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Introduction

Welcome to the Second Workshop on Automatic Simultaneous Translation (AutoSimTrans)!
Simultaneous translation, which performs translation concurrently with the source speech, is widely
useful in many scenarios such as international conferences, negotiations, press releases, legal
proceedings, and medicine. It combines the AI technologies of machine translation (MT), automatic
speech recognition (ASR), and text-to-speech synthesis (TTS), which is becoming a cutting-edge
research field.

As an emerging and interdisciplinary field, simultaneous translation faces many great challenges and is
considered one of the holy grails of AI. This workshop will bring together researchers and practitioners
in machine translation, speech processing, and human interpretation, to discuss recent advances and open
challenges of simultaneous translation.

We organized a simultaneous translation shared task on Chinese-English. We released a dataset for open
research, which covers speeches in a wide range of domains, such as IT, economy, culture, biology, arts,
etc.

Following the tradition of our first workshop, we will have two sets of keynote speakers: Will
Lewis, Lucia Specia, and Liang Huang from simultaneous translation, and Hong Jiang from human
interpretation research. We hope this workshop will greatly increase the communication and cross-
fertilization between the two fields. We have accepted 6 papers that will be presented in the second
session.

We look forward to an exciting workshop!

Hua Wu, Colin Cherry, Liang Huang, Zhongjun He, Qun Liu, Maha Elbayad, Mark Liberman, and
Haifeng Wang
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Abstract
Simultaneous translation (ST) outputs the
translation simultaneously while reading the
input sentence, which is an important compo-
nent of simultaneous interpretation. In this
paper, we describe our submitted ST system,
which won the first place in the streaming tran-
scription input track of the Chinese-English
translation task of AutoSimTrans 2021. Aim-
ing at the robustness of ST, we first pro-
pose char-level simultaneous translation and
applied wait-k policy on it. Meanwhile, we
apply two data processing methods and com-
bine two training methods for domain adapta-
tion. Our method enhance the ST model with
stronger robustness and domain adaptability.
Experiments on streaming transcription show
that our method outperforms the baseline at all
latency, especially at low latency, the proposed
method improves about 6 BLEU. Besides, ab-
lation studies we conduct verify the effective-
ness of each module in the proposed method.

1 Introduction

Automatic simultaneous translation (ST) (Cho and
Esipova, 2016; Gu et al., 2017; Ma et al., 2019), a
task in machine translation (MT), aims to output the
target translation while reading the source sentence.
The standard machine translation is a full-sentence
MT, which waits for the complete source input and
then starts translation. The huge latency caused
by full-sentence MT is unacceptable in many real-
time scenarios. On the contrary, ST is widely used
in real simultaneous speech translation scenarios,
such as simultaneous interpretation, synchronized
subtitles, and live broadcasting.

Previous methods (Ma et al., 2019; Arivazha-
gan et al., 2019) for ST are all evaluated on the
existing full-sentence MT parallel corpus, ignor-
ing the real speech translation scenario. In the
real scene, the paradigm of simultaneous interpre-
tation is Automatic Speech Recognition (ASR)→

∗Corresponding author: Yang Feng.

simultaneous translation (ST) → Text-to-Speech
Synthesis (TTS), in which these three parts are all
carried out simultaneously. As a downstream task
of simultaneous ASR, the input of ST is always not
exactly correct and in the spoken language domain.
Thus, robustness and domain adaptability become
two challenges for the ST system.

For robustness, since the input of the ST system
is ASR result (streaming transcription), which is in-
cremental and may be unsegmented or incorrectly
segmented, the subword-level segmentation result
(Ma et al., 2019) of the streaming transcription
seriously affect the ST result. Existing methods
(Li et al., 2020) often remove the last token after
segmentation to prevent it from being incomplete,
which leads to a considerable increase in latency.
Table 1 shows an example of the tokenization result
of the streaming transcription input with different
methods. In steps 4-7 of standard wait-2, the input
prefix is different from its previous step, while the
previous output prefix is not allowed to be modi-
fied in ST, which leads to serious translation errors.
Although removing the last token improves the ro-
bustness, there is no new input in many consecutive
steps, which greatly increases the latency.

For domain adaptability, the existing spoken lan-
guage domain corpus is lacking, while the general
domain corpus for MT and the spoken language
domain corpus for ST are quite different in terms of
word order, punctuation and modal particles, so ST
needs to efficiently complete the domain adaption.

In our system, we propose a Char-Level Wait-k
Policy for simultaneous translation, which is more
robust with streaming transcription input. Besides,
we apply data augmentation and combine two train-
ing methods to train the model to complete do-
main adaptation. Specifically, the source of the
char-level wait-k policy is a character sequence seg-
mented according to characters, and the target still
maintains subword-level segmentation and BPE op-
erations (Sennrich et al., 2016). When decoding,

1



Tokenization of Streaming Transcription Input
Streaming

Transcription Standard Wait-2
Standard Wait-2

Remove Last Token
Char-Level Wait-2

(Ours)
他是研究生物的
他是研究生物的 他 /是 / 他 / 他 /是 /
他是研究生物的 他 /是 /研 / 他 /是 / . Delay 他 /是 /研 /
他是研究生物的 他 /是 /研究 / 8 他 /是 / . Delay 他 /是 /研 /究 /
他是研究生物的 他 /是 /研究生 / 8 他 /是 / . Delay 他 /是 /研 /究 /生 /
他是研究生物的 他 /是 /研究 /生物 / 8 他 /是 /研究 / 他 /是 /研 /究 /生 /物 /
他是研究生物的 他 /是 /研究 /生物 /的 / 他 /是 /研究 /生物 /的 / 他 /是 /研 /究 /生 /物 /的 /

Table 1: An example of the tokenization result of standard wait-k, standard wait-k+remove last token and char-
level wait-k, when dealing with streaming transcription input (take k = 2 as an example). Red mark: the source
prefix changes during streaming input. Green mark: no input in consecutive steps since the last token is removed.

the char-level wait-k policy first waits for k source
characters, then alternately reads a character, and
outputs a target subword. Table 1 shows the to-
kenization results of the char-level wait-k policy,
which not only guarantees the stability of the in-
put prefix but also avoids unnecessary latency. To
adapt to the spoken language domain, we first pre-
train an ST model on the general domain corpus
and perform fine-tuning on the spoken language do-
main corpus. To improve the effect and efficiency
of domain adaptation, we carry out data augmenta-
tion on both the general domain corpus and spoken
language domain corpus and combine two different
training methods for training.

In the streaming transcription track for the Chi-
nese→ English translation task of AutoSimTrans
2021, we evaluate the proposed method on the real
speech corpus (Zhang et al., 2021). Our method
exceeds the baseline model at all latency and per-
forms more prominently at lower latency.

Our contributions can be summarized as follows:

• To our best knowledge, we are the first to
propose char-level simultaneous translation,
which is more robust when dealing with real
streaming input.

• We apply data augmentation and incorporate
two training methods, which effectively im-
prove the domain adaptation and overcome
the shortage of spoken language corpus.

2 Task Description

We participated in the streaming transcription in-
put track of the Chinese-English translation task
of AutoSimTrans 2021 1. An example of the task

1https://autosimtrans.github.io/shared

Streaming Transcript Translation
大

大家

大家好 Hello everyone!
欢

欢迎

欢迎大

欢迎大家

欢迎大家来 Welcome
欢迎大家来到 everyone
欢迎大家来到这 come
欢迎大家来到这里 here.

Table 2: An example of streaming transcription output
track of the Chinese-English translation task.

is shown in Table 2. Streaming transcription is
manually transcribed without word segmentation.
Between each step, the source input adds one more
character. The task applies AL and BLEU respec-
tively to evaluate the latency and translation quality
of the submitted system.

3 Background

Our system is based on a variant of wait-k policy
(Ma et al., 2019), so we first briefly introduce wait-
k policy and its training method.

Wait-k policy refers to waiting for k source to-
kens first, and then reading and writing alternately,
i.e., the output always delays k tokens after the
input. As shown by ‘standard wait-k policy’ in
Figure 1, if k = 2, the first target token was output
after reading 2 source tokens, and then output a
target token as soon as a source token is read.

Define g (t) as a monotonic non-decreasing func-
tion of t, which represents the number of source
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tokens read in when outputting the target token yt.
For the wait-k policy, g (t) is calculated as:

g (t) = min {k + t− 1, |x|} , t = 1, 2, · · · (1)

where x is the input subword sequence.
Wait-k policy is trained with “prefix-to-prefix”

framework. In “prefix-to-prefix” framework, when
generating the tth target word, the source tokens
participating in encoder is limited to less than g (t).

4 Methods

To improve the robustness and domain adaptability
of ST, we enhance our system from read / write
policy, data processing and training methods re-
spectively.

4.1 Char-Level Wait-k Policy
To enhance the robustness of dealing with stream-
ing transcription, we first proposed char-level si-
multaneous translation and applied the wait-k pol-
icy on it.

4.1.1 Char-Level Simultaneous Translation
Character-level neural machine translation (Ling
et al., 2015; Lee et al., 2017; Cherry et al., 2018;
Gao et al., 2020) tokenizes the source sentence and
target sentence according to characters, thereby
gaining advantages over subword-level neural ma-
chine translation in some specific aspects, such
as avoiding out-of-vocabulary problems (Passban
et al., 2018) and errors caused by subword-level
segmentation (Tang et al., 2020). In terms of trans-
lation quality, the character-level MT is still dif-
ficult to compare with the subword-level MT. An
important reason is that only one wrong generated
character will directly cause the entire target word
wrong (Sennrich, 2017).

To improve the robustness of the ST system
when dealing with unsegmented incremental input,
while avoiding the performance degradation caused
by character-level MT, we propose char-level si-
multaneous translation, which is more suitable for
streaming input. The framework of char-level ST
is shown in the lower part of Figure 1.

Different from subword-level ST, given the par-
allel sentence pair < X,Y >, the source of the ST
model in the proposed char-level ST is the charac-
ter sequence c = (c1, · · · , cn) after char-level tok-
enization, and the target is the subword sequence
y = (y1, · · · , ym) after word segmentation and
BPE (Sennrich et al., 2016), where n and m are the
source and target sequence lengths respectively.

ཻ ᬨ ى ဳ 81,7 ᔮ ᕹ

:HOFRPH WR FRQFHUQ V\VWHP81,7

ཻᬨ ဳى 81## ᔮᕹ

:HOFRPH WR FRQFHUQ 81,7 V\VWHP

,7

Standard wait-k policy:

Char-level wait-k policy:

Subword-level
streaming
input

Char-level
streaming
input

wait for k tokens

Predictwait for k tokens

Figure 1: Standard wait-k policy vs. our char-level
wait-k policy (take k = 2 as an example).

The word segmentation and BPE operation at
the target end are the same as subword-level MT
(Vaswani et al., 2017), and char-level tokenization
is similar to character-level MT (Yang et al., 2016;
Nikolov et al., 2018; Saunders et al., 2020) but not
completely consistent. The char-level tokenization
we proposed divides each source language char-
acter into a token, and other characters (such as
numbers, other language characters) are still di-
vided into a token according to complete words.
An example of char-level tokenization is shown in
Table 3. In the result of char-level tokenization,
each Chinese character is divided into a token, and
the number (12) and English (UNIT) are entirely
taken as a token, respectively. Char-level tokeniza-
tion is more suitable for streaming transcription,
which ensures that the newly input content at each
step in streaming transcription is a complete token,
and the input prefix does not change in any way.
The robustness of char-level ST is greatly improved
with the complete token and stable prefix.

Why char-level simultaneous translation?
Motivating our use of char-level ST we consider
three desiderata. 1) With the incremental source
input, char-level ST is more robust since it avoids
unstable prefixes caused by word segmentation, as
shown in Table 1. 2) Char-level ST can obtain a
more fine-grained latency, because if one charac-
ter is enough to express the meaning of a entire
word, the ST system does not have to wait for the
complete word before translating. 3) Char-level
ST only performs char-level tokenization on the
source, while the target still retains subword-level
tokenization, so its translation performance will not
be affected too much, as shown in Table 7.
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Input Sentence 欢迎来到UNIT系统的第12期高级课程。
Output Sentence welcome to the 12th advanced course on UNIT system .

subword-level MT 欢迎 /来到 / UN@@ / IT /系统 /的 /第 / 12@@ /期 /高级 /课程 /。
character-level MT 欢 /迎 /来 /到 / U / N / I / T /系 /统 /的 /第 / 1 / 2 /期 /高 /级 /课 /程 /。S.
char-level tokenization 欢 /迎 /来 /到 / UNIT /系 /统 /的 /第 / 12 /期 /高 /级 /课 /程 /。

T. subword-level MT welcome / to / the / 12@@ / th / advanced / course / on / UNIT / system / .

Table 3: An example of tokenization method applied by the char-level wait-k policy. For the source, we use
char-level tokenization, which separates each source language character into separate segments, and divides the
others by words. For the target, we apply the same operation as the conventional subword-level MT. The sentences
marked in red are the source and target of our proposed ST model.

4.1.2 Read / Write Policy
For the read / write policy, we apply the wait-k pol-
icy on the proposed char-level ST. The difference
between char-level wait-k policy and standard wait-
k policy is that each token in standard wait-k policy
is a subword, while each token in char-level wait-k
policy is a character (other languages or Numbers
are still words), as shown in Figure 1.

We rewrite g (t) in Eq.(1) into gk (t) for char-
level wait-k policy, which represents the number of
source tokens (Character) read in when outputting
the target token yt, calculated as:

gk (t) = min {k + t− 1, |c|} , t = 1, 2, · · · (2)

where c is the input character sequence.
Another significant advantage of the standard

wait-k policy is that it can obtain some implicit
prediction ability in training, and char-level wait-k
policy further strengthens the prediction ability and
improves the stability of prediction. The reason is
that the granularity of the char-level is smaller so
that the prediction of char-level is simpler and more
accurate than that of subword-level. As shown in
Figure 1, it is much simpler and more accurate
to predict “系统” given “系”, since there are few
possible characters that can be followed by “系”.

4.2 Domain Adaptation

To improve the quality of domain adaptation, we
apply some modifications to all training corpus,
including general domain and spoken language do-
main, to make them more closer to streaming tran-
scription. Besides, we also augment the spoken
language corpus to make up for the lack of data.

4.2.1 Depunctuation
For training corpus, including general domain and
spoken language domain, the most serious dif-
ference from streaming transcription is that each

Original 各位开发者、各位朋友
们，大家下午好！

Depunctuation 各位开发者、各位朋友
们，大家下午好

Table 4: An example of depunctuation operation,
where the ending punctuation of the source sentence
is deleted.

sentence in streaming transcription usually lacks
ending punctuation, as shown in Table 2. Since
the punctuation in the training corpus is complete,
and the ending punctuation is often followed by
< eos >, the model trained with them tends to
wait for the source ending punctuation and then
generate the corresponding target ending punctua-
tion and < eos > to stop translating. As a result,
given the unpunctuated input in streaming transcrip-
tion, it is difficult for the model to generate target
punctuation and < eos > to stop the translation.

To this end, to strengthen the model’s ability to
translate punctuation from unpunctuated sentences,
we delete the ending punctuation of the source sen-
tence, and the target sentence remains unchanged,
as shown in Table 4. Note that our depunctuation
operation is limited to the ending punctuation at
the end of the source sentence (‘。’,‘！’,‘？’).

4.2.2 Data Augmentation
For the spoken language domain corpus, since the
data size is too small, we perform data augmen-
tation on the source sentence. For each source
sentence, we perform 5 operations: add a comma,
add a tone character, copy an adjacent character,
replace a character with its homophone, or delete a
character. Meanwhile, the target sentence remains
unchanged. The proposed method improves the
robustness of the model while augmenting the data.
An example of data augmentation is shown in Table
5.
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Original 1957年我到北京上大学
Add

Comma
1957年，我到北京上大学

Add
Tone character

1957年我啊到北京上大学

Copy
Character

1957年我到北北京上大学

Replace
Homophone

1957年我到北经上大学

Delete
Character

1957年我到北京上大学

Table 5: An example of data augmentation.

4.3 Training Methods
Our method is based on Transformer (Vaswani
et al., 2017), and the training is divided into two
stages. First, we pre-train an ST model on the gen-
eral domain MT corpus, and then fine-tune the ST
model on the spoken language domain corpus. For
pre-training, we apply multi-path (Elbayad et al.,
2020) and future-guided (Zhang et al., 2020b), to
enhance the predict ability and avoid the huge con-
sumption caused by training different models for
each k. For fine-tuning, we apply the original
prefix-to-prefix framework (Ma et al., 2019).

4.3.1 Pre-training
To improve the predictive ability of the ST model,
we apply the future-guided training proposed by
(Zhang et al., 2020b). Besides the incremental
Transformer for simultaneous translation with char-
level wait-k policy, we introduce a full-sentence
Transformer, used as the teacher of the incremental
Transformer for ST through knowledge distillation.
The full-sentence Transformer is trained with cross-
entropy loss:

L (θfull) = −
∑

(c,y)∈Dg

|y|∑

t=1

log pθfull (yt | y<t, c)

(3)

where θfull is the parameter of full-sentence Trans-
former, Dg is the general domain corpus.

For the incremental Transformer for ST, since it
applies char-level wait-k policy, the source tokens
participating in translating are limited to less than
gk (t) when decoding the tth target token. For each
k, the decoding probability is calculated as:

p (y | c, k) =
|y|∏

t=1

pθincr

(
yt | y<t, c≤gk(t)

)
(4)

where c and y are the input character sequence and
the output subword sequence, respectively. c≤gk(t)
represents the first gk (t) tokens of c. θincr is the
parameter of incremental Transformer.

Following Elbayad et al. (2020), to cover all
possible k during training, we apply multi-path
training. k is not fixed during training, but ran-
domly and uniformly sampled from K, where
K = [1, · · · , |c|] is the set of all possible values
of k. Incremental Transformer is also trained with
cross-entropy loss:

L (θincr) =

−
∑

(c,y)∈Dg

|y|∑

t=1,k∼U(K)

log pθincr

(
yt | y<t, c≤gk(t)

)

(5)

For the knowledge distillation between full-
sentence Transformer and incremental Transformer,
we apply L2 regularization term between their en-
coder hidden states, calculated as:

L
(
zincr, zfull

)
=

1

|c|

|c|∑

i=1

∥∥∥zincri − zfulli

∥∥∥
2

(6)

where zincr and zfull represent the hidden states of
incremental Transformer and full-sentence Trans-
former, respectively.

Finally, the total loss L is calculated as:

L = L (θincr) + L (θfull) + λL
(
zincr, zfull

)

(7)
where λ is the hyper-parameter, and we set λ = 0.1
in our system.

4.3.2 Fine-tuning
After pre-training an ST model, we use spoken lan-
guage domain corpus for fine-tuning. The spoken
language domain corpus is a small dataset, and
meanwhile most of the word order between the
target and the source is the same, so we do not con-
tinue to use multi-path and future-guided training
methods. We fix k and use the original prefix-to-
prefix framework for training, and train different
models for each k. Given k, the incremental Trans-
former is trained with cross-entropy loss:

L (θincr, k) =

−
∑

(c,y)∈Ds

|y|∑

t=1,

log pθincr

(
yt | y<t, c≤gk(t)

) (8)

where Ds is the spoken language domain corpus.
Finally, for each k, we fine-tuned a ST model.

5



Datasets Domain #Sentence Pairs
CWMT19 General 9,023,708
Transcription Spoken 37,901
Dev. Set Spoken 956

Table 6: Statistics of Chinese→ English datasets.

5 Experiments

5.1 Dataset

The dataset for Chinese→ English task provided
by the organizer contains three parts, shown in Ta-
ble 6. CWMT19 2 is the general domain corpus
that consists of 9,023,708 sentence pairs. Tran-
scription consists of 37,901 sentence pairs and
Dev. Set consists of 956 sentence pairs 3, which
are both spoken language domain corpus collected
from real speeches (Zhang et al., 2021).

We use CWMT19 to pre-train the ST model,
then use Transcription for fine-tuning, and finally
evaluate the latency and translation quality of our
system on Dev. Set. Note that we use the streaming
transcription provided by the organizer for testing.
Streaming transcription consists of 23,836 lines,
which are composed by breaking each sentence in
Dev. Set into lines whose length is incremented by
one word until the end of the sentence.

We eliminate the corpus with a huge ratio in
length between source and target from CWMT19,
and finally got 8,646,245 pairs of clean corpus.
We augment the Transcription data according to
the method in Sec.4.2.2, and get 227,406 sentence
pairs. Meanwhile, for both CWMT19 and Tran-
scription, we remove the ending punctuation ac-
cording to the method in Sec.4.2.1.

Given the processed corpus after cleaning and
augmentation, we first perform char-level tokeniza-
tion (Sec.4.1) on the Chinese sentences, and to-
kenize and lowercase English sentences with the
Moses4. We apply BPE (Sennrich et al., 2016) with
16K merge operations on English.

5.2 System Setting

We set the standard wait-k policy as the baseline
and compare our method with it. We conducted
experiments on the following systems:

2casia2015, casict2011, casict2015, datum2015, da-
tum2017 and neu2017. http://mteval.cipsc.org.
cn:81/agreement/AutoSimTrans

3https://dataset-bj.cdn.bcebos.com/
qianyan%2FAST_Challenge.zip

4http://www.statmt.org/moses/

AL
BLEU

Greedy Beam4
subword

level
Pre-train 24.93 20.24 20.35
+ FT 24.93 24.79 25.39

char
level

Pre-train 24.93 20.14 20.28
+ FT 24.93 24.60 25.13

Table 7: Results of offline model. ‘+FT’: +fine-tuning.

Offline: offline model, full-sentence MT based
on Transformer. We report the results of the
subword-level / char-level offline model with
greedy / beam search respectively in Table 7.

Standard Wait-k: standard subword-level wait-
k policy proposed by Ma et al. (2019), used as
our baseline. For comparison, we apply the same
training method as our method (Sec.4.3) to train it.

Standard Wait-k + rm Last Token: standard
subword-level wait-k policy. In the inference time,
the last token after the word segmentation is re-
move to prevent it from being incomplete.

Char-Level Wait-k: our proposed method, refer
to Sec.4 for details.

The implementation of all systems is based on
Transformer-Big, and adapted from Fairseq Library
(Ott et al., 2019). The parameters are the same as
the original Transformer (Vaswani et al., 2017). All
systems are trained on 4 RTX-3090 GPUs.

5.3 Evaluation Metric
For evaluation metric, we use BLEU 5 (Papineni
et al., 2002) and AL6 (Ma et al., 2019) to measure
translation quality and latency, respectively.

Latency metric AL of char-level wait-k policy is
calculated with gk (t) in Eq.(2):

AL =
1

τ

τ∑

t=1

gk (t)−
t− 1
|y|
|c|

(9)

where τ = argmax
t

(gk (t) = |c|) (10)

where c and y are the input character sequence and
the output subword sequence, respectively. Note
that since the streaming transcription provided by
the organizer adds a source character at each step,
for all systems, we use character-level AL to evalu-
ate the latency.

5The script for calculating BLEU is provided by the
organizer from https://dataset-bj.cdn.bcebos.
com/qianyan%2FAST_Challenge.zip.

6The calculation of AL is as https://github.com/
autosimtrans/SimulTransBaseline/blob/
master/latency.py.
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Figure 2: Translation quality (BLEU) against latency
(AL) on Chinese → English simultaneous translation,
showing the results of proposed char-level wait-k, stan-
dard wait-k, standard wait-k+rm last token and offline
model with greedy/beam search.

5.4 Main Result
We compared the performance of our proposed
char-level wait-k policy and subword-level wait-k
policy, and set k = 1, 2, . . . , 15 to draw the curve
of translation quality against latency, as shown in
Figure 2. Note that the same value of k for char-
level wait-k policy and subword-level wait-k policy
does not mean that the latency of the two are sim-
ilar, because lagging k tokens in char-level wait-
k means strictly waiting for k characters, while
for subword-level wait-k, it waits for k subwords,
which contain more characters.

‘Char-Level Wait-k’ outperforms ‘Standard
Wait-k’ and ‘Standard Wait-k+rm Last Token’ at
all latency, and improves about 6 BLEU at low
latency (AL=1.10). Besides, char-level wait-k per-
forms more stable and robust than standard wait-k
when dealing with streaming transcription input,
because char-level wait-k has a stable prefix while
the prefix of standard wait-k may change between
adjacent steps due to the different word segmen-
tation results. ‘Standard Wait-k+rm Last Token’
solves the issue that the last token may be incom-
plete, so that the translation quality is higher than
Standard Wait-k under the same k, which improves
about 0.56 BLEU (average on all k). However,
‘Standard Wait-k+rm Last Token’ increases the la-
tency. Compared with ‘Standard Wait-k’, it waits
for one more token on average under the same k.
Therefore, from the overall curve, the improvement
of ‘Standard Wait-k+rm Last Token’ is limited.

Char-level wait-k is particularly outstanding at

4 2 0 2 4 6 8 10 12 14
Average Lagging

10

12

14

16

18

20

22

24

B
LE

U

Offline (Beam4)
Offline (Greedy)
Char-Level Wait-k
w/o Data Augmentation
w/o Depunctuation

Figure 3: Result of our method without depunctuation
or data augmentation.

low latency, and it achieves good translation qual-
ity even when the AL is less than 0. It is worth
mentioning that the reason why the AL is less than
0 is that the generated translation is shorter and |y||c|
in Eq.(9) is greater than 1.

5.5 Effect of Data Processing
To analyze the effect of data processing, includ-
ing ‘Depunctuation’ and ‘Data Augmentation’, we
show the results without them in Figure 3.

We notice that data augmentation improves the
translation quality of the model by 1.61 BLEU (av-
erage on all k), and the model becomes more stable
and robust. ‘Depunctation’ is even more important.
If we keep the ending punctuation in the training
corpus, the translation quality of the model drops
by 2.27 BLEU, and the latency increase by 2.83 (av-
erage on all k). This is because streaming transcrip-
tion input has no ending punctuation, which makes
the model hard to generate target ending punctua-
tion and tend to translate longer translations since
it is difficult to generate < eos > without target
ending punctuation.

5.6 Ablation Study on Training Methods
To enhance the performance and robustness under
low latency, we combine future-guided and multi-
path training methods in pre-training. To verify
the effectiveness of the two training methods, we
conducted an ablation study on them, and show the
results of removing one of them in Figure 4.

When removing one of them, the translation
quality decreases, especially at low latency. When
the ‘Future-guided’ is removed, the translation
quality decreases by 1.49 BLEU (average on all

7
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Figure 4: Ablation study on two training methods.

k), and when the ‘Multi-path’ is removed, the trans-
lation quality decreases by 0.76 BLEU (average
on all k). This shows that two training methods
can both effectively improve the translation quality
under low latency, especially ‘Future-guided’.

6 Related Work

Previous ST methods are mainly divided into pre-
cise read / write policy and stronger predictive abil-
ity.

For read / write policy, early policies used seg-
mented translation, and applied full sentence trans-
lation to each segment (Bangalore et al., 2012; Cho
and Esipova, 2016; Siahbani et al., 2018). Gu
et al. (2017) trained an agent through reinforce-
ment learning to decide read / write. Dalvi et al.
(2018) proposed STATIC-RW, which first perform-
ing S’s READs, then alternately performing RW ’s
WRITEs and READs. Ma et al. (2019) proposed
wait-k policy, wherein first reads k tokens and then
begin synchronizing write and read. Wait-k pol-
icy has achieved remarkable performance because
it is easy to train and stable, and is widely used
in simultaneous translation. Zheng et al. (2019a)
generated the gold read / write sequence of input
sentence by rules, and then trained an agent with
the input sentences and gold read / write sequence.
Zheng et al. (2019b) introduces a “delay” token {ε}
into the target vocabulary to read one more token.
Arivazhagan et al. (2019) proposed MILK, which
uses a Bernoulli distribution variable to determine
whether to output. Ma et al. (2020) proposed MMA,
the implementation of MILK based on Transformer.
Zheng et al. (2020) proposed a decoding policy that
uses multiple fixed models to accomplish adaptive

decoding. Zhang et al. (2020a) propose a novel
adaptive segmentation policy for ST.

For predicting future, Matsubara et al. (2000)
applied pattern recognition to predict verbs in ad-
vance. Grissom II et al. (2014) used a Markov
chain to predict the next word and final verb. (Oda
et al., 2015) predict unseen syntactic constituents
to help generate complete parse trees and perform
syntax-based simultaneous translation. Alinejad
et al. (2018) added a Predict operation to the agent
based on Gu et al. (2017), predicting the next word
as an additional input. Elbayad et al. (2020) en-
hances the wait-k policy by sampling different k to
train. Zhang et al. (2020b) proposed future-guided
training, which introduces a full-sentence Trans-
former as the teacher of the ST model and uses
future information to guide training through knowl-
edge distillation.

Although the previous methods performed well,
they were all evaluated on the traditional MT cor-
pus instead of the real streaming spoken language
corpus. Therefore, the previous methods all ig-
nore the robustness and domain adaptation of the
ST model in the face of real streaming input. Our
method bridgs the gap between the MT corpus and
the streaming spoken language domain input, and is
more robust and adaptable to the spoken language
domain.

7 Conclusion and Future Work

Our submitted system won the first place in Au-
toSimTrans 2021, which is described in this paper.
For streaming transcription input from the real sce-
narios, our proposed char-level wait-k policy is
more robust than standard subword-level wait-k.
Besides, we also propose two data processing op-
erations to improve the spoken language domain
adaptability. For training, we combine two existing
training methods that have been proven effective.
The experiment on the data provided by the orga-
nizer proves the superiority of our method, espe-
cially at low latency.

In this competition, we implemented the char-
level wait-k policy on the Chinese source. For some
language pairs with a large length ratio between
the source (char) and the target (bpe), we can read
multiple characters at each step to prevent the issue
caused by the excessively long char-level source.
We put the char-level simultaneous translation on
other languages (such as German and English) for
both fixed and adaptive policy into our future work.
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Abstract

In this paper we introduce our Chinese-
English simultaneous translation system
participating in AutoSimTrans 2021. In si-
multaneous translation, translation quality
and latency are both important. In order
to reduce the translation latency, we cut
the streaming-input source sentence into
segments and translate the segments be-
fore the full sentence is received. In order
to obtain high-quality translations, we pre-
train a translation model with adequate
corpus and fine-tune the model with do-
main adaptation and sentence length adap-
tation. The experimental results on the
development dataset show that our system
performs better than the baseline system.

1 Introduction

Machine translation greatly facilitates commu-
nication between people of different language,
and the current neural machine translation
model has achieved great success in machine
translation field. However, for some occasions
that have higher requirements for translation
speed, such as in simultaneous interpretation
dynamic subtitles and dynamic subtitles appli-
cation fields. Machine translation models that
use full sentences as translation units need
to wait for the speaker to speak the full sen-
tence before starting translation, in which the
translation delay is unacceptable. In order to
reduce the delay, translation must start be-
fore the complete sentence is received. But
at the same time the incomplete sentence may
have grammatical errors and semantic incom-
pleteness, and the translation quality will de-
crease compared to the result obtained by full
sentences. Further more, different languages
may have different word order. There are also

*Corresponding author

many reordering phenomenon when translat-
ing between Chinese and English which both
belong to the same SVO sentence structure.
Sentence reordering and different word-order
expression habits bring a great difficult to si-
multaneous translation.

Since the latency of using a full sentence as
translation unit is unacceptable, and the trans-
lation of incomplete sentences is difficult and
not guaranteed to obtain reliable translations,
we consider cutting long sentence into appro-
priate sub-sentences. And each sub-sentence is
grammatically correct and semantically com-
plete to get suitable translation result. By
decomposing translating long sentences into
translating shorter sub-sentences, the transla-
tion can be started before the complete long
sentence is received. This strategy of achiev-
ing low-latency simultaneous translation can
be summarized as segmentation strategy (Ran-
garajan Sridhar et al., 2013). At the same
time, it is observed that a sentence can be di-
vided into independent sub-sentences for trans-
lation. For the example in table 1, Chinese and
English sentences can be cut, and the Chinese
sub-sentences can be translated as a shorter
translation unit. According to this example,
we can also observe that there is no cross align-
ment between the two sub-sentences, that is,
the English translation of the first Chinese sub-
sentence has no semantic and word connec-
tions with the translation of second Chinese
sub-sentence, and there is no cross word align-
ment between the two sub-sentences. This
phenomenon indicates that it is feasible to di-
vide the full sentence in the parallel corpus
into shorter sub-sentences.

In the following of this paper, the second
part will introduce the overall framework of
the model, the third part will give a detailed
description of the fine-tuning, finally will ex-
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Source sentence 各位 亲爱 的 朋友 们 ， 早上好 ！
Target sentence Ladies and gentlemen , dear friend s ， good morning .

Table 1: Segment example, first sub-sentence is in red and the second one is in black.

plain and analysis the experiment results.

2 System Architecture

This part mainly introduces the overall frame-
work of our submission in AutoSimulTrans
2021 competition. The whole model uses
typical segmentation strategy to achieve si-
multaneous translation. It consists of a sen-
tence boundary detector and a machine trans-
lation module. The sentence boundary detec-
tor reads the streaming input text and obtains
the appropriate segments. The segments are
input to the downstream translation module,
and the translation result of each segment is
obtained and then spliced to obtain the full
translation. The overall framework of the en-
tire model is shown in the figure 1.

2.1 Sentence Boundary Detector
The sentence boundary detector can also be re-
garded as a text classifier. For the streaming-
input sentence, detector needs to be able
to judge whether the received part can be
used as a suitable segment to be translated.
The specific implementation of the boundary
detector is based on a pre-trained Chinese
BERT(Devlin et al. (2018)) model as a text
representation, add a fully connected layer to
form a classifier. In terms of data, long sen-
tences are divided into segments according to
punctuation marks, segments are regarded as
sub-sentences. Positive and negative examples
are constructed according to such rules to fine-
tune the pre-trained model to obtain a classi-
fier achieving an accuracy of 92.5%. According
to the above processes, a boundary detector
that can process streaming input text is con-
structed.

2.2 Translation Module
The translation module is implemented with
the tensor2tensor framework, training the
transformer-big model(Vaswani et al., 2017) as
a machine translation module. We use the pre-
training and fine-tuning method to get better
performance on the target task.

First, we use the CWMT19 data set as a
large-scale corpus to pre-train machine trans-
lation model. The CWMT19 corpus is a stan-
dard Chinese and English text corpus, but the
target test set in the competition is the speech
transcription and translation results, which
have domain difference with the standard text.
So it is necessary to use speech domain cor-
pus to fine-tune the translation model. On the
other hand, the translator needs to translate
the sub-sentences when decoding. There is a
mismatch between the length and the amount
of information between the sub-sentence and
the longer full sentences. So we further fine-
tune the translation model to make it adapted
to sub-sentences translation.

3 Fine-tuning Corpus
3.1 Domain fine-tuning
In order to make the machine translation
model trained on the standard text corpus
more suitable for translating the transcrip-
tions in the speech field, the translation model
needs to be fine-tuned with the corpus of the
corresponding speech field. We use the manual
transcription and translation text of the Chi-
nese speech provided by the organizer as par-
allel corpus to fine-tune the pre-training trans-
lation model.

3.2 Sentence length fine-tuning
The pre-training and domain fine-tuning pro-
cesses only train the translation model on the
full sentence corpus. But when the model
is used to perform the simultaneous transla-
tion and decoding process, the sub-sentences
are needed to be translated, which causes mis-
match between training and testing. In order
to make the machine translation model adapt
to the shorter sub-sentences translation sence,
it is necessary to construct a sub-sentence cor-
pus composed of Chinese and English sub-
sentence pairs to further fine-tune the machine
translation model. In order to meet the re-
quirements of domain adaptation at the same
time, sub-sentence corpus is constructed based
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Figure 1: System Architecture

on the Chinese-English corpus provided by the
organizer to fine-tune the machine translation
model to adapt to the sub-sentence translation
scenario. The following is a detailed descrip-
tion of the specific method of processing the
full sentence into a sub-sentences.

The ideal sentence segmentation effect is
that if the Chinese and English sentence pairs
are divided into two or more sub-sentence
pairs, Chinese sentence and the English sen-
tence should be cut at the same time to obtain
the same number of sub-sentences, and corre-
sponding Chinese and English sub-sentences
should contain same information. In an-
other word, using Chinese sub-sentence can
get enough information to translate the cor-
responding English sub-sentence. In order
to meet the requirements of information in-
tegrity, we use the word alignment tool to ob-
tain the word alignment information between
Chinese and English sentence pairs, using the
fast_align(Dyer et al., 2013) word alignment
tool to obtain Chinese to English and English
to Chinese alignments respectively, and merge
them into symmetry alignments. The result
of word alignment, such as the Chinese input
sentence X = {x1, x2, ..., xn} and the target
English sentence Y = {y1, y2, ..., ym} , we can
get a set of alignment results A = {< xi, yj >
| xi ∈ X, yj ∈ Y }.

Then, the word alignment matrix is ob-
tained according to the word alignment re-
sults. The segmentation of the Chinese and
English full-sentence pairs is equivalent to the
division of the word alignment matrix. The

word alignment matrix can be divided into
four blocks according to a division position,
when the lower left and upper right matrices
are both zero matrices, meaning that two sub-
sentences do not have cross-word alignment.
And sub-sentences can be obtained at the cur-
rent segmentation position. Moreover, the
traversal-based division algorithm can divide a
sentence with multiple suitable methods, effec-
tively increasing the number of sub-sentence
pairs in the sub-sentence corpus.

An example of sentence segmentation using
word alignment matrix is shown in the figure 2.
According to the alignment results of Chinese
and English words, an alignment matrix is con-
structed. The position is ’1’ means the Chi-
nese word and English word have alignment
and the remaining position have no alignment.
Two dashed boxes are identified in the figure,
corresponding to two reasonable division re-
sults. The dashed box is the first sub-sentence
and remain part is second sub-sentence. We re-
tain all reasonable fragmentation results when
segmenting sentences, that is, both segmenta-
tion results in the figure will be retained.

4 Experiment

4.1 Experiment settings

The boundary detector is based on the pre-
training BERT of chinese_L-12_H-768_A-12
as the pre-training model, the hidden size of
fully connected layer is the same of BERT.
Using the simultaneous interpretation corpus
provided by the organizer, cutting into sub-
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Figure 2: Segment sentence by word alignment matrix.

sentences based on punctuation, constructing
positive and negative examples for fine-tuning
training. Then we obtain a sentence boundary
recognizer that can recognize sentence bound-
aries and realize real-time segmentation of
streaming input.

Our translation model is based on the
tensor2tensor framework. We set the pa-
rameters of the model as transformer_big.
And we set the parameter problem as trans-
late_enzh_wmt32k_rev. We train the model
on 6 GPUs for 9 days.

In experiment, we pre-train translator on
CWMT19 dataset, fine-tune translator on
BSTC(Zhang et al., 2021) dataset, and eval-
uate model on BSTC development dataset
containing transcription and translation of 16
speeches. CWMT19 is a standard text trans-
lation corpus. BSTC contains 68h Chinese
speech and corresponding Chinese transcrip-
tion and English translation text. In this arti-
cle, we only use Chinese and English texts in
the speech field.

4.2 Sub-sentence fine-tuning

In terms of domain adaptability, we use golden
transcribed text as fine-tuning corpus. In
terms of sentence length adaptability, we use
corpus containing only golden transcriptions
and corpus containing ASR and golden tran-
scriptions to construct sub-sentence corpus,
and use boundary detector as a filter to re-
move some unsuitable sub-sentence. The sit-
uation of fine-tuning corpus is shown in the
table 2. The same sentence boundary detec-
tor is used by all model, and different machine
translation modules are as follows:

- domain fine-tuned: pre-trained on
CWMT19 corpus, and fine-tuned on golden
transcription.

- sub-sentence fine-tuned(golden+ASR):
based on domain fine-tuned model, fine-tuned
by segmented golden&ASR transcription cor-
pus.

- sub-sentence fine-tuned(golden): based on
domain fine-tuned model, fine-tuned by seg-
mented golden transcription corpus.

- sub-sentence fine-tuned(filtered golden):
based on domain fine-tuned model, fine-tuned
by filtered segmented golden transcription cor-
pus.

Learning rate is set as 2e-5 in fine-tuning,
domain fine-tuning is carried out for 2000 steps
and segmentation fine-tuning is carried out for
4000 steps.

4.3 Latency metric
Here is the definition of AL latency metric as
used in (Ma et al., 2018). t is decoding step,
τ is cut-off decoding step where source sen-
tence is finished, g(t) denote the number of
source words read by encoder at decoding step
t, and r = |x|/|y| is target-to-source length ra-
tio. The lower AL value means lower latency
and better real-time simultaneous system.

AL =
1

τ

τ∑

t=1

g(t)− t− 1

γ

τ = arg min
t
[g(t) = |x|]

4.4 Results and analysis
The performance of each model on the devel-
opment set is list in table 3.According to the
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Fine-tuning corpus Type Sentence Pairs
golden transcription full-sentence 37k
segmented golden&ASR transcription sub-sentence 2555k
segmented golden transcription sub-sentence 668k
segmented golden(filtered) transcription sub-sentence 246k

Table 2: First full-sentence corpus is provided by organizer. Three sub-sentence corpus constructed by
word alignment, constructed from golden and ASR transcription corpus provided by organizer. The third
line is the filtered segmentation corpus.

experimental results, the performance of the
fine-tuning model did not meet expectations.
Using only the corpus made by golden tran-
scription corpus brought a greater quality re-
duction compared to using corpus including
the ASR and golden transcriptions. Compar-
ing with models fine-tuned by golden transcrip-
tion and model fine-tuned by filtered golden
transcription, we can find that although the
number of sentences in sub-sentences corpus
has decreased after filtering, it has obtained a
relatively high score, which reflects the effec-
tiveness of the filtering operation.

The main reason for the unsatisfactory fine-
tuning effect may because the sub-sentence
corpus contains too much noise. It may be dif-
ficult to obtain high-quality segmentation re-
sults by the word alignment results. Although
we have filtered many inappropriate sentences,
there is still a lot of noise in the sub-sentence
corpus. And because the sub-sentences are
shorter, the translation errors of the sentence
pair in fine-tuning corpus will have a greater
negative impacts on translation model.

Here is an example to explain the difficulty
of sentence division. In the sentence showed in
table 4, we list the source sentence and target
sentence, and also direct translation for each
phrase just for understanding the meaning of
Chinese words. From the perspective of word
alignment, it can be easily divided from the
comma position to obtain two sub-sentences.
For the first sub-sentence pair, the Chinese
and English sub-sentences contain same infor-
mation, and good English translation results
can be easily obtained according to Chinese.
But for the second sub-sentence pair, it’s hard
to obtain golden translation relay only on Chi-
nese sub-sentence. If you directly translate
the Chinese, you may get a translation result
similar to ”amazing by hearing. ”. This is

because the result of golden translation is ob-
tained with full sentence, and in order to make
the translated English expression more fluent,
free translation is carried out. If the transla-
tion model only reads the second sub-sentence,
it is difficult to obtain a suitable translation re-
sult relative to the golden result.

5 Related work

This article uses segmentation strategy to
achieve low-latency simultaneous translation.
There are also some similar works use segmen-
tation strategy to divide long sentences into
segments for translation, (Xiong et al., 2019)
focus on improving the coherence of the sub-
sentences translation results, (Zhang et al.,
2020) focus on solving the problem of long-
distance reordering in simultaneous transla-
tion.

In addition, there are two different strate-
gies for achieving simultaneous translation:
one is a more flexible translation strategy
based on sentence prefixes. The process of
simultaneous translation is defined as a read-
write action sequence from the perspective of
behavior. It is necessary to define a suitable
strategy to find out the action sequence, and
adjust the translator to make the model more
suitable for the translation of sentence prefixes
(Ma et al., 2018)(Arivazhagan et al., 2019).
Another type is translation based on dynamic
refresh without the need to adjust the ma-
chine translation model. Whenever the input
increases, translate all input and overwrite the
translation result that has been generated last
time (Niehues et al., 2016)(Arivazhagan et al.,
2020b)(Arivazhagan et al., 2020a).

6 Conclusion

In this paper we describe a simultaneous
translation method that reduces translation
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Model AL BLEU
domain fine-tuned 7.467 19.45
sub-sentence fine-tuned(golden+ASR) 7.478 19.02
sub-sentence fine-tuned(golden) 7.823 16.28
sub-sentence fine-tuned(filtered golden) 7.795 16.67

Table 3: Performance of each model on the development set. AL is latency metric and BLEU is text
quality metric.

Source sentence 这些东西 都是 大自然奇特的物产 ， 听听都很奇特。
Literal translation These things are all nature’s amazing creations , amazing by hearing.

Target sentence These are all amazing creations of the nature , you can tell just from their names .

Table 4: A example hard to segment. The sentence can be segmented by comma. The literal translation
of second sub-sentence is quite different from the target.

delay by cutting the full sentence into sub-
sentences.We fine-tune a pre-trained trans-
lation model in terms of domain and sen-
tence length. The sub-sentence corpus is con-
structed by word alignment, we found that di-
rectly using all the sub-sentences we obtained
has a negative impact on translation perfor-
mance, but it can be improved after filtering.
In the end, we obtained translation results
that exceeded the baseline model.
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A Development results

Figure 3: Development results

The results of each model on the development
set are shown in the figure 3, where each
curve of wait-1, wait-3, wait-5 and full-sent
is the wait-k series model and full-sentence
model provided by the organizer. Each model
is a transformer neural machine translation
model. Each scattered point represents a seg-
mentation model in this article. According to
the results, it can be seen that the domain
fine-tuning model and a better-performed sub-
sentence fine-tuning model are better than the
wait-k series model.
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Abstract

This paper describes XMU’s two systems sub-
mitted to the simultaneous translation evalua-
tion at the 2nd automatic simultaneous trans-
lation workshop, which are for Zh->En text-
to-text translation and Zh->En speech-to-text
translation. In both systems, our translation
model is based on Transformer. To translate
streaming text, we use an adaptive policy to
split the text into appropriate segments and
translate them monotonically. Our speech-to-
text system is a pipeline system, in which the
MT component is exactly the same as our text-
to-text system.

1 Introduction

Simultaneous translation refers to translating the
message from the speaker to the audience in real-
time without interrupting the speaker. It is widely
used in many scenarios such as international con-
ferences and business negotiations. Simultaneous
machine translation is a challenging task and has
become an increasingly popular research field in
recent years.

There have been some researches on simulta-
neous translation of speech input (Niehues et al.,
2018; Ma et al., 2020b,c; Ren et al., 2020), and
some researches focused on text translation (Ari-
vazhagan et al., 2019; Zhang et al., 2020; Ma et al.,
2020a).

In this paper, we describe our two systems sub-
mitted to the simultaneous translation evaluation at
the 2nd automatic simultaneous translation work-
shop, which are for Zh->En text-to-text transla-
tion and Zh->En speech-to-text translation. We
build our systems with the state-of-the-art method
(Zhang et al., 2020), and verify the effectiveness of
this method.

2 Text-to-text Track

In this section, we describe our system submitted to
Zh->En text-to-text simultaneous translation track.

The main idea of this system is how human in-
terpreters work. While listening to speakers, hu-
man interpreters constantly translate text segments
that are appropriate to translate without waiting for
more words, and meanwhile making the translation
grammatically tolerable. Text segments considered
appropriate to translate usually have clear and def-
inite meaning, because the translation of such a
segment is not likely to be changed by subsequent
text. The authors of Zhang et al. (2020) refered to
such segments Meaningful Units (MU) and gived
MUs a precise difinition. See Table 1 for an illus-
tration.

Our system works like a human interpreter de-
scribed above and is composed of an MU classi-
fication model and a machine translation model.
Once a segment is classified to be an MU by the
MU classifier, the MT model uses forced decoding
with previous translation as the prefix to translate
the segment, as shown in Table 1.

2.1 Machine translation

Our machine translation model is implemented
with FAIRSEQ1 (Ott et al., 2019).

Data and preprocessing. The data we use are
CWMT192 (9.1M parallel sentences pairs) and the
simultaneous translation corpus (39K parallel sen-
tences pairs) provided by the organizer of the work-
shop.

We do the following steps to preprocess the data.

• Filtering. The sentence pairs whose English
sentence is longer than 120 words are filtered
out.

∗ Corresponding author.
1https://github.com/pytorch/fairseq
2http://mteval.cipsc.org.cn:81/agreement/description
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Source: 牛顿 || 发现 了 || 牛顿 运动 定律
Newton discover tense particle Newton motion law

Simul. Interpretation: Newton || discovered || Newton’s laws of motion

Table 1: An illustration of how a human interpreter work. The source sentence is splited to three MUs (separated
by "||"), and an interpreter translates the MUs in order and makes them form a grammatically correct sentence.

• There are a few punctuation marks, numbers
and letters in the data which are in full width.
They are converted to half width characters.

• There are a few Chinese characters in the data
which are traditional characters. They are con-
verted to simplified ones.

• Chinese segmentation. All Chinese sentences
are segmented with Jieba Chinese Segmenta-
tion Tool3.

• English tokenization. All English sentences
are tokenized and truecased with Moses4.

• Byte-pair-encoding (BPE) (Sennrich et al.,
2016). Both Chinese and English data are
encoded by BPE with Subword-NMT5. The
number of merge operations for each language
is set to 30K.

Modeling and training. Our translation model’s
architecture is base Transformer (Vaswani et al.,
2017). We use Adam optimizer (Kingma and Ba,
2015) to optimize the loss. We use weight decay
of 1e−4 and dropout with probability of 0.2 for
regularization. Label smoothing with ε of 0.1 is
applied to our model. During inference, we set
beam size to 20.

Our model is first pretrained on CWMT and
then finetuned on the the training set of the Baidu
Speech Translation Corpus (Zhang et al., 2021).
We set learning rate to 5e−4 in the pretraining stage
and 3e−5 in the fine-tuning stage. The learning rate
is linearly increased for the first 4000 training steps,
and is decreased following an inverse squareroot
schedule.

2.2 MU classifier

Modeling and training. The MU classifier is a
binary classifier. Given a source word sequence
x = {x1, x2, ..., xn}, the MU classifier determines
whether x ends with an MU, and if so the MT

3https://github.com/fxsjy/jieba
4https://github.com/moses-smt/mosesdecoder
5https://github.com/rsennrich/subword-nmt

x xf (m = 2) c
牛顿 || 发现 了 1
牛顿 ||发现 了牛顿 0
牛顿 ||发现 了 || 牛顿 运动 1
牛顿 ||发现 了 ||牛顿 运动 定律 0

Table 2: MU samples for the MU classifier. "||" is a
symbol to separate MUs. c = 1 means that x ends with
an MU, otherwise not.

will translate x with forced decoding. The in-
put of the classifier is x and m "future" words
xf = {xn+1, xn+2, ..., xn+m}, where m is a hy-
perparameter. The outputs are the probabilities of
two classes p(c = 1) and p(c = 0), which mean x
ends with an MU or not. x will be classified into
class 1 if p(c = 1) > t, where t is a threshold set
based on experience. Obviously, we can control the
latency of simultaneous translation by modifying
m. Later in experiments, it will be shown that we
can also control the latency by modifying t. In our
system, m is always set to 2.

The MU classifier is based on a chinese BERT
(Devlin et al., 2019)6. We use the base model and
fine-tune it with a learning rate of 5e−4.

Generating MU samples. To build an MU clas-
sifier, we need to generate MU samples just like the
samples in Table 2. For each sentence of length N ,
we generate N −m examples for it, and every MU
sample is a triple < x, xf , c >. When we generate
examples, c is set to 1 if x ends with an MU, else it
is set to 0. In our system, we generate MU samples
for every sentence pairs in CWMT and the simul-
taneous translation corpus. Our MU samples are a
little different from the MU samples in Zhang et al.
(2020). In their work, the future words of a sample
can be less than m, but not in this paper. We do not
need training samples whose future words are less
than m, because during inference when the future
words are less than m, the sentence is already a
whole sentence and thus can be fed into MT.

We use the basic method proposed in Zhang et al.
(2020) to generate MU samples.

6https://github.com/649453932/Bert-Chinese-Text-
Classification-Pytorch
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3 Speech-to-text Track

In this section, we describe our system submitted
to Zh->En speech-to-text simultaneous translation
track.

This system is a pipeline of three stages: (1)
speech recognition, (2) punctuation restoration, and
(3) streaming machine translation. The third stage
is exactly the same as the system described in Sec-
tion 2. In other words, the system described in
Section 2 is a part of our speech-to-text system,
and therefore it will not be repeated in this section.
This section only describes the stage (1) and stage
(2).

3.1 Speech recognition

Instead of building a speech recognition model, we
use Baidu’s real time speech recognition service7.
In our system, We call the API of this service to
recognize streaming speech. It is important to note
that although the ASR does not output punctuation,
it separates different sentences, that is, the ASR
outputs are many segmented sentences instead of
one sentence.

3.2 Punctuation restoration

The recognition results of Baidu’s asr service do not
have punctuation, but the input of our MT model
needs punctuation. As a result we build a model
to restore the punctuation for every recognition re-
sult. We use a BERT-based (Devlin et al., 2019)
sequence labeling model (Chen and Shi, 2020) to
do punctuation restoration. This model labels ev-
ery Chinese character in a sentence, and for the
model we only consider four classes: comma, pe-
riod, question mark and no punctuation.

4 Experiments

In this section, we evaluate our two systems on
the development set of the Baidu Speech Transla-
tion Corpus (Zhang et al., 2021). The two used
metrics are case-sensitive detokenized BLEU (Pa-
pineni et al., 2002) and Consecutive Wait (CW)
(Neubig et al., 2017), for translation quality and
latency respectively. CW considers on how many
source words are waited for consecutively between
two target words, and thus larger CW means longer
latency. We use SacreBLEU (Post, 2018)to com-
pute BLEU scores.

7https://cloud.baidu.com/doc/SPEECH/s/2k5dllqxj
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Figure 1: Translation quality against latency of differ-
ent thresholds t. The rightmost point is not a result of
simultaneous translation, but a result got by translating
complete sentences.

4.1 Text-to-text track

We set the threshold t in the MU classifier to var-
ious values and get multiple results, as shown in
Figure 1. It is worth noting that the rightmost point
in Figure 1 is not a result of simultaneous transla-
tion. This result is got by translating every sentence
after it is finished, i.e., we get this result by trans-
lating whole sentences.

4.2 Speech-to-text track

The experimental results are shown in Figure 2.
Similarly, the rightmost point is not a result of
simultaneous translation. Because the speech in the
development set is difficult for ASR, the ASR does
not perform well, resulting in a character error rate
of 35.3%. The errors caused by ASR are brought
to MT, and thus the BLEU is much lower than in
the text-to-text track.

4.3 Analysis

From Figure 1 and Figure 2, we can observe that
the larger the threshold t is, the longer the latency
is. This is because the larger the threshold t is, the
longer the detected MUs are, which further leads to
longer waiting time between two translations. We
can also observe that the larger the threshold t is,
the higher the translation quality is. This is because
the larger the threshold t is, the more likely a de-
tected MU is a true MU and thus the translation of
the detected MU will not be changed by subsequent
incoming text. Table 3 is an illustration for this.
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Source: 好 ，让 我们 来看 下个 例子 。
okay let we look next example

Reference: Okay , let ’s look at the next example .
Simultaneous Translation (t = 0.7): OK , let ’s look at the next example .
Simultaneous Translation (t = 0.5): Okay , || let ’s look at the next example .
Simultaneous Translation (t = 0.3): Okay , || let ’s do it . || let ’s look at the next example .

Table 3: An illustration of text-to-text simultaneous translation with different threshold t. "||" is a symbol for
separating the translations of detected MUs.
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Figure 2: Translation quality against latency of differ-
ent thresholds t. The rightmost point is not a result of
simultaneous translation, but a result got by translating
complete sentences.

5 Conclusion

We have built two systems for text-to-text simulta-
neous translation and speech-to-text simultaneous
translation. The key of our systems is the basic
adaptive segmentation policy in Zhang et al. (2020).
With this policy, simultaneous translation can be
achieved without any modification to the MT com-
ponent, and the latency can be controlled.

In our future work, we would like to study how
to improve the cooperation of ASR and MT and
the performance of MU classification.
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Abstract

This paper shows our submission on the sec-
ond automatic simultaneous translation work-
shop at NAACL2021. We participate in all
the two directions of Chinese-to-English trans-
lation, Chinese audio→English text and Chi-
nese text→English text. We do data filter-
ing and model training techniques to get the
best BLEU score and reduce the average lag-
ging. We propose a two-stage simultaneous
translation pipeline system which is composed
of Quartznet and BPE-based transformer. We
propose a competitive simultaneous transla-
tion system and achieves a BLEU score of
24.39 in the audio input track.

1 Introduction

Our submitted system consists of an end to end
speech recognition model and a neural machine
translation model which follows the traditional
pipeline framework in simultaneous translation
task. The system input is Chinese audio file and
the output is English translation text. A tempo-
rary Streaming transcription is obtained by speech
recognition model and transmitted into machine
translation model to get the target system output.

For automatic speech recognition(ASR) model,
we use the QuartzNet model (Kriman et al., 2019)
of Nvidia Jarvis. At the moment, we expand the
train data set by adding Aishell-1 and data that
collected, then using plenty of rules to filter audio
data and deal with parallel transcription. Compared
to the Jasper model (Li et al., 2019), it can reduce
number of parameters quickly by using separable
1D convolutions including time channel.

Our neural machine translation model is Trans-
former (Vaswani et al., 2017). We use some human
rules and the pre-trained language model to filter
the parallel corpus. The method of back translation
(Sennrich et al., 2016) is also applied to generate
synthetic Chinese sentences.

At the step of inference, we apply the wait-k
words method (Ma et al., 2018). Both the pre-
processing and post-processing are applied to im-
prove the terminology translation and deal with the
word error produced by the ASR system.

Since our submission is a two-stage system, the
rest of this paper describes separately regards to the
Automatic speech recognition(ASR and Machine
translation(MT) sub-modules. We firstly describe
the training and development datasets we used, then
the data filtering methods we applied is introduced.
Secondly, the system architecture is discussed and
it is verified by the experiments. Lastly, we draw a
conclusion of our system by analyzing the experi-
ments.

2 Datasets

For audio data of ASR, we use qianyan audio
datasets provided by NAACL workshop (Zhang
et al., 2021), Aishell-1 (Hui Bu, 2017) and lip sen-
tences we collect by smartphone(16kHz, 16-bit).

2.1 Audio Data

We invite 20 volunteers in data collection. Each
volunteer performed two hours of Mandarin Chi-
nese audio about 1000 sentences in the quiet room.
To keep data diversity, different domains of au-
dios were collected, including artificial intelligent,
industrial production, business conversation and
medical. Finally, we get a total of 19800 sentences
(audio and transcription) in this way.

For qianyan audio datasets, we split each audio
into sentences according to the sentence-level tran-
scription. After processing, the blank part of all
entire audio files was removed, and duration time
of audios was reduced from the original 68 hours
to about 52 hours.

For AIshell-1 datasets, we firstly deal with tran-
scription files by using rules to get path and file-
name of every transcription. Then using wave li-
brary to read audio files to get the duration time of
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each audio.
Noting that the audio data and the transcription

may not exactly match. In order to improve the
accuracy of the data, we use a pre-trained ASR
model to transcript audio data to produce text re-
sult. Then using similarity matching algorithm to
filter audio and original transcription data of lower
similarity. Table1 shows the number of train data
after filtering.

Table 1: ZH-EN audio train datasets

Data Source Duration Total Samples
Qianyan(NAACL) 70hours 36,140
Aishell-1 178hours 120,098
Collection 40hours 19,800

2.2 Text Data

The corpus we use to build our machine translation
system is CWMT 19 corpus 1. It includes both the
bilingual and monolingual data.

For the bilingual data, we apply data filtering
techniques. The main process is described as fol-
lows. Firstly, we set the punctuation ratio and sen-
tence length ratio of the sentence pairs to abandon
the sentences higher than the ratio. Secondly, we
calculate the cross entropy of each English sentence
by a pre-trained language model and removed the
sentence pair exceed the threshold. Thirdly, we
construct a terminology table using the methods of
name entity resolution and word alignment. The
terminology such as companies, organizations and
human names are replaced with specific words.

For the monolingual data, we follow the method
proposed by (Sennrich et al., 2016). We firstly train
an English to Chinese machine translation model.
Then the monolingual English sentences are trans-
lated to generate synthetic Chinese translation. All
the synthetic parallel data are filtered with the same
strategies applied in bilingual data.

After the filtering process, we normalize the
punctuation for both Chinese and English sen-
tences. We apply Chinese word segmentation using
LAC toolkit2 (Jiao et al., 2018) for Chinese sen-
tences. For the English sentences, we apply the
Tokenizer and Truecaser toolkit provided by Moses
scripts (Koehn et al., 2007). Finally, we train a
bytes pairs encoding model and applied it for both
Chinese and English sentences.

1http://mteval.cipsc.org.cn:81/agreement/AutoSimTrans
2https://github.com/baidu/lac

3 System description

The model training process for both the speech
recognition and machine translation model are im-
plemented on a device with eight GPUs of Nvidia
TESLA V100.

3.1 Automatic speech recognition

The QuartzNet15x5 model is as our based model on
ASR, we also use Memory-Self-Attention(MSA)
(Luo et al., 2021) modules in the model structure
of CTC and RNN-T.

3.1.1 Training Scheme
After data pre-processing, we use the file of json
structure to train quartznet 15x5 model. We list
the model configuration and train parameters in
Table2. When the model was trained, the size of
each sample audio should be controlled to less than
16.7 s. To do this, it can improve the accuracy of
model and accelerate the training speed. The ASR
model was trained over three days and reached
to the best WER. After the loss value converged,
we use the last saved model to try to transform test
datasets and get average score. We use WER-BEAT
(Sheshadri et al., 2021) to evaluate our model. And
we get closed to 1.0 WER.

Table 2: Model Configuration

Configuration Value
Sample rate 16,000
Repeat 5
n fft 512
activation relu
Chinese Vocabulary size 5,270
Optimizer Adam
residual true
filters 256/512
batch size 64

To increase the accuracy of model recognition,
we use MSA modules in the model structure of
CTC and RNN-T. The operation complexity of
the model maintains a linear relationship with the
length of the input speech, which greatly improves
the efficiency of the model, and there will be no
serious decline in efficiency as the input increases.

3.1.2 Model Usage
Before we use the model, in order to improve the
accuracy of recognition, we need to process the
input voice file.

25



In the end, we only submit one point in the com-
petition. This point is to directly use the previously
segmented audio transcription text as the input of
the translation model, thereby obtaining a more
accurate English text output.

3.2 Machine translation
We use Transformer as our based model on
machine translation, the attention mechanism is
strength-able at capturing the Semantic relationship
on a sentence. The development toolkit we used in
machine translation is Marian (Junczys-Dowmunt
et al., 2018).

3.2.1 Training Scheme
After completing the data preprocessing on both
the bilingual data and back-translated data, we train
our baseline model by evaluating BLEU. The lan-
guage tool for evaluation is uncased 4-gram BLEU
(Papineni et al., 2002). We list the model configu-
ration in Table3 and training parameters in Table
4.

We train the model for over three days, the
BLEU score increased rapidly at the beginning and
the growth slowed after 30 hours. After the loss
converged, we collect the last 20 checkpoints of the
model in the time interval of one hour and applied
checkpoint average to get the final model.

Table 3: Model Configuration

Configuration Value
Encoder/Decoder depth 6
Attention heads 16
Word Embedding 1024
FFN size 4096
Chinese Vocabulary size 50,000
English Vocabulary size 50,000
Optimizer Adam

Table 4: Training Parameters

Parameter Value
Label smoothing 0.1
Learning rate 16
Warmup rates 15,000
Maximum sentence length 120
Clip normalization 5

3.2.2 Fine-tuning
We implement fine-tuning on the Transformer
model using the development set of qianyan audio

datasets (956 sentence pairs) to improve the transla-
tion quality on simultaneous translation task. Since
fine-tuning is effective to build a domain-adaptive
model.

4 Conclusion

This paper describes our submission to the second
automatic simultaneous translation workshop at
NAACL2021. We detail our process of data filter-
ing and model training. The Consecutive Wait(CW)
(Klein et al., 2017) of the best point reached to 18.4
while we get the BLEU value of 24.39 in the audio
input track. In future work, we will continue to
research on end-to-end speech translation model
from Chinese speech input to English text output.
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Abstract
This paper presents BSTC (Baidu Speech
Translation Corpus), a large-scale Chinese-
English speech translation dataset. This
dataset is constructed based on a collection of
licensed videos of talks or lectures, including
about 68 hours of Mandarin data, their man-
ual transcripts and translations into English, as
well as automated transcripts by an automatic
speech recognition (ASR) model. We have
further asked three experienced interpreters to
simultaneously interpret the testing talks in a
mock conference setting. This corpus is ex-
pected to promote the research of automatic
simultaneous translation as well as the devel-
opment of practical systems. We have orga-
nized simultaneous translation tasks and used
this corpus to evaluate automatic simultaneous
translation systems.

1 Introduction

In recent years, automatic speech translation (AST)
has attracted increasing interest for its commer-
cial potential (e.g., Simultaneous Interpretation and
Wireless Speech Translator). A large amount of re-
search has focused on speech translation (Weiss
et al., 2017; Niehues et al., 2018; Chung et al.,
2018; Sperber et al., 2019; Kahn et al., 2020; In-
aguma et al., 2020) and simultaneous translation
(Sridhar et al., 2013; Oda et al., 2014; Cho and Es-
ipova, 2016; Gu et al., 2017; Ma et al., 2019; Ari-
vazhagan et al., 2019; Zhang et al., 2020). The for-
mer intends to convert speech signals in the source
language to the target language, and the latter aims
to achieve a real-time translation that delivers the
speech to the audience in the target language while
minimizing the delay between the speaker and the
translation.

To train an AST model, existing corpora can be
classified into two categories:

• Speech Translation corpora consist pairs of
audio segments and their corresponding trans-
lations.

Speech Translation Languages Hours
F-C (2013) Es→En 38
KIT-Disfluency (2014) De→En 13
BTEC (2016) En→Fr 17
MSLT V1.0 (2016) En↔Fr/De 23

MSLT V1.1 (2017)
En→Zh/Jp 6

Zh→En 5
Jp →En 9

Travel (2017) Am→En 8
Aug-LibriSpeech (2018) En→Fr 236
MuST-C (2019) En→8 Euro langs 3617
Europarl-ST (2020) 9 Euro langs 1642
Covost (2020a; 2020b) En↔21 langs 2880
Simultaneous Translation Languages Hours
CIAIR (2004) En↔Jp 182
EPPS (2009) En↔Es 217
Simul-Trans (2014) En↔Jp 22
BSTC (ours) Zh→En 68

Table 1: Existing speech translation corpora and ours.
The duration statistics of all datasets are rounded up to
an integer hour. For MuST-C, the “8 Euro langs” is
short for “8 European languages”. Europarl-ST con-
tains the speech translation between 9 European lan-
guages.

• Simultaneous Translation corpora are con-
structed by transcribing lecturers’ speeches
and the streaming utterance of human inter-
preters.

The main difference between these two kinds of
corpora lies in the way that the translations are
generated. The translations in Speech Translation
corpora are generated based on complete audios
or their transcripts, while the translations in Simul-
taneous Translation corpora are transcribed from
real-time human interpretation.

Existing research on Speech Translation mainly
focused on the translation between English and
Indo-European languages1, with little attention
paid to that between Chinese (Zh) and English.
One of the reasons is the scarcity of public Zh↔En

1Indo-European languages are a large language family.
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Figure 1: The process of constructing the training set and development/test sets (dev/test). The difference between
the two processes is that for the training set we first split audio into sentences and then get the ASR and transcript
for each sentence, while for the dev/test sets we record the real-time ASR and transcript, the sentence splitting is
only used to generate translations of segmented sentences.

speech translation corpora. Among the public cor-
pora, only MSLT (Federmann and Lewis, 2017)
and Covost (Wang et al., 2020a,b) contains Zh↔En
speech translation, as shown in Table 1. But the
total volume of them on Zh→En translation is
merely about 30 hours, which is too small to train
data-hungry neural models. Some studies explore
Zh→En Simultaneous Translation (Ma et al., 2019;
Zhang et al., 2020). However, they take text trans-
lation datasets to simulate real-time translation sce-
narios because of the lack of simultaneous transla-
tion corpus.

To promote the research on Chinese-English
speech translation, as well as evaluating the trans-
lation quality in real simultaneous interpretation
environments, we construct BSTC, a large-scale
Zh→En speech translation and simultaneous trans-
lation dataset including approximately 68 hours of
Mandarin speech data with their automatic recog-
nition results, manual transcripts, and translations.
Our contributions are:

• We propose the first large-scale (68 hours)
Chinese-English Speech Translation corpus.
This training set is a four-way parallel dataset
of Mandarin audio, transcripts, ASR lattices,
and translations.

• The proposed dev and test set constitutes the
first high-quality Simultaneous Translation
dataset of over 3-hour Mandarin speech, to-
gether with its streaming transcript, streaming
ASR results, and high-quality translation.

• We have organized two simultaneous inter-
pretation tasks2 to promote research in this

2We organized two shared tasks on the 1st and 2nd Work-
shop on Automatic Simultaneous Translation.

field and deployed a strong benchmark on this
dataset.

• The proposed dataset can also be taken as 1) a
Chinese Spelling error Correction (CSC) cor-
pus containing pairs of ASR results and corre-
sponding manual transcripts or 2) a Zh→En
Document Translation dataset with context-
aware translations.

2 Dataset Description

BSTC is created to fill the gap in Zh→En speech
translation, in terms of both size and quality.
To achieve these objectives, we start by collect-
ing approximate 68 hours of mandarin speeches
from three TED-like content producers: BIT3,
tndao.com4, and zaojiu.com5. The speeches in-
volve a wide range of domains, including IT, econ-
omy, culture, biology, arts, etc. We randomly ex-
tract several talks from the dataset and divide them
into the development and test set.

2.1 Training set
For the training set, we manually tag timestamps to
split the audio into sentences, transcribe each sen-
tence and ask professional translators to produce
the English translations. The translation is gener-
ated based on the understanding of the entire talk
and is faithful and coherent as a whole. To facilitate
the research on robust speech translation, we also
provide the top-5 ASR results for each segmented
speech produced by SMLTA6, a streaming multi-

3https://bit.baidu.com
4http://www.tndao.com/about-tndao
5https://www.zaojiu.com/
6http://research.baidu.com/Blog/

index-view?id=109
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Dataset Talks Utterances Transcription (characters) Translation (tokens) Audio (hours) WER(1-best)
Train 215 37,901 1,028,538 606,584 64.57 27.90%
Dev 16 956 26,059 75,074 1.58 15.21%
Test 6 975 25,832 70,503 1.46 10.32%

Table 2: The summary of our proposed speech translation data.
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Figure 2: The distribution of talk length (number of
sentences) in the training set.
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Figure 3: The distribution of utterance length (number
of words) in the training set. A word means a Chinese
character here.

layer truncated attention ASR model. Figure 1 (a)
shows the construction process of the training set,
together with an example of a segmented sentence.

2.2 Dev/Test set

For the development (dev) set and test set, we con-
sider the simultaneous translation scenario and pro-
vide the streaming transcripts and streaming ASR
results, as shown in Figure 1 (b). The stream-
ing transcripts are produced by turning each n-
words (a word means a Chinese character here)
sentence to n lines word by word with length
1, 2, ..., n. We use the real-time recognition results
of each speech, rather than the recognition of each
sentence-segmented audio. This is to simulate the
simultaneous interpreting scenario, in which the
input is streaming text, rather than segmented sen-
tences.

dlen WER Coverage
0 5.87% 31.61%
1 7.13% 55.30%
3 8.86% 68.50%
7 10.72% 74.50%
15 15.23% 83.40%
31 23.51% 94.00%
∞ 27.90% 100%

Table 3: The WER and coverage of different subsets of
the training set with the length difference ∆len between
transcript and asr lower than or equal to dlen.

2.3 Statistics and Dataset Features

We summarize the statistics of our dataset in Table
2. The distribution of talk length and utterance
length in the training set is illustrated in Figure 2
and Figure 3, respectively. The average number of
utterances per talk is 176.3 in the training set, 59.8
in the dev set, and 162.5 in the test set. And the
average utterance length is 27.14 in the training set,
27.26 in the dev set, and 26.49 in the test set.

We also calculate the word error rate7 (WER)
of the ASR system on the three datasets. As
shown in Table 2, the WER of the training set is
27.90%, significantly higher than that of the dev
and testset. This is due to the way of audio seg-
mentation before recognition: some audio clips
lose some parts in acoustic truncation, resulting
in incomplete ASR results. We count the length
difference of each <transcription, asr> pair, i.e.,
∆len = |len(transcription)− len(asr)|, and re-
calculate the WER of pairs whose length difference
is within a certain range. The WER and coverage of
these subsets are listed in Table 3. Note that when
the asr and transcript with equal length (∆len ≤ 0),
the WER is only 5.87%. For the length difference
in a relatively regular range (e.g, ∆len ≤ 15), the
WER is also relatively low (WER=15.23%).

Besides, there is a difference between our dataset
and the existing speech translation corpora. In our
dataset, speech irregularities are kept in transcrip-

7WER tool: https://github.com/belambert/
asr-evaluation
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BLEU AP Omissions
A 24.20 83.0% 53%
B 17.14 62.8% 47%
C 25.18 76.5% 53%

Table 4: Comparison of the simultaneous interpretation
results of three interpreters (A, B, and C) on the BSTC
test set. “AP” is the Acceptability and the “Omissions”
indicates the proportion of missing translation in all
translation errors.

tion while omitted in translation (eg. filler words
like “嗯,呃,啊”, unconscious repetitions like “这
个这个呢” and some disfluencies), which can be
used to evaluate the robustness of the NMT model
dealing with spoken language. Some other large-
scale speech translation datasets (Kocabiyikoglu
et al., 2018; Di Gangi et al., 2019), on the contrary,
ignore these speech irregularities in the transcript.

2.4 Human Interpretation
We further ask three experienced interpreters (A, B,
and C) with interpreting experience ranging from
four to nine years to interpret the six talks of the
testset, in a mock conference setting8.

To evaluate their translation quality, we also ask
human translators to evaluate the transcribed inter-
pretation from multiple aspects: adequacy, fluency,
and correctness:

• Rank1: The translation contains no obvious
errors.

• Rank2: The translation is comprehensible
and adequate, but with minor errors such as in-
correct function words and less fluent phrases.

• Rank3: The translation is incorrect and unac-
ceptable.

Table 4 shows the translation quality in BLEU
and acceptability, which is calculated as the sum of
the percentages of Rank1 and Rank2. It shows that
their acceptability ranges from 62.8% to 83.0%,
but the acceptability and BLEU are not completely
positively correlated. This is because human inter-
preters routinely omit less important information to
overcome their limitations in working memory. Ac-
ceptability focuses more on accuracy and faithful-
ness than adequacy, so it can tolerate information
omission. Therefore, some information omitted in
human interpretation that results in inferior BLEU

8We play the video of the speech, just like in a real simul-
taneous interpretation scene

{

"offset": "105.975",

"duration": "3.287",

"wav": "2.wav",

“transcript”: “

"Streaming ASR": 

"translation": "In fact, every one of you has multiple digital devices, 

"interpreter A": "But actually you own several devices, mobile devices, 

"interpreter B": "But every of you have multiple equipments with you

"interpreter C": “But every one of you have multi devices, we have

}

Type: partial

Type: partial

Type: partial

Type: partial

Type: partial

Type: final

Type: partial

Type: partial

Type: partial

Type: final

Type: partial

Type: partial

handheld devices and mobile phones.",

mobile phones.",

hand held equipment like phone, smartphone.",

mobile phones."

Figure 4: A segment of one example in our test
set，including audio, timelines, transcription, transla-
tion, streaming ASR results, and interpretation from
three human interpreters (only for testing data). The
red characters in “Streaming ASR” indicate recogni-
tion errors.

may not lead to the decrease of acceptability. But
BLEU, as a statistical auto-evaluation metric, con-
siders adequacy with the same importance with
accuracy. This leads to the discrepancy between
BLEU and acceptability.

Figure 4 lists a segment from one example in our
dataset. Notably, we only supply human interpre-
tations for testing data. Here the “Streaming ASR”
is the real-time recognition results, in which the
“Type:final” means that the audio has detected a
pause or silence and thus segmented, and will start
to recognize a new sentence, while “Type:partial”
is to continue recognizing the current sentence.

3 Experiments

In this section, we introduce our benchmark sys-
tems based on the dataset. We conduct experiments
on speech translation and simultaneous translation,
respectively.

To preprocess the Chinese and the English text,
we use an open-source Chinese Segmenter9, and
Moses Tokenizer10. After tokenization, we convert

9https://github.com/fxsjy/jieba
10https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/

31



Systems
Test on Transcript Test on ASR

Dev Test Dev Test
pre-train on WMT 20.78 35.13 18.22 33.32

Finetune on <transcript, translation> 23.47(2.69↑) 41.14(6.01↑) 19.68(1.46↑) 35.71(2.39↑)
Finetune on <ASR, translation> 22.53(1.75↑) 39.23(4.1↑) 19.82(1.6↑) 36.89(3.57↑)

Table 5: The results of benchmark trained on different training datasets, and evaluated by streaming transcription
and ASR input.

all English letters into lower case. To train the MT
model, we conduct byte-pair encoding (Sennrich
et al., 2016) for both Chinese and English by setting
the vocabulary size to 20K and 18K for Chinese
and English, respectively. And we use the “multi-
bleu.pl” 11 script to evaluate the BLEU score.

3.1 Benchmark System
Our benchmark is a cascade system that includes
an ASR module, a sentence segmentation module,
and a machine translation (MT) module.

• We use the SMLTA model for ASR, i.e., the
streaming transcript/ASR of BSTC is taken as
the output of the ASR module.

• The sentence segmentation module is to de-
cide when to translate in real-time. We train a
classification model based on the Meaningful
Unit (MU) method proposed in Zhang et al.
(2020) that implements a 5-class classifica-
tion (MU, comma, period, question mark, and
none). The training data of meaningful units
are generated automatically from monolin-
gual sentences based on context-aware transla-
tion consistency. The model is pre-trained on
ERNIE-base (Sun et al., 2020) and fine-tuned
on the transcript of the BSTC training set.

• Once an MU or a sentence boundary (period
or question mark) is detected in the sentence
segmentation module, the MT module gen-
erates translation for the detected sentence.
The MT model is firstly pre-trained on the
large-scale WMT19 Chinese-English corpus,
then fine-tuned on BSTC. The WMT19 corpus
includes 9.1 million sentence pairs collected
from different sources, i.e., Newswire, United
Nations Parallel Corpus, Websites, etc. We
use the big version of Transformer model in
the following experiments.

tokenizer/tokenizer.perl
11https://github.com/moses-smt/

\mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

3.2 Performance of Speech Translation
Speech translation aims at translating accurately
without considering system delay. Therefore, we
only perform translation when sentence boundaries
(periods and question marks) are detected by the
sentence segmentation module.

The MT model is firstly trained on WMT,
then fine-tuned on 37,901 training pairs
of <transcription, translation> and <asr,
translation> in two settings, respectively. The
purpose of fine-tuning on transcription is to adapt
the model to the speech domain, and the purpose
of fine-tuning on ASR is to improve the robustness
of the MT model against recognition errors. Our
model pre-trained on WMT19 achieves a BLEU of
25.1 on Newstest19.

We evaluate our systems on the dev/test set using
streaming transcription and streaming ASR as in-
puts. For each talk in the dev/test set, its streaming
text is firstly segmented by the sentence segmenta-
tion module, then the translation of each segmen-
tation is concatenated into one long sentence to
evaluate the BLEU score. The results are listed
in Table 5. Note that the great gap of BLEU in
dev and test sets is that, the dev set has only one
reference while the testset has 4 references.
Contribution of fine-tuning on speech transla-
tion data: The systems pre-trained on WMT
obtain an absolute improvement both on clean
and noisy input by fine-tuning on <transcription,
translation>. The performance of the former model
increases by 4.35 BLEU score on average and the
latter model obtains 1.93 BLEU score improve-
ment on average. This indicates the transcribed
training data can still bring large improvement af-
ter pre-training on large-scale training corpus. This
probably because it is closer to the test set in terms
of the domain (speech) and noise (disfluencies in
spoken language).
Contribution of fine-tuning on noisy data:
Training on the corpus containing the ASR errors
can be effective to improve the robustness of the
NMT model. This can be proved by fine-tuning
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Figure 5: Translation quality against latency metrics on BSTC development set. “ASR-Sentence” and “Transcript-
Sentence” denotes the results of full-sentence translation with ASR input and transcript input, respectively.
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Figure 6: Translation quality against latency metrics on BSTC testset.

on the <ASR, translation> pairs. As shown in
the last row of Table 5, the pre-trained model im-
proves 2.93 and 2.59 BLEU scores on average for
testing on streaming transcript and streaming ASR,
respectively. This manifests that compared with
fine-tuning the clean transcription, the model fine-
tuned on ASR is less sensitive to false recognition
results of ASR.

3.3 Performance of Simultaneous Translation

Different from speech translation, the simultaneous
translation should balance translation quality and
latency. Therefore, we fix the ASR and MT mod-
ules to evaluate our system under different sentence
segmentation results. In simultaneous translation,
once an MU or a sentence boundary is detected, the
MU or sentence is translated immediately. In or-
der to maintain coherent and consistent paragraph
translation, we perform context-aware translation
following Xiong et al. (2019) that except for the
first segment in a sentence, the subsequent seg-
ments are translated with force-decoding.

The performance of system on the dev set and
test set is listed in Figure 5 and Figure 6, respec-

tively12. We use BLEU to evaluate the transla-
tion quality and use average lagging (AL) (Ma
et al., 2019) and Consecutive Wait (CW) (Gu et al.,
2017) as latency metrics. δ is the hyperparameter
defined in Zhang et al. (2020) as the thresold of
sentence segmentation module. It shows that the
translation quality improves consistently with the
increase of latency. The AL on both dev and test
sets ranges from 7 to 12 and the CW ranges from
6 to 11 for points of simultaneous translation. In
addition, we also draw the full-sentence transla-
tion results, as denoted by “ASR-Sentence” and
“Transcript-Sentences” in the two figures. The full-
sentence translation implements a high-latency pol-
icy, in which a translation is only triggered when
a sentence is received. As shown in the figures,
the delay of both “ASR-Sentence” and “Transcript-
Sentences” is much higher than the simultaneous
translation results.

4 Conclusion and Future Work

In this paper, we release a challenging dataset for
the research on Chinese-English speech transla-
tion and simultaneous translation. Based on this

12We list detailed values in Table 6
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δ AL CW BLEU

Dev Set

Input ASR
0.5 7.61 6.82 19.07
0.6 8.42 7.83 19.42
0.7 9.17 8.80 19.78
0.8 10.26 9.94 20.25
0.9 11.08 10.91 20.37
Input Transcript
0.5 7.54 6.58 21.87
0.6 8.30 7.54 22.16
0.7 9.31 8.64 22.76
0.8 10.19 9.70 23.13
0.9 11.00 10.67 23.62

Test set

Input ASR
0.5 7.28 6.75 34.12
0.6 8.04 7.75 35.18
0.7 8.90 8.71 36.14
0.8 9.93 9.88 36.35
0.9 10.87 10.91 36.79
Input Transcript
0.5 7.20 6.62 37.54
0.6 7.94 7.61 38.43
0.7 8.73 8.58 39.38
0.8 9.70 9.70 39.69
0.9 10.74 10.81 40.12

Table 6: Specific data corresponding to Figure 5 and
Figure 6.

dataset, we report a competitive benchmark based
on a cascade system. In the future, we will expand
this dataset, and propose an effective method to
develop an End-to-End speech translation model.
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Abstract

This paper presents the results of the shared
task of the 2nd Workshop on Automatic Simul-
taneous Translation (AutoSimTrans). The task
includes two tracks, one for text-to-text transla-
tion and one for speech-to-text, requiring par-
ticipants to build systems to translate from ei-
ther the source text or speech into the target
text. Different from traditional machine trans-
lation, the AutoSimTrans shared task evaluates
not only translation quality but also latency.
We propose a metric “Monotonic Optimal Se-
quence” (MOS) considering both quality and
latency to rank the submissions. We also dis-
cuss some important open issues in simultane-
ous translation.

1 Introduction

Simultaneous translation is to translate concur-
rently with the speech in the source language, aim-
ing to obtain high translation quality with low la-
tency. The concurrent comprehension and produc-
tion process makes simultaneous translation an ex-
tremely challenging task for both human experts
and machines. As a combination of machine trans-
lation (MT), automatic speech recognition (ASR),
and text-to-speech synthesis (TTS), simultaneous
translation still facing many problems to be studied
in the research and application. To promote the
development in this cutting-edge field, we conduct
a shared task at the 2nd Workshop on Automatic
Simultaneous Translation.

This year, we focus on Chinese-English simulta-
neous translation and set up two tracks:

1. Text-to-text track, where the participants are
asked to submit systems that translate stream-
ing input text in real-time. The input of this
track is human-annotated transcripts in stream-
ing format, in which every n-word sentence is
broken into n lines of sequences whose length
ranges from 1 to n, incremented by 1. We

set up this track for two reasons. On the one
hand, the difficulty of the task is reduced by
removing the recognition of speech. On the
other hand, participants can focus on text pro-
cessing, such as segmentation and translation,
without being influenced by ASR errors.

2. Speech-to-text track, where the submitted
systems need to produce a real-time transla-
tion of the given audio.

We provide BSTC (Zhang et al., 2021) (Baidu
Speech Translation Corpus) as the training data,
which consists of about 68 hours of Mandarin
speeches, together with corresponding transcripts,
ASR results, and translations. In addition, par-
ticipants can also use bilingual corpus provided
by CCMT (China Conference on Machine Transla-
tion)1. We will describe the data in detail in Section
2.

One objective of the shared task is to explore
the performance of state-of-the-art simultaneous
translation systems. Traditional evaluation metrics,
such as BLEU, only measure the translation quality,
while recently proposed metrics, such as Consec-
utive Wait (CW) (Gu et al., 2017) and Average
Lagging (AL) (Ma et al., 2019) focus on latency.
So far as we know, there is no metric that evaluates
both quality and delay.

We ask the participants to submit systems under
different configurations to produce multiple transla-
tion results with varying latency. Then we plot each
result in a quality-latency coordinate. Normally, a
system is regarded as the best if all of its points
are above others (Figure 1(a)). However, in most
cases, their lines of points intersect with each other
(Figure 1(b)).

To consider both quality and latency in ranking,
we propose a ranking metric, Monotonic Optimal
Sequence (MOS) (Section 3). The idea is to first

1http://sc.cipsc.org.cn/mt/conference/2021/
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Figure 1: Two examples of the results submitted by two teams. Each point shows the latency (X-axis) - BLEU
(Y-axis) of a submitted system.

Corpus Train Dev Test

BSTC
Audio (hours) 64.6 1.6 1.5

#Talks 215 16 6
#Utterances 37,901 956 975

CCMT #Sentence
Pairs

9.1M 2,000 /

Table 1: The summary of our provided corpora. The
Dev set of CCMT2020 is Newstest2019. There are mul-
tiple test sets for CCMT so we don’t list the statistics.

find all the optimal points, that is, a group of points
with the highest quality under different latency, and
then calculate the proportion of a system’s optimal
points in all its submitted points. The higher the
proportion, the better the performance.

We received six submissions from four teams
this year. We will report the results and analysis in
Section 4. We discuss some important open issues
in Section 5 and conclude the paper in Section 6.

2 Shared Task

We first introduce the data sets used in the shared
task and the setup of the two tracks.

2.1 Training Set

Due to the scarcity of Zh→En speech translation
corpora, we provide a Zh→En speech translation
dataset BSTC and a large-scale text translation cor-
pus CCMT for the participants.

• BSTC (Zhang et al., 2021) (Baidu Speech
Translation Corpus) is a 68-hour Zh→En
speech translation data including 215
speeches for training. Each speech is
segmented into sentences, transcribed, and
translated into English.

• We also encourage participants to use the
large-scale Zh→En text translation corpus
CCMT 2020 (China Conference on Machine
Translation) to enhance the performance of
machine translation.

The statistics of the two datasets are listed in Table
1. As far as we know, BSTC is by far the largest
Zh→En speech translation corpus, but it is still
insufficient to train either a well-performed ASR
model or an end-to-end simultaneous translation
model in the speech-to-text track. Therefore, we
don’t impose restrictions on the dataset used by the
participants for the speech track.

2.2 Test Set

Notice that the test set of BSTC shown in Table
1 is not released. The participants are required to
submit docker systems, which will be tested on the
1.5-hours test set by us.

The test set is kept confidential as a progress
test set. To validate the system to submit, we pro-
vide the dev set to the participants, which has the
same format as the test set. It contains four-way
parallel samples of 1) the streaming transcript, 2)
the streaming asr, 3) the sentence-level translation
of the transcript, and 4) the audio. The streaming
transcripts are produced by turning each n-word
(a word means a Chinese character here) sentence
to n lines of word sequences with length 1, 2, ...,
n. And the streaming ASR is produced by the
real-time Baidu ASR system based on SMLTA2.

2.3 Two Tracks

We set two tracks in our shared task, the text-to-
text track is to input streaming transcripts and the

2http://research.baidu.com/Blog/index-view?id=109
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speech-to-text track is to input audio files, as men-
tioned in section 1.

The simultaneous translation aims to balance sys-
tem delay and translation quality. The key problem
is to explore a policy that decides when to begin
translating a source sentence before the speaker has
finished his/her utterance. Eager policies, such as
translating every word when it is received, will lead
to poor translation quality, while lazy policies, such
as waiting to translate until receiving a complete
sentence, will result in long system delay.

In order to comprehensively evaluate each sys-
tem’s performance, we suggest that the participants
generate multiple results on varying latency. Six
systems from four teams were submitted in the
shared task, four to Track 1 and two to Track 2.

3 System Evaluation

Unlike text translation evaluation that only takes
one indicator (i.e., translation quality), simultane-
ous translation evaluation needs to consider quality
and latency at the same time. The evaluation based
on two criteria brings difficulties to ranking the
systems. However, the two indicators are not easy
to merge into one.

To rank the submissions better, we propose a
ranking algorithm called Iterative Monotonic Opti-
mal Sequence (I-MOS). Specifically, we define an
optimal point as the result of the best translation
quality at each latency. Our algorithm iteratively
finds sets of optimal points to construct an optimal
curve called Monotonic Optimal Sequence (MOS),
then each team’s proportion of points on the MOS
curve is calculated to measure the performance.
The overall process is illustrated in Figure 2.

In the following sections, we first introduce the
commonly used metrics of quality and latency (Sec-
tion 3.1), then propose the Monotonic Optimal Se-
quence (Section 3.2) and elaborate our I-MOS al-
gorithm (Section 3.3).

3.1 Evaluation metrics

In simultaneous translation, quality is often mea-
sured by BLEU (Papineni et al., 2002). Recent
work proposed some metrics for latency evaluation,
such as Average Proportion (AP) (Cho and Esipova,
2016), Consecutive Wait (CW) (Gu et al., 2017),
Average Lagging (AL) (Ma et al., 2019) and Dif-
ferentiable Average Lagging (DAL) (Arivazhagan
et al., 2019). Here we briefly introduce the two
latency metrics used in our evaluation:

• CW is the average source segment length in
words. It measures the number of source
words being waited for between each two
translation actions.

• AL quantifies the degree the audience is out of
sync with the speaker by the average number
of source words that the audience lags behind
the ideal policy, in which the translation of
each sentence is output at the same speed as
the speaker’s utterance and the entire trans-
lation finished when the speaker completes
his/her utterance.

Note that the above-mentioned latency metrics
are all proposed for text-to-text simultaneous trans-
lation and we use AL in the text track for latency
evaluation. Some work extended AP and AL to
speech translation (Ren et al., 2020; Ma et al.,
2020), but we don’t use them because they measure
real-time latency, while some submissions calling
remote services contain network delay. It is unrea-
sonable to use real-time latency metrics for both
the local-running systems and remote-running sys-
tems. Thus we ignore the latency of the ASR model
and take the metrics of text-to-text simultaneous
translation in the speech track. Specifically, we use
BLEU-AL evaluation in the Text-to-text track and
BLEU-CW evaluation in the Speech-to-text track.

3.2 Monotonic Optimal Sequence
To comprehensively rank systems based on the
translation quality and latency, we propose to con-
struct a monotonic optimal sequence composed of
Optimal Points.

Definition 1. On the quality-latency figure, one
result is considered optimal if there is no other
point or line above it at an identical latency. In this
case, the result is of the highest translation quality
at that latency and we define it as an Optimal Point.

For example, among the nine results of Figure 1
(b), the leftmost two points of Team1 and rightmost
two points of Team2 are Optimal Points. The third
point from left on Team2’s curve is not optimal
because it lies below the line of Team1.

To get Optimal Points, we select the results of
the best translation quality with different latency.
Since the submitted systems have discrete latency,
we use the linear interpolation of adjacent points of
each team to estimate their translation quality on
continuous latency. Then we select some Optimal
Points to form an optimal curve called Monotonic
Optimal Sequence.
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Figure 2: An illustration of our Iterative Monotonic Optimal Sequence (I-MOS) algorithm. First (a). plot the
results of all teams, then (b) (c) (d) iteratively calculate the monotonic optimal sequence (MOS) of level k and
update the score of the teams belong to level 1, 2, ..., k. The X-axis denotes the average lagging.

Definition 2. Let Monotonic Optimal Se-
quence (MOS) be a sequence of Optimal Point
with increasing translation quality and latency.

We arrange all the Optimal Points in ascend-
ing order of latency and then select the points
with monotonously increasing translation quality
to form the MOS. The monotonicity requirement
for translation quality is to avoid outlier points. For
example, the rightmost point of Team1 in Figure
2 (b) is an outlier because there is no point or line
above this point at the same latency, but it doesn’t
follow the monotonicity principle, so it should not
be added to MOS.

We propose to use each team’s proportion of
points on the MOS to evaluate its performance.
That is, we rank teams with:

STi = N (p∗ti)/N (pti) (1)

where N (p∗ti) and N (pti) denote the number of
points on MOS and the number of submitted points
of team i, respectively. Therefore, the maximum
value of STi is 1, when all of its submitted points
are on the MOS.

3.3 Iterative Monotonic Optimal Sequence
Algorithm

There exists a problem in our measurement that,
according to Eq. 1, all the teams that have no
points on the MOS are ranked tied because they all
score zero. To tackle this problem, we propose the
Iterative Monotonic Optimal Sequence (I-MOS)
algorithm. The main idea is to iteratively calculate
the MOS curves, MOS-1, MOS-2, ... MOS-K,
in which MOS-k denotes the Monotonic Optimal

Sequence of level k calculated at the kth iteration.
All the systems that have at least one point on MOS-
k are classified to level k. We remove these systems
and calculate MOS-(k + 1) in the next iteration.
Each team of the kth level ranks higher than all
teams of the (k + 1)th level.

Our algorithm is elaborated in Algorithm 1. The
level of all teams is initialized to zero (line 1),
which denotes the team’s score has not been cal-
culated. Then we begin our iteration. While there
exists at least one team whose score has not been
calculated (line 4), we update the score of teams
that belong to superior levels (level 1, 2, ..., k − 1)
teams by adding the maximum value of STi (1
point) to them (line 5-7) to ensure the systems of
level 1, 2, ...k − 1 scores higher than systems of
level k. Then we calculate MOS-k (line 8) and
update the score of the teams that belong to level k
according to Eq. 1 (line 9-11). After an iteration,
we continue to explore teams that belong to level
k+1 (line 12). Figure 2 provides a running process
of I-MOS.

4 Systems Results

We received 6 systems submitted by four teams
from four universities:

• Institute of computing technology, Chinese
Academy of Science (ICT)

• Xiamen University (XMU)

• Beijing Institute of Technology (BIT)

• Ping An Technology (Shenzhen) Co., Ltd.
(PingAn)
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Algorithm 1: Iterative Monotonic Optimal
Sequence (I-MOS)
Input: Number of teams N
Input: Teams submission: ti contains all

results submitted by team i
Output: Teams score S: si is the score of

team i for ranking
1 tl = [0, 0, ..., 0] ⊲ Initialize teams level
2 ⊲ tl[i] denotes the level of team i
3 k ← 1 ⊲ Start from level 1
4 while

∏N
i=1 tl[i] = 0 do

5 for i=1, 2, ..., N do
6 if tl[i] 6= 0 then
7 s[i]← s[i] + 1

8 Calculate MOS-k ⊲ the kth level MOS
for i=1, 2, ..., N do

9 if ti has at least one point on MOS-k
then

10 tl[i]← k
11 s[i]← N (p∗ti)/N (pti)

12 k ← k + 1

We test each docker system with our testset,
which contains 1.5 hours of 6 Mandarin talks. All
the systems are run on V100 GPU. We plot the eval-
uation results in Figure 3 and rank them according
to the I-MOS algorithm. Their ranking results are
shown in Table 2. We use BLEU3 to evaluate the
translation quality and use Average Lagging (AL)
(Ma et al., 2019) and Consecutive Wait (CW) (Gu
et al., 2017) as latency metrics.

4.1 Text-to-text Track

In the first track, the results of the four teams reflect
their preference in balancing system latency and
translation quality. We briefly describe the methods
of the four teams below in the order of their ranks:

1. ICT proposes the character-level wait-k pol-
icy, rather than using the standard word-level
wait-k (Ma et al., 2019). They perform prefix-
to-prefix MT training as in the original work.
Besides, they follow the multi-path (Elbayad
et al., 2020) and future-guided (Zhang et al.,
2020b) methods to enhance the predictabil-
ity and avoid huge anticipation in translation

3BLEU is calculated using “ https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/mteval-
v13a.pl”.

Track 1
Team Level Team N (p∗ti)/N (pti)

Level 1
ICT 4/4

XMU 2/3
BIT 1/4

Level 2 PingAn 7/7
Track 2

Level 1
PingAn 1/1
XMU 1/3

Table 2: The evaluated level of each team and the pro-
portion of points on the MOS of the corresponding
level. The table shows the ranking of the teams from
top to bottom.

caused by wait-k. The multi-path method
adopts randomly sampled k in [1, 2, ...,K]
in the training of incremental MT model to
cover all possible k during training. And the
future-guided method attempts to promote the
prediction ability of the wait-k strategy. To
improve the robustness of the MT model, they
further try several data augmentation methods
via adding noise to the source text.

2. XMU follows the Meaningful Unit (MU) seg-
mentation policy proposed in Zhang et al.
(2020a) that uses a context-aware classifi-
cation model to determine whether the cur-
rently received ASR content can be definitely
translated. To generate consistent translation
given the segmentation, the MT model of the
pipeline system is used to automatically gen-
erate training data of meaningful units. The
MT model is trained by full-sentences pairs.

3. BIT uses a pipeline method with a segmen-
tation model that bridges the streaming text
input and the MT model. Once a punctuation
mark is detected, the segmentation sends the
currently received sub-sentence for transla-
tion as in (Zhang and Zhang, 2020). To make
the MT model adapt to translating short sub-
sentences at inference time, each sample in the
provided parallel training corpus is automat-
ically divided into multiple translation pairs
for training. A statistical word alignment tool
is used to segment the source sentence into
minimal chunks so that crossing alignment
links between source and target words occur
only within individual chunks. The parallel
pairs of chunks are then used to train their MT
model.
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Figure 3: The evaluation results of the two tracks. The order in the legend denotes the real ranking.

4. PingAn takes the test-time wait-k (Ma et al.,
2019) as the segmentation policy. Different
from the standard wait-k policy, test-time wait-
k uses the wait-k policy only at inference
time without prefix-to-prefix training the MT
model. They further adopt Back-Translation
(Sennrich et al., 2016) to improve the transla-
tion quality.

In summary, we can categorize the four systems
according to their segmentation policy: Both ICT
and PingAn adopt the wait-k policy. ICT adopts
training-time wait-k while PingAn uses test-time
wait-k. BIT chooses sub-sentence translation, that
is, to translate only when a punctuation is detected.
XMU performs MU-based segmentation in which
the training samples of meaningful units are gener-
ated by the MT model.

Figure 3 (a) shows that the latency of the two
methods using wait-k is relatively low, while MU-
based policy can achieve high translation quality.
For the two wait-k systems, ICT performs better
than PingAn, which is consistent with the experi-
mental results in Ma et al. (2019) that training-time
wait-k is superior to test-time wait-k.

It’s interesting to find that the latency of XMU is
larger than that of BIT. This might be because there
are often long-distance reorderings in the training
corpus. The reordering in translation that crosses
punctuation marks would prevent the MU segmen-
tation policy from extracting fine-grained MUs, re-
sulting in the average length of MUs exceeding
sub-sentences. This problem has been illustrated
in Zhang et al. (2020a) and they proposed a refined
method called MU++ to alleviate the problem.

The result of BIT is a little weird. The trans-
lation quality decreases as system latency grows.
This might be caused by the discrepancy between

the segmentation module and the MT model. In
their method, the segmentation module segments
sentences into sub-sentences while the MT model
is trained on statistically split chunks.

4.2 Speech-to-text Track

As elaborated in Section 3.1, we use BLEU and
Consecutive Wait (CW) (Gu et al., 2017) to evalu-
ate systems in the speech track.

PingAn and XMU continue their work based on
their systems submitted to the Text-to-text track.
The two systems both keep the same policy used in
the first track and only replace the text input with
the recognition results of an ASR model. PingAn
trains a QuartzNet model (Kriman et al., 2020) with
the Memory-Self-Attention (Luo et al., 2021) and
XMU uses Baidu’s real-time speech recognition
service.

Figure 3 (b) shows that PingAn using wait-k
outperforms XMU in latency. The reason behind
the large delay of XMU’s system might be the same
as in the first track.

5 Discussion

Most recent studies on simultaneous translation fo-
cused on methods to balance translation quality and
latency. Besides this, we will discuss some other
important challenges for simultaneous translation.

5.1 Data Scarcity

The first problem is the shortage of high-quality si-
multaneous translation data. In recent years, some
speech translation corpora have released, such as
MuST-C (Di Gangi et al., 2019), Covost (Wang
et al., 2020a,b), Europarl-ST (Iranzo-Sánchez et al.,
2020), Aug-LibriSpeech (Kocabiyikoglu et al.,
2018), etc. These corpora focus on Indo-European
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Figure 4: An illustration of the ranking algorithm of IWSLT’s simultaneous translation shared task. The two
figures vary only in the threshold of the latency regimes. According to their algorithm, the winner of figure (a) is
Team1 in all the three regimes, while the winner evaluated in figure (b) is Low Latency: Team2, Medium Latency:
Team2, and High Latency: Team1.

languages and have greatly contributed to the in-
creasing popularity of research of simultaneous
translation.

However, there is little attention paid to research
and data collection of Chinese-English (Zh→En)
simultaneous translation. To the best of our knowl-
edge, only MSLT (Federmann and Lewis, 2016)
and Covost (Wang et al., 2020b) contain Zh→En
speech translation data, but they totally have about
30 hours of speech. In our shared task, we build
68-hour Zh→En speech translation corpus, BSTC
(Zhang et al., 2021) for training and evaluation.
The dataset alleviates the Zh→En data scarcity, but
it’s still insufficient to train data-hungry end-to-end
simultaneous translation models.

5.2 Evaluation Dilemma

The second problem lies in system evaluation,
which has not been widely explored.

Traditional metrics such as BLEU (Papineni
et al., 2002), NIST (Doddington, 2002), METEOR
(Banerjee and Lavie, 2005), etc, are designed for
text translation. These metrics based on accurate
matching between system outputs and references.
However, to reduce latency in simultaneous inter-
pretation, human interpreters usually use strate-
gies such as reasonable omissions, avoiding long-
distance reordering in translation, etc. Thus the
traditional metrics are not suitable to evaluate the
simultaneous interpretation.

On the other hand, there is no metric to evaluate
both translation quality and latency. In our shared
task, we propose a novel ranking algorithm, I-MOS.
We only consider the proportion of optimal points,
ignoring whether the points lie in low-latency or

high-latency. Therefore, our ranking doesn’t differ-
entiate latency regimes. However, it remains open
to question whether it is reasonable to compare two
systems with no intersection in latency, like the
ICT and XMU in Figure 3 (a). The ranking might
be more convincing if ICT had provided results at
high latency and XMU has provided results at low
latency.

We note that IWSLT has also hosted simultane-
ous translation shared tasks4. They proposed to
rank systems by the translation quality with dif-
ferent latency regimes: Low Latency: AL <= 3,
Medium Latency: AL <= 6, and High Latency: AL
<= 15. For each team, the submitted system that
achieves the best translation quality is chosen for
ranking in each latency regime. However, the value
of artificially defined latency threshold between
regimes has a big impact on the ranking results. As
illustrated in Figure 4, different latency thresholds
lead to completely different rankings of the two
teams.

Actually, the ideal ranking mechanism is to rank
all systems within a similar latency interval. How-
ever, asking participants to submit results in almost
every latency regime is unreasonable, because ex-
isting policies all have a preference in trading off
latency and translation quality. For example, wait-k
focuses on getting controllable low latency, while
the inspiration behind MU is to translate until a seg-
ment with definite meaning is formed, leading to a
high latency as well as high quality. Therefore, it
is a dilemma to evaluate systems comprehensively
while distinguishing different latency regions rea-
sonably. This problem can be explored in future

4https://iwslt.org/2021/simultaneous
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work.

5.3 Applications

Recently, more and more simultaneous translation
systems have emerged in international conferences.

In practical applications, systems face robust and
controllability issues. Being robust denotes the sys-
tem should achieve a high translation quality and
be insensitive to speech noise, including sound cap-
ture noise, speaker’s accent, disfluency in speech,
etc. Being controllable means the system should
be able to remember and understand some named
entities and should be able to be intervened.

Our shared task provides such an opportunity for
participants to pay attention to the robustness prob-
lem. For example, ICT and PingAn have adopted
data augmentation to enhance the robustness of
their systems.

In terms of controllability, it is not difficult to
integrate an intervention mechanism in pipeline
systems. For example, a pre-defined translation
of a named entity can be introduced to the MT
module. However, controllability is not easy to be
guaranteed for end-to-end simultaneous translation
systems (Ren et al., 2020; Ma et al., 2020). It re-
mains a challenge to correct a translation without
an intermediate ASR result. We also hope to see
more work focusing on real-world simultaneous
translation applications and discussing some inter-
esting issues, such as the document-level ASR error
correction in pipeline systems, and how to enhance
the controllability in end-to-end speech-to-text sys-
tems, etc.

6 Conclusion

This paper presents the results of the Zh→En si-
multaneous translation shared task hosted on the
2nd Workshop on Automatic Simultaneous Trans-
lation (AutoSimTrans). The shared task includes
two tracks, the text-to-text track (Track1) and the
speech-to-text track (Track2). Six systems were
submitted to the shared task, four to Track1 and
two to Track2. We propose an evaluation method
“Monotonic Optimal Sequence” (MOS) to evaluate
both translation quality and time latency. We report
the results and further discuss some important open
issues of simultaneous translation.

Regrettably, the number of submissions is less
than expected, especially for the speech-to-text
track. In fact, there are more than 300 teams regis-
tered. However, most of them did not submit their

results. The possible reason may be that the inter-
disciplinary task is not easy for participants. We
hope to see more participants in the future.
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