab
and Gurevych, 2014). We use the DETAIL relation
in two cases. First, when the source presents addi-
tional details (further explanations, descriptions or
elaborations) about the target sentence, and second,
when the source introduces a topic of the discussion
in a neutral way by providing general background.
From the organisational perspective, the differen-
tiation between DETAIL and SUPPORT is useful.
While the source sentence in a SUPPORT relation
ideally follows its target, the DETAIL relation has
more flexibility. We also use a relation called RE-
STATEMENT for those situations where high-level
parts of an argument are repeated or summarised
for the second time, e.g., when the major claim is
restated in the conclusion of the essay. DETAIL and
RESTATEMENT links are not common in AM; the
first was introduced by Kirschner et al. (2015) and
the second by Skeppstedt et al. (2018), but both
work on well-written texts. The combination of
these four relations is unique in AM.

To improve the texts, annotators were asked to
rearrange sentences so that it results in the most
logically well-structured texts they can think of.
This is the second annotation layer in our cor-
pus. No particular reordering strategy was in-
structed. Reordering, however, may cause irrel-
evant or incorrect referring and connective expres-
sions (Iida and Tokunaga, 2014). To correct these
expressions, annotators were instructed to mini-
mally repair the text where this is necessary to
retain the original meaning of the sentence. For
instance, they replaced pronouns with their refer-
ents, and removed or replaced inappropriate con-
nectives. Text repair is also necessary to achieve
standalone major claims. For example, “I think
so” with so referring to the writing prompt (under-
lined in what follows) can be rephrased as “I think
smoking should be banned at all restaurants.”

Figure 1 shows an example of our annotation
scheme using a real EFL essay. Figure 2 then il-
lustrates how the reordering operation produced an
improved essay. The annotator recognised that (16)
is the proper major claim of the essay in Figure 1.
However, this essay is problematic because the ma-
jor claim is not introduced at the beginning of the
essay. Thus, the annotator moved (16) to the begin-
ning, and the whole essay is concluded by sentence
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sup

(1) First of all, smoking is bad for your health. 

sup
(2) It causes many problems like chest infection, TB
and other dangerous dieases.

sup

(8) In foreign countries, some middle- and high-
level restaurants have banned smoking.

......

sup (9) Smoking contains nicotine, which makes the
food dirty. sup

(10) A person who smokes not only decreases their
lifetime but also impacts other people 

sup (11) If someone asks why you smoke, smokers often
reply that they smoke to release tension, but they
know it is not good for their health, especially in
restaurants because it poisons the food

sup

(12) Now it's our duty to save our country from the
pollution and effects of smoking.

=

(13) Smoking also should be banned in pubs, where
people also come to enjoy eating and drinking.

sup

(14) Nicotine is a drug and its effect on the human
body is very harmful and causes death.det

(15) So, please stop smoking and tell people about
the harmful effects.

(16) It should be banned in restaurants and a no
smoking sign should be stuck on the wall of all
restaurants. 

Figure 1: A snippet of argumentative structure annota-
tion for essay code “W PAK SMK0 022 B1 1 EDIT”
by our expert annotator. The essay discusses banning
smoking in restaurants.

(13) in Figure 2. We also observe that crossing links
happen in Figure 1, and they may suggest the jump
of ideas, indicating coherence breaks. For example,
sentence (14) describes nicotine and the annotator
thinks that it properly connects to (9) which also
talks about nicotine. Therefore, it is more desirable
to place sentences (9) and (14) close to each other,
as shown in Figure 2. The reordered version is
arguably better since it is more consistent with the
argumentative-development-strategy prescribed in
teaching, i.e., introduce a topic and state the au-
thor’s stance on that topic, support the stance by
presenting more detailed reasons, and finally con-
cludes the essay at the end (Silva, 1993; Bacha,
2010).

We performed an inter-annotator agreement
(IAA) study on 20 essays, using as annotators a
PhD student in English education (also an EFL
teacher – expert annotator) and the first author,
both having a near-native English proficiency. We
found the agreement to be Cohen’s κ=.66 for ACI;
κ=.53 for sentence linking; and κ=.61 for relation
labelling (Cohen, 1960). The sentence linking task

sup
(1) First of all, smoking is bad for your health. 

sup (2) It causes many problems like chest infection, TB
and other dangerous dieases.

sup

(8) In foreign countries, some middle- and high-level
restaurants have banned smoking.

......

sup (9) Smoking contains nicotine, which makes the food
dirty. 

=

(13) Smoking also should be banned in pubs, where
people also come to enjoy eating and drinking.

sup
(14) Nicotine is a drug and its effect on the human
body is very harmful and causes death.

det (15) So, please stop smoking and tell people about
the harmful effects.

(16) It should be banned in restaurants and a no
smoking sign should be stuck on the wall of all
restaurants. 

(10), (11), (12)

Figure 2: The improved version of essay Figure 1.

was the most difficult one, and it is understandable
since a text may have multiple acceptable struc-
tures. The relation labels hardest to distinguish
were between SUPPORT and DETAIL.

This kind of annotation is expensive. Also, there
is no metric to measure the agreement on reorder-
ing. Therefore, we chose to have the expert an-
notator annotate all essays in the production for
the purpose of consistency. There are 6,021 sen-
tences in the ICNALE-AS2R corpus; 5,799 (96%)
of these are ACs and 222 (4%) are non-ACs. An
essay contains 14 sentences on average, and the
average structural depth is 4.3 (counting the root
at depth = 0). The corpus does not contain para-
graph breaks. The most frequent relation label
is SUPPORT (3,029–56%), followed by DETAIL

(1,585–30%), ATTACK (437–8%), and RESTATE-
MENT (314–6%). In total, 105 out of 434 essays
were rearranged (1-3 sentences were moved on av-
erage). As we have explained before, the expert
annotator reordered a scattered set of sentences
which logically form a sub-argument to be close in
position to each other. They also placed the major
claim at the beginning as opposed to the middle or
the end of the essay. In general, the expert arranges
the essays to be more consistent with the typical
argumentative-development strategy prescribed in
teaching. The text repair was done on 181 sen-
tences, 123 (71%) of which attempt to repair the
prompt-type error of the major claim. The remain-
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ing 58 sentences concern changes in connectives
and referring expressions.

4 Parsing Models

We adopt a pipeline approach by using indepen-
dent models for sentence linking, which includes
the ACI task, and relation labelling. Although a
pipeline system may fall prey to error propagation,
for a new scheme and corpus, it can be advanta-
geous to look at intermediate results.

4.1 Sentence Linking

Given an entire essay as a sequence of sentences
s1, ..., sN , our sentence linking model outputs the
distance d1, ..., dN between each sentence si to its
target; if a sentence is connected to its preceding
sentence, the distance is d = −1. We consider
those sentences that have no explicitly annotated
outgoing links as linked to themselves (d = 0); this
concerns major claims (roots) and non-ACs.

≤ −5 −4 −3 −2 −1 0
16.6 3.9 5.2 8.3 37.0 10.9
≥ +5 +4 +3 +2 +1

1.0 0.6 0.9 2.3 13.4

Table 1: Distribution of distance (in percent) between
source and target sentences in the corpus.

Table 1 shows the distribution of distance be-
tween the source and target sentences in the corpus,
which ranges [−26, ...,+15]. Adjacent links pre-
dominate (50.4%). Short-distance links (2 ≤ |d| ≤
4) make up 21.2% of the total. Backward long dis-
tance links at d ≤ −5 are 16.6%, whereas forward
long distance links are rare (1.0%).

We follow the formulation by Eger et al. (2017),
where AM is modelled as sequence tagging (4.1.1)
and as dependency parsing (4.1.2).

4.1.1 Sequence Tagger Model
Figure 3 shows our sequence tagging architecture
(“SEQTG”). We adapt the vanilla BiLSTM with
softmax prediction layers (as Eger et al. (2017)
similarly did), training the model in a multi-task
learning (MTL) setup. There are two prediction
layers: (1) for sentence linking as main task and
(2) for ACI as an auxiliary task.

The input sentences s1, ..., sN are first encoded
into their respective sentence embeddings (using
either BERT or SBERT as encoder).4 We do not
fine-tune the encoder because our dataset is too

4By averaging subword embeddings.

Dense

d1 dN...

s1 s2 ... sN

Dense

Prediction	(Main	Task)

Encoder

c1 cN...

Prediction	(Aux	Task)

BiLSTM

Figure 3: BiLSTM-softmax (“SEQTG”).

small for it.5 The resulting sentence embeddings
are then fed into a dense layer for dimensional-
ity reduction. The results are fed into a BiLSTM
layer (#stack = 3) to produce contextual sentence
representations, then fed into prediction layers.

Main Task: The model predicts the probability
of link distances, in the range [−26, ...,+15]. To
make sure there is no out-of-bound prediction, we
perform a constrained argmax during prediction
time. For each sentence si, we compute the argmax
only for distances at [1− i, ..., N − i]; i ≥ 1.

Auxiliary Task: As the auxiliary task, the model
predicts quasi-argumentative-component type c for
each input sentence. Our scheme does not assign
AC roles per se, but we can compile the following
sentence types from the tree typology:

• major claim (root): only incoming links,
• AC (non-leaf): both outgoing and incoming

links,
• AC (leaf): only outgoing links, and
• non-AC: neither incoming nor outgoing links.

These four labels should make a good auxiliary
task as they should help the model to learn the
placement of sentences in the hierarchical structure.

We use the dynamic combination of loss as the
MTL objective (Kendall et al., 2018). To evaluate
whether the auxiliary task does improve the model
performance, we also experiment only on the main
task (single-task learning–STL).

4.1.2 Biaffine Model
We adapt the biaffine model (“BIAF”) by Dozat and
Manning (2017), treating the sentence linking task
as sentence-level dependency parsing (Figure 4).

The first three layers produce contextual sen-
tence representations in the same manner as in the

5We conducted a preliminary fine-tuning experiment on
sentence linking task, but the performance did not improve.
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s1 s2 ... sN

Dense

Encoder

h1
(source)

h1
(target)

h2
(source)

h2
(target) hN

(target)

. =H(source) G.U H(target)

hN
(source)

T

BiLSTM

Figure 4: Biaffine Model (“BIAF”).

SEQTG model. These representations are then fed
into two different dense layers, in order to encode
the corresponding sentence when it acts as a source(
h(source)

)
or target

(
h(target)

)
in a relation. Fi-

nally, a biaffine transformation is applied to all
source and target representations to produce the
final output matrix G ∈ RN×N , in which each row
gi represents where the source sentence si should
point to (its highest scoring target).

When only considering the highest scoring or
most probable target for each source sentence in
isolation, the output of the models (SEQTG and
BIAF) does not always form a tree (30-40% non-
tree outputs in our experiment). In these cases,
we use Chu-Liu-Edmonds algorithm (Chu and Liu,
1965; Edmonds, 1967) to create a minimum span-
ning tree out of the output.

4.2 Relation Labelling

In the relation labelling task, given a pair of linked
source and target sentences 〈ssource, starget〉, a
model outputs the label that connects them, i.e.,
one of {SUPPORT, ATTACK, DETAIL, RESTATE-
MENT}. We use non-fine-tuning models with feed-
forward architecture and fine-tuning transformer-
based LMs.

4.2.1 Non-fine-tuning Models
In non-fine-tuning models, both source and tar-
get sentences 〈ssource, starget〉 are encoded us-
ing BERT or SBERT to produce their respec-
tive embeddings. We then pass these embeddings
into respective dense layers for a dimensional-
ity reduction and transformation step, producing
〈rsource, rtarget〉. As the first option (“FFCON”,
Figure 5a), rsource and rtarget are concatenated,
passed to a dense layer for a further transformation,

and finally fed into a prediction layer. As the sec-
ond option (FFLSTM, Figure 5b), we feed rsource
and rtarget to an LSTM layer, and the hidden units
of LSTM are concatenated before being sent to a
dense layer (Deguchi and Yamaguchi, 2019).

Encoder Encoder

Dense Dense

ssource starget

rsource rtarget

Concat

Dense

Prediction

label

(a) FFCON model.

Encoder Encoder

Dense Dense

ssource starget

LSTM LSTM

Concat

Dense

Prediction

label

(b) FFLSTM model.

Figure 5: Non-finetuning relation labelling models.

4.2.2 Fine-tuning Models
Unlike sentence linking, where an entire essay is
taken as input, the relation labelling task takes a
pair of sentences. There are 5,365 of such pairs in
the ICNALE-AS2R corpus. We fine-tune BERT
and DISTILBERT (Sanh et al., 2019) on the result-
ing sentence pair classification task. The pair is fed
into the transformer model, and then the [CLS] to-
ken representation is passed into a prediction layer.

5 Experimental Results and Discussion

The dataset is split into 80% training set (347 es-
says , 4,841 sentences) and 20% testing set (87
essays, 1,180 sentences), stratified according to
prompts, scores and country of origin of the EFL
learners. We are interested in how the AM mod-
els trained on well-written texts may perform on
more noisy texts. To find out, we train the mod-
els on both the original EFL texts (in-domain) and
the parallel improved texts (out-of-domain), then
evaluated on the original EFL texts. The differ-
ence between in- and out-of-domain data lies on
the textual surface, i.e., sentence rearrangement,
the use of connectives, referring expressions, and
textual repair for major claims. Since not all essays
undergo any reordering, the out-of-domain data is
roughly 75% the same as the in-domain data.

The number of hidden units and learning rates
(alongside other implementation notes) to train our
models can be found in Appendix A. We run the
experiment for 20 times,6 and report the average

6Using the same dataset split. This is to account for ran-
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performance. The relation labelling models are
trained and evaluated using sentence pairs accord-
ing to the gold-standard. In the end-to-end evalua-
tion (Section 5.3), however, the input to the relation
labelling model is the automatic prediction. Sta-
tistical testing, whenever possible, is conducted
using the student’s t-test (Fisher, 1937) on the per-
formance scores of the 20 runs, with a significance
level of α = 0.05.

5.1 Sentence Linking
We first report our in-domain before turning to the
cross-domain results.

Table 2 shows our experimental result on the
prediction of individual links. The best model is a
biaffine model, namely SBERT-BIAF, statistically
outperforming the next-best non-biaffine model (ac-
curacy .471 vs .444 and F1-macro .323 vs .274; sig-
nificant difference on both metrics). Training the
SEQTG model in the MTL setting did not improve
the performance on these standard metrics.

Model Accuracy F1-macro

BERT-SEQTG [STL] .436 .274
BERT-SEQTG [MTL] .431 .242
BERT-BIAF .446 .310
SBERT-SEQTG [STL] .444 .229
SBERT-SEQTG [MTL] .438 .220
SBERT-BIAF .471† .323†

Table 2: In-domain results of individual-link predic-
tions in the sentence linking task. Best result shown in
bold-face. The † symbol indicates that the difference
to the second-best result (underlined) is significant.

0.
0
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0.
4

0.
6

0.
8

1.
0

distance

F
1

SBERT-Sᴇᴏ̨Tɢ [STL]
SBERT-Sᴇᴏ̨Tɢ [MTL]
SBERT-Bɪᴀғ

-2
0

-1
8

-1
6
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4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Figure 6: Models’ performance across distances for in-
domain evaluation using SBERT encoder.

To gain deeper insights into model quality, we
also considered the models’ F1 score per target
distance (Figure 6). All models, and in particular
BIAF, are better at predicting long-distance links
(d ≤ −5, avg. F1 = [0.22, 0.41]) than short dis-
tance links (2 ≤ |d| ≤ 4, avg. F1 = [0.16, 0.24])

dom initialisation in neural networks.

when using SBERT encoder (the same trend goes
when using BERT encoder). Long-distance links
tend to happen at the higher tree level, e.g., the
links from nodes at depth=1 to the root, while short-
distance links tend to happen at the deeper level,
e.g., within a sub-argument at depth≥2. As deep
structures seem to be harder to parse, we would
expect longer texts to suffer more.

Next, we look at the models’ ability to perform
quasi argumentative component type (QACT) clas-
sification: whether they can correctly predict the
role of major claim, AC (non-leaf), AC (leaf) and
non-AC, as defined in our auxiliary task described
in Section 4.1.1, based on the topology of argu-
mentative structures. This evaluates whether the
models place sentences properly in the hierarchi-
cal structure. Table 3 shows the result. SBERT-
SEQTG [MTL] performed the best, significantly
outperforming the second-best SBERT-BIAF (F1-
macro=.609 vs .601). We now see the gain of train-
ing in the MTL setup as all SEQTG [MTL] models
produce better hierarchical arrangements of nodes
compared to the STL models; the F1-macro when
using BERT encoder is .599 vs .592 (not signifi-
cant) and SBERT .609 vs .596 (significant).

We notice that BIAF works acceptably well (F1-
macro of .601) only when paired with the SBERT
encoder. When using the BERT encoder, it has
great difficulty in producing any non-AC nodes at
all (Non-AC F1=.058; F1-macro=.493), despite its
good performance on individual links. This result
seems to suggest that SBERT is a better encoder
than BERT for non-fine-tuning models. This also
proves the importance of the evaluation of AM
models beyond standard metrics, e.g., in terms of
their structural properties as we do here. Prediction
performance on individual links does not guarantee
the quality of the whole structure. Considering
the entire situation, SBERT-BIAF is our preferred
model because its performance on standard metrics
is substantially better than non-biaffine models. It
also performs reasonably well on the hierarchical
arrangement of nodes.

We next look at the cross-domain performance of
the best sentence linking model, namely SBERT-
BIAF. It achieves an accuracy of .459 and an
F1-macro of .270 for the prediction of individual
links. The F1-macro for QACT classification is
.565. These scores are somewhat lower compared
to the in-domain performance (significant differ-
ence). This means that the modifications of even
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Model Major claim AC (non-leaf) AC (leaf) non-AC F1-macro

BERT-SEQTG [STL] .695 .603 .584 .486 .592
BERT-SEQTG [MTL] .704 .594 .592 .507† .599
BERT-BIAF .730 .609 .573 .058 .493
SBERT-SEQTG [STL] .705 .616 .590 .471 .596
SBERT-SEQTG [MTL] .725 .622 .611† .477 .609†

SBERT-BIAF .730 .639† .599 .437 .601

Table 3: In-domain results of quasi argumentative component type classification (node labels identified by topol-
ogy). We show F1 score per node label and F1-macro. Bold-face, †, and underline as above.

25% of essays (in terms of rearrangement) in the
out-of-domain data may greatly affect the linking
performance, in the cross-domain setting.

5.2 Relation Labelling

Sup Det Att Res F1-m

(B)-FFCON .698 .433 .282 .594 .502
(B)-FFLSTM .695 .434 .277 .600 .502
(S)-FFCON .719 .479 .372 .558 .532
(S)-FFLSTM .722 .481 .396 .574 .543
DISTILBERT .741 .426 .431 .631 .557
BERT .760† .468 .478† .673† .595†

Table 4: In-domain relation labelling results, showing
F1 score per class and F1-macro. “(B)” for BERT and
“(S)” for SBERT. Bold-face, underline and † as above.

Table 4 shows our experimental results for the in-
domain relation labelling task, when gold-standard
links are used. BERT model achieves the signifi-
cantly best performance (F1-macro = .595). Non-
fine-tuning models performed better when using
SBERT than BERT encoder (F1-macro=.532 vs.
.502; .543 vs. .502; both having significant dif-
ference). This further confirms the promising po-
tential of SBERT and might suggest that the NLI
task is suitable for pre-training a relation labelling
model; we plan to investigate this further.

We can see from the results that the ATTACK

label is the most difficult one to predict correctly,
presumably due to its infrequent occurrence. How-
ever, the RESTATEMENT label, which is also infre-
quent, is relatively well predicted by all models.
We think that has to do with all models’ ability
to recognise semantic similarity. Recall that the
RESTATEMENT label is used when a concluding
statement rephrases the major claim. SUPPORT and
DETAIL are often confused. Note that they are also
the most confusing labels between human anno-
tators. Sentence pairs that should be classified as
having ATTACK and RESTATEMENT labels are also
often classified as SUPPORT.

We also performed our cross-domain experiment
for this task. Our best relation labelling model,
BERT, achieves the cross-domain F1-macro of
.587 (the difference is not significant to in-domain
performance). Although not currently shown, the
change of performance in other models are also
almost negligible (up to 2% in F1-macro).

5.3 End-to-end Evaluation

For end-to-end evaluation, we combine in a
pipeline system the best models for each task:
SBERT-BIAF for sentence linking and fine-tuned
BERT for relation labelling.

Accuracy ACI SL RL

Human-human (IAA) .474 .66 .53 .61

In-domain .341 .42 .41 .43
Cross-domain .321 .36 .40 .39

Table 5: End-to-end results. κ scores are used for “ACI”
(argument component identification), “SL” (sentence
linking) and “RL” (relation labelling).

Table 5 shows the evaluation results of the av-
erage of 20 runs. Accuracy measures whether the
pipeline system predicts all of the following cor-
rectly for each source sentence in the text: the cor-
rect ACI label (AC vs. non-AC), the correct target
distance and the correct relation label. In addition,
we also calculated the Cohen’s κ score between
the system’s output and the gold annotation for
annotation subtasks in our scheme.

The accuracy of the in-domain system is .341,
and that of the cross-domain system .321 (signif-
icant difference). When compared to human per-
formance on all metrics (in the IAA study), there
is still a relatively big performance gap. In an end-
to-end setting, the cross-domain system is able to
perform at 94% of the in-domain performance. As
we feel that this performance drop might well be
acceptable in many real-world applications, this
signals the potential of training an AM model for
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noisy texts using the annotated corpora for well-
written texts alongside those more infrequent anno-
tations for noisy text, at least as long as the genre
stays the same.

We conducted an error analysis on some random
end-to-end outputs. The system tends to fail to iden-
tify the correct major claim when it is not placed
at the beginning of the essay. For example, the
major claim can be pushed into the middle of the
essay when an essay contains a lot of background
about the discussion topic. Cultural preferences
might also play a role. In writings by Asian stu-
dents, it has been often observed that reasons for a
claim are presented before, not after the claim as
is more common in anglo-Saxon cultures (Kaplan,
1966; Silva, 1993; Connor, 2002) (as illustrated in
Figure 1). The BiLSTM-based models, which are
particularly sensitive to order, can be expected to
be thrown off by such effects.

sup

(2) First of all, most parents will
stop giving their children money
after graduation from high school.

sup

(3) University students need to
earn money in order to maintain
their daily spending.

det

(4) Ge�ing a part-time job is
exactly the way to solve this
problem.

det

(5) Secondly, most University
students will buy a lot of things
like iPhones, MacBooks, cell
phones, clothing, and other things.

det

(6) These products are quite expensive for them, so if they want to keep
buying these luxury goods, they must work during their spare time to earn
more and save as much as possible before it is enough to buy a product.

...

(1) Personally, I think it is important for University students
to have a part-time job for the following reasons.

Figure 7: An example snippet of the in-domain system
output for the essay code “W HKG PTJ0 021 B1 1.”

Another source of error concerns placing a sub-
argument into the main argument’s sibling position
instead of that of its child. In general, the systems
also have some problems to do with clustering, i.e,
splitting a group of sentences that should belong
together into separate sub-arguments, or reversely,
grouping together sentences that do not belong to-
gether. Thus, in order to move forward, the system
needs improvement concerning the hierarchical ar-
rangement of sentences in the structure. Figure 7
illustrates this problem. In the gold structure, sen-
tence (4) points at (2), forming a sub-argument
(sub-tree) of {2, 3, 4}. However, the system puts
sentence (4) in the inappropriate sub-tree. This
kind of cases often happens at group boundaries.

We also found that the system may erroneously
use the RESTATEMENT label when connecting

claims (at depth = 1) and major claims, when the
claims include almost all tokens that present in the
major claim. We suspect that our model learned to
depend on lexical overlaps to recognise RESTATE-
MENT as this type of relation concerns paraphras-
ing. However, we cannot perform an error analysis
to investigate to what extent this has affected the
performance on each of the other relation labels,
which concern entailment and logical connections.

6 Conclusion

This paper presents a study on parsing argumen-
tative structure in the new domain of EFL essays,
which are noisy by nature. We used a pipelined
neural approach, consisting of a sentence linking
and a relation labelling module. Experimental re-
sult shows that the biaffine model combined with
the SBERT encoder achieved the best overall per-
formance in the sentence linking task (F1-macro
of .323 on individual links). We also investigated
MTL, which improved the sequence tagger model
in certain aspects. In the sentence linking task, we
observed that all models produced more meaning-
ful structures when using SBERT encoder, demon-
strating its potential for downstream tasks. In
the relation labelling task, non-fine tuning models
also performed better when using SBERT encoder.
However, the best performance is achieved by a
fine-tuned BERT model at F1-macro of .595.

We also evaluated our AM parser on a cross-
domain setting, where training is performed on
both in-domain (noisy) and out-of-domain (cleaner)
data, and evaluation is performed on the in-domain
test data. We found that the best cross-domain sys-
tem achieved 94% (Acc of .321) of the in-domain
system (Acc of .341) in terms of end-to-end per-
formance. This signals the potential to use well-
written texts, together with noisy texts, to increase
the size of AM training data. The main challenge
of argument parsing lies in the sentence linking
task: the model seems to stumble when confronted
with the hierarchical nature of arguments, and we
will further tackle this problem in the future.
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Appendix A. Implementation Notes

BERT encoder We use bert-base-multilingual-
cased (https://github.com/google-research/
bert#pre-trained-models) and bert-as-a-
service (https://github.com/hanxiao/
bert-as-service). When using BERT, the
sentence embedding is created by averaging
subword embeddings composing the sentence in
question.

SBERT encoder We use SBERT model
fine-tuned on the NLI dataset (“bert-base-nli-
mean-tokens”), https://github.com/UKPLab/

sentence-transformers.

Sequence Tagger Dropout is applied between
each layer, except between encoder and the di-
mensionality reduction layer because we do not
want to lose any embedding information. We
train this model using the cross-entropy loss for
each prediction layer. The MTL loss is defined
as L =

∑
t

1
2σ2

t
Lt + ln(σt), where the loss Lt of

each task t is dynamically weighted, controlled by
a learnable parameter σt.

Biaffine We apply dropout between all layers,
following Dozat and Manning (2017). We use the
max-Margin criterion to train the biaffine model.

Principally, we can model the whole AM
pipeline using the biaffine model by predicting
links and their labels at once (e.g., in Morio et al.,
2020). This is achieved by predicting another out-
put graph X ∈ RN×N×L, denoting the probability
of each node xi pointing to xj on a certain relation
label li. However, we leave this as another MTL
experiment for future work.

Relation Labelling Models We train the rela-
tion labelling models with the cross-entropy loss.
Dropout is applied between the final dense layer
and the prediction layer.

Hidden Units and Learning Rates The number
of hidden units and learning rates to train our mod-
els are shown in Table 6. All models are trained
using Adam optimiser (Kingma and Ba, 2015). Our
experiment is implemented in PyTorch (Paszke
et al., 2019) and AllenNLP (Gardner et al., 2018).

Hyperparameter Tuning Before training our
models, we first performed the hyperparameter
tuning step. To find the best hyperparameter
(e.g., batch size, dropout rate, epochs) of each
architecture, in combination with each encoder

Dense1 LSTM Dense2 LR

SEQTG 512 256 256 .001
BIAF 512 256 256 .001

FFLSTM 256 128 256 .001
FFCON 256 - 256 .001
(DISTIL)BERT - - - 2e−5

Table 6: The number of hidden units and learning rates
(LR) of our models. “Dense1” denotes the dimension-
ality reduction layer (after encoder). “Dense2” denotes
the dense layer after BiLSTM (before prediction).

(BERT/SBERT) and each input type (in- or out-
of-domain), we perform 5-fold-cross validation on
the training set for 5 times, and select the hyperpa-
rameter set that produces the best F1-macro score.
During the hyperparameter tuning step, we do not
coerce the output to form a tree, i.e., only taking
the argmax results.
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