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Abstract

This paper presents the results of the shared

task of the 2nd Workshop on Automatic Simul-

taneous Translation (AutoSimTrans). The task

includes two tracks, one for text-to-text transla-

tion and one for speech-to-text, requiring par-

ticipants to build systems to translate from ei-

ther the source text or speech into the target

text. Different from traditional machine trans-

lation, the AutoSimTrans shared task evaluates

not only translation quality but also latency.

We propose a metric “Monotonic Optimal Se-

quence” (MOS) considering both quality and

latency to rank the submissions. We also dis-

cuss some important open issues in simultane-

ous translation.

1 Introduction

Simultaneous translation is to translate concur-

rently with the speech in the source language, aim-

ing to obtain high translation quality with low la-

tency. The concurrent comprehension and produc-

tion process makes simultaneous translation an ex-

tremely challenging task for both human experts

and machines. As a combination of machine trans-

lation (MT), automatic speech recognition (ASR),

and text-to-speech synthesis (TTS), simultaneous

translation still facing many problems to be studied

in the research and application. To promote the

development in this cutting-edge field, we conduct

a shared task at the 2nd Workshop on Automatic

Simultaneous Translation.

This year, we focus on Chinese-English simulta-

neous translation and set up two tracks:

1. Text-to-text track, where the participants are

asked to submit systems that translate stream-

ing input text in real-time. The input of this

track is human-annotated transcripts in stream-

ing format, in which every n-word sentence is

broken into n lines of sequences whose length

ranges from 1 to n, incremented by 1. We

set up this track for two reasons. On the one

hand, the difficulty of the task is reduced by

removing the recognition of speech. On the

other hand, participants can focus on text pro-

cessing, such as segmentation and translation,

without being influenced by ASR errors.

2. Speech-to-text track, where the submitted

systems need to produce a real-time transla-

tion of the given audio.

We provide BSTC (Zhang et al., 2021) (Baidu

Speech Translation Corpus) as the training data,

which consists of about 68 hours of Mandarin

speeches, together with corresponding transcripts,

ASR results, and translations. In addition, par-

ticipants can also use bilingual corpus provided

by CCMT (China Conference on Machine Transla-

tion)1. We will describe the data in detail in Section

2.

One objective of the shared task is to explore

the performance of state-of-the-art simultaneous

translation systems. Traditional evaluation metrics,

such as BLEU, only measure the translation quality,

while recently proposed metrics, such as Consec-

utive Wait (CW) (Gu et al., 2017) and Average

Lagging (AL) (Ma et al., 2019) focus on latency.

So far as we know, there is no metric that evaluates

both quality and delay.

We ask the participants to submit systems under

different configurations to produce multiple transla-

tion results with varying latency. Then we plot each

result in a quality-latency coordinate. Normally, a

system is regarded as the best if all of its points

are above others (Figure 1(a)). However, in most

cases, their lines of points intersect with each other

(Figure 1(b)).

To consider both quality and latency in ranking,

we propose a ranking metric, Monotonic Optimal

Sequence (MOS) (Section 3). The idea is to first

1http://sc.cipsc.org.cn/mt/conference/2021/
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Figure 1: Two examples of the results submitted by two teams. Each point shows the latency (X-axis) - BLEU

(Y-axis) of a submitted system.

Corpus Train Dev Test

BSTC

Audio (hours) 64.6 1.6 1.5

#Talks 215 16 6

#Utterances 37,901 956 975

CCMT
#Sentence

Pairs
9.1M 2,000 /

Table 1: The summary of our provided corpora. The

Dev set of CCMT2020 is Newstest2019. There are mul-

tiple test sets for CCMT so we don’t list the statistics.

find all the optimal points, that is, a group of points

with the highest quality under different latency, and

then calculate the proportion of a system’s optimal

points in all its submitted points. The higher the

proportion, the better the performance.

We received six submissions from four teams

this year. We will report the results and analysis in

Section 4. We discuss some important open issues

in Section 5 and conclude the paper in Section 6.

2 Shared Task

We first introduce the data sets used in the shared

task and the setup of the two tracks.

2.1 Training Set

Due to the scarcity of Zh→En speech translation

corpora, we provide a Zh→En speech translation

dataset BSTC and a large-scale text translation cor-

pus CCMT for the participants.

• BSTC (Zhang et al., 2021) (Baidu Speech

Translation Corpus) is a 68-hour Zh→En

speech translation data including 215

speeches for training. Each speech is

segmented into sentences, transcribed, and

translated into English.

• We also encourage participants to use the

large-scale Zh→En text translation corpus

CCMT 2020 (China Conference on Machine

Translation) to enhance the performance of

machine translation.

The statistics of the two datasets are listed in Table

1. As far as we know, BSTC is by far the largest

Zh→En speech translation corpus, but it is still

insufficient to train either a well-performed ASR

model or an end-to-end simultaneous translation

model in the speech-to-text track. Therefore, we

don’t impose restrictions on the dataset used by the

participants for the speech track.

2.2 Test Set

Notice that the test set of BSTC shown in Table

1 is not released. The participants are required to

submit docker systems, which will be tested on the

1.5-hours test set by us.

The test set is kept confidential as a progress

test set. To validate the system to submit, we pro-

vide the dev set to the participants, which has the

same format as the test set. It contains four-way

parallel samples of 1) the streaming transcript, 2)

the streaming asr, 3) the sentence-level translation

of the transcript, and 4) the audio. The streaming

transcripts are produced by turning each n-word

(a word means a Chinese character here) sentence

to n lines of word sequences with length 1, 2, ...,

n. And the streaming ASR is produced by the

real-time Baidu ASR system based on SMLTA2.

2.3 Two Tracks

We set two tracks in our shared task, the text-to-

text track is to input streaming transcripts and the

2http://research.baidu.com/Blog/index-view?id=109
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speech-to-text track is to input audio files, as men-

tioned in section 1.

The simultaneous translation aims to balance sys-

tem delay and translation quality. The key problem

is to explore a policy that decides when to begin

translating a source sentence before the speaker has

finished his/her utterance. Eager policies, such as

translating every word when it is received, will lead

to poor translation quality, while lazy policies, such

as waiting to translate until receiving a complete

sentence, will result in long system delay.

In order to comprehensively evaluate each sys-

tem’s performance, we suggest that the participants

generate multiple results on varying latency. Six

systems from four teams were submitted in the

shared task, four to Track 1 and two to Track 2.

3 System Evaluation

Unlike text translation evaluation that only takes

one indicator (i.e., translation quality), simultane-

ous translation evaluation needs to consider quality

and latency at the same time. The evaluation based

on two criteria brings difficulties to ranking the

systems. However, the two indicators are not easy

to merge into one.

To rank the submissions better, we propose a

ranking algorithm called Iterative Monotonic Opti-

mal Sequence (I-MOS). Specifically, we define an

optimal point as the result of the best translation

quality at each latency. Our algorithm iteratively

finds sets of optimal points to construct an optimal

curve called Monotonic Optimal Sequence (MOS),

then each team’s proportion of points on the MOS

curve is calculated to measure the performance.

The overall process is illustrated in Figure 2.

In the following sections, we first introduce the

commonly used metrics of quality and latency (Sec-

tion 3.1), then propose the Monotonic Optimal Se-

quence (Section 3.2) and elaborate our I-MOS al-

gorithm (Section 3.3).

3.1 Evaluation metrics

In simultaneous translation, quality is often mea-

sured by BLEU (Papineni et al., 2002). Recent

work proposed some metrics for latency evaluation,

such as Average Proportion (AP) (Cho and Esipova,

2016), Consecutive Wait (CW) (Gu et al., 2017),

Average Lagging (AL) (Ma et al., 2019) and Dif-

ferentiable Average Lagging (DAL) (Arivazhagan

et al., 2019). Here we briefly introduce the two

latency metrics used in our evaluation:

• CW is the average source segment length in

words. It measures the number of source

words being waited for between each two

translation actions.

• AL quantifies the degree the audience is out of

sync with the speaker by the average number

of source words that the audience lags behind

the ideal policy, in which the translation of

each sentence is output at the same speed as

the speaker’s utterance and the entire trans-

lation finished when the speaker completes

his/her utterance.

Note that the above-mentioned latency metrics

are all proposed for text-to-text simultaneous trans-

lation and we use AL in the text track for latency

evaluation. Some work extended AP and AL to

speech translation (Ren et al., 2020; Ma et al.,

2020), but we don’t use them because they measure

real-time latency, while some submissions calling

remote services contain network delay. It is unrea-

sonable to use real-time latency metrics for both

the local-running systems and remote-running sys-

tems. Thus we ignore the latency of the ASR model

and take the metrics of text-to-text simultaneous

translation in the speech track. Specifically, we use

BLEU-AL evaluation in the Text-to-text track and

BLEU-CW evaluation in the Speech-to-text track.

3.2 Monotonic Optimal Sequence

To comprehensively rank systems based on the

translation quality and latency, we propose to con-

struct a monotonic optimal sequence composed of

Optimal Points.

Definition 1. On the quality-latency figure, one

result is considered optimal if there is no other

point or line above it at an identical latency. In this

case, the result is of the highest translation quality

at that latency and we define it as an Optimal Point.

For example, among the nine results of Figure 1

(b), the leftmost two points of Team1 and rightmost

two points of Team2 are Optimal Points. The third

point from left on Team2’s curve is not optimal

because it lies below the line of Team1.

To get Optimal Points, we select the results of

the best translation quality with different latency.

Since the submitted systems have discrete latency,

we use the linear interpolation of adjacent points of

each team to estimate their translation quality on

continuous latency. Then we select some Optimal

Points to form an optimal curve called Monotonic

Optimal Sequence.
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Figure 2: An illustration of our Iterative Monotonic Optimal Sequence (I-MOS) algorithm. First (a). plot the

results of all teams, then (b) (c) (d) iteratively calculate the monotonic optimal sequence (MOS) of level k and

update the score of the teams belong to level 1, 2, ..., k. The X-axis denotes the average lagging.

Definition 2. Let Monotonic Optimal Se-

quence (MOS) be a sequence of Optimal Point

with increasing translation quality and latency.

We arrange all the Optimal Points in ascend-

ing order of latency and then select the points

with monotonously increasing translation quality

to form the MOS. The monotonicity requirement

for translation quality is to avoid outlier points. For

example, the rightmost point of Team1 in Figure

2 (b) is an outlier because there is no point or line

above this point at the same latency, but it doesn’t

follow the monotonicity principle, so it should not

be added to MOS.

We propose to use each team’s proportion of

points on the MOS to evaluate its performance.

That is, we rank teams with:

STi
= N (p∗ti)/N (pti) (1)

where N (p∗ti) and N (pti) denote the number of

points on MOS and the number of submitted points

of team i, respectively. Therefore, the maximum

value of STi
is 1, when all of its submitted points

are on the MOS.

3.3 Iterative Monotonic Optimal Sequence

Algorithm

There exists a problem in our measurement that,

according to Eq. 1, all the teams that have no

points on the MOS are ranked tied because they all

score zero. To tackle this problem, we propose the

Iterative Monotonic Optimal Sequence (I-MOS)

algorithm. The main idea is to iteratively calculate

the MOS curves, MOS-1, MOS-2, ... MOS-K,

in which MOS-k denotes the Monotonic Optimal

Sequence of level k calculated at the kth iteration.

All the systems that have at least one point on MOS-

k are classified to level k. We remove these systems

and calculate MOS-(k + 1) in the next iteration.

Each team of the kth level ranks higher than all

teams of the (k + 1)th level.

Our algorithm is elaborated in Algorithm 1. The

level of all teams is initialized to zero (line 1),

which denotes the team’s score has not been cal-

culated. Then we begin our iteration. While there

exists at least one team whose score has not been

calculated (line 4), we update the score of teams

that belong to superior levels (level 1, 2, ..., k − 1)

teams by adding the maximum value of STi
(1

point) to them (line 5-7) to ensure the systems of

level 1, 2, ...k − 1 scores higher than systems of

level k. Then we calculate MOS-k (line 8) and

update the score of the teams that belong to level k
according to Eq. 1 (line 9-11). After an iteration,

we continue to explore teams that belong to level

k+1 (line 12). Figure 2 provides a running process

of I-MOS.

4 Systems Results

We received 6 systems submitted by four teams

from four universities:

• Institute of computing technology, Chinese

Academy of Science (ICT)

• Xiamen University (XMU)

• Beijing Institute of Technology (BIT)

• Ping An Technology (Shenzhen) Co., Ltd.

(PingAn)
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Algorithm 1: Iterative Monotonic Optimal

Sequence (I-MOS)

Input: Number of teams N
Input: Teams submission: ti contains all

results submitted by team i
Output: Teams score S: si is the score of

team i for ranking

1 tl = [0, 0, ..., 0] ⊲ Initialize teams level

2 ⊲ tl[i] denotes the level of team i
3 k ← 1 ⊲ Start from level 1

4 while
∏

N

i=1
tl[i] = 0 do

5 for i=1, 2, ..., N do

6 if tl[i] 6= 0 then

7 s[i]← s[i] + 1

8 Calculate MOS-k ⊲ the kth level MOS

for i=1, 2, ..., N do

9 if ti has at least one point on MOS-k

then

10 tl[i]← k
11 s[i]← N (p∗ti)/N (pti)

12 k ← k + 1

We test each docker system with our testset,

which contains 1.5 hours of 6 Mandarin talks. All

the systems are run on V100 GPU. We plot the eval-

uation results in Figure 3 and rank them according

to the I-MOS algorithm. Their ranking results are

shown in Table 2. We use BLEU3 to evaluate the

translation quality and use Average Lagging (AL)

(Ma et al., 2019) and Consecutive Wait (CW) (Gu

et al., 2017) as latency metrics.

4.1 Text-to-text Track

In the first track, the results of the four teams reflect

their preference in balancing system latency and

translation quality. We briefly describe the methods

of the four teams below in the order of their ranks:

1. ICT proposes the character-level wait-k pol-

icy, rather than using the standard word-level

wait-k (Ma et al., 2019). They perform prefix-

to-prefix MT training as in the original work.

Besides, they follow the multi-path (Elbayad

et al., 2020) and future-guided (Zhang et al.,

2020b) methods to enhance the predictabil-

ity and avoid huge anticipation in translation

3BLEU is calculated using “ https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/mteval-
v13a.pl”.

Track 1

Team Level Team N (p∗ti)/N (pti)

Level 1

ICT 4/4

XMU 2/3

BIT 1/4

Level 2 PingAn 7/7

Track 2

Level 1
PingAn 1/1

XMU 1/3

Table 2: The evaluated level of each team and the pro-

portion of points on the MOS of the corresponding

level. The table shows the ranking of the teams from

top to bottom.

caused by wait-k. The multi-path method

adopts randomly sampled k in [1, 2, ...,K]
in the training of incremental MT model to

cover all possible k during training. And the

future-guided method attempts to promote the

prediction ability of the wait-k strategy. To

improve the robustness of the MT model, they

further try several data augmentation methods

via adding noise to the source text.

2. XMU follows the Meaningful Unit (MU) seg-

mentation policy proposed in Zhang et al.

(2020a) that uses a context-aware classifi-

cation model to determine whether the cur-

rently received ASR content can be definitely

translated. To generate consistent translation

given the segmentation, the MT model of the

pipeline system is used to automatically gen-

erate training data of meaningful units. The

MT model is trained by full-sentences pairs.

3. BIT uses a pipeline method with a segmen-

tation model that bridges the streaming text

input and the MT model. Once a punctuation

mark is detected, the segmentation sends the

currently received sub-sentence for transla-

tion as in (Zhang and Zhang, 2020). To make

the MT model adapt to translating short sub-

sentences at inference time, each sample in the

provided parallel training corpus is automat-

ically divided into multiple translation pairs

for training. A statistical word alignment tool

is used to segment the source sentence into

minimal chunks so that crossing alignment

links between source and target words occur

only within individual chunks. The parallel

pairs of chunks are then used to train their MT

model.
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Figure 3: The evaluation results of the two tracks. The order in the legend denotes the real ranking.

4. PingAn takes the test-time wait-k (Ma et al.,

2019) as the segmentation policy. Different

from the standard wait-k policy, test-time wait-

k uses the wait-k policy only at inference

time without prefix-to-prefix training the MT

model. They further adopt Back-Translation

(Sennrich et al., 2016) to improve the transla-

tion quality.

In summary, we can categorize the four systems

according to their segmentation policy: Both ICT

and PingAn adopt the wait-k policy. ICT adopts

training-time wait-k while PingAn uses test-time

wait-k. BIT chooses sub-sentence translation, that

is, to translate only when a punctuation is detected.

XMU performs MU-based segmentation in which

the training samples of meaningful units are gener-

ated by the MT model.

Figure 3 (a) shows that the latency of the two

methods using wait-k is relatively low, while MU-

based policy can achieve high translation quality.

For the two wait-k systems, ICT performs better

than PingAn, which is consistent with the experi-

mental results in Ma et al. (2019) that training-time

wait-k is superior to test-time wait-k.

It’s interesting to find that the latency of XMU is

larger than that of BIT. This might be because there

are often long-distance reorderings in the training

corpus. The reordering in translation that crosses

punctuation marks would prevent the MU segmen-

tation policy from extracting fine-grained MUs, re-

sulting in the average length of MUs exceeding

sub-sentences. This problem has been illustrated

in Zhang et al. (2020a) and they proposed a refined

method called MU++ to alleviate the problem.

The result of BIT is a little weird. The trans-

lation quality decreases as system latency grows.

This might be caused by the discrepancy between

the segmentation module and the MT model. In

their method, the segmentation module segments

sentences into sub-sentences while the MT model

is trained on statistically split chunks.

4.2 Speech-to-text Track

As elaborated in Section 3.1, we use BLEU and

Consecutive Wait (CW) (Gu et al., 2017) to evalu-

ate systems in the speech track.

PingAn and XMU continue their work based on

their systems submitted to the Text-to-text track.

The two systems both keep the same policy used in

the first track and only replace the text input with

the recognition results of an ASR model. PingAn

trains a QuartzNet model (Kriman et al., 2020) with

the Memory-Self-Attention (Luo et al., 2021) and

XMU uses Baidu’s real-time speech recognition

service.

Figure 3 (b) shows that PingAn using wait-k

outperforms XMU in latency. The reason behind

the large delay of XMU’s system might be the same

as in the first track.

5 Discussion

Most recent studies on simultaneous translation fo-

cused on methods to balance translation quality and

latency. Besides this, we will discuss some other

important challenges for simultaneous translation.

5.1 Data Scarcity

The first problem is the shortage of high-quality si-

multaneous translation data. In recent years, some

speech translation corpora have released, such as

MuST-C (Di Gangi et al., 2019), Covost (Wang

et al., 2020a,b), Europarl-ST (Iranzo-Sánchez et al.,

2020), Aug-LibriSpeech (Kocabiyikoglu et al.,

2018), etc. These corpora focus on Indo-European
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Figure 4: An illustration of the ranking algorithm of IWSLT’s simultaneous translation shared task. The two

figures vary only in the threshold of the latency regimes. According to their algorithm, the winner of figure (a) is

Team1 in all the three regimes, while the winner evaluated in figure (b) is Low Latency: Team2, Medium Latency:

Team2, and High Latency: Team1.

languages and have greatly contributed to the in-

creasing popularity of research of simultaneous

translation.

However, there is little attention paid to research

and data collection of Chinese-English (Zh→En)

simultaneous translation. To the best of our knowl-

edge, only MSLT (Federmann and Lewis, 2016)

and Covost (Wang et al., 2020b) contain Zh→En

speech translation data, but they totally have about

30 hours of speech. In our shared task, we build

68-hour Zh→En speech translation corpus, BSTC

(Zhang et al., 2021) for training and evaluation.

The dataset alleviates the Zh→En data scarcity, but

it’s still insufficient to train data-hungry end-to-end

simultaneous translation models.

5.2 Evaluation Dilemma

The second problem lies in system evaluation,

which has not been widely explored.

Traditional metrics such as BLEU (Papineni

et al., 2002), NIST (Doddington, 2002), METEOR

(Banerjee and Lavie, 2005), etc, are designed for

text translation. These metrics based on accurate

matching between system outputs and references.

However, to reduce latency in simultaneous inter-

pretation, human interpreters usually use strate-

gies such as reasonable omissions, avoiding long-

distance reordering in translation, etc. Thus the

traditional metrics are not suitable to evaluate the

simultaneous interpretation.

On the other hand, there is no metric to evaluate

both translation quality and latency. In our shared

task, we propose a novel ranking algorithm, I-MOS.

We only consider the proportion of optimal points,

ignoring whether the points lie in low-latency or

high-latency. Therefore, our ranking doesn’t differ-

entiate latency regimes. However, it remains open

to question whether it is reasonable to compare two

systems with no intersection in latency, like the

ICT and XMU in Figure 3 (a). The ranking might

be more convincing if ICT had provided results at

high latency and XMU has provided results at low

latency.

We note that IWSLT has also hosted simultane-

ous translation shared tasks4. They proposed to

rank systems by the translation quality with dif-

ferent latency regimes: Low Latency: AL <= 3,

Medium Latency: AL <= 6, and High Latency: AL

<= 15. For each team, the submitted system that

achieves the best translation quality is chosen for

ranking in each latency regime. However, the value

of artificially defined latency threshold between

regimes has a big impact on the ranking results. As

illustrated in Figure 4, different latency thresholds

lead to completely different rankings of the two

teams.

Actually, the ideal ranking mechanism is to rank

all systems within a similar latency interval. How-

ever, asking participants to submit results in almost

every latency regime is unreasonable, because ex-

isting policies all have a preference in trading off

latency and translation quality. For example, wait-k

focuses on getting controllable low latency, while

the inspiration behind MU is to translate until a seg-

ment with definite meaning is formed, leading to a

high latency as well as high quality. Therefore, it

is a dilemma to evaluate systems comprehensively

while distinguishing different latency regions rea-

sonably. This problem can be explored in future

4https://iwslt.org/2021/simultaneous
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work.

5.3 Applications

Recently, more and more simultaneous translation

systems have emerged in international conferences.

In practical applications, systems face robust and

controllability issues. Being robust denotes the sys-

tem should achieve a high translation quality and

be insensitive to speech noise, including sound cap-

ture noise, speaker’s accent, disfluency in speech,

etc. Being controllable means the system should

be able to remember and understand some named

entities and should be able to be intervened.

Our shared task provides such an opportunity for

participants to pay attention to the robustness prob-

lem. For example, ICT and PingAn have adopted

data augmentation to enhance the robustness of

their systems.

In terms of controllability, it is not difficult to

integrate an intervention mechanism in pipeline

systems. For example, a pre-defined translation

of a named entity can be introduced to the MT

module. However, controllability is not easy to be

guaranteed for end-to-end simultaneous translation

systems (Ren et al., 2020; Ma et al., 2020). It re-

mains a challenge to correct a translation without

an intermediate ASR result. We also hope to see

more work focusing on real-world simultaneous

translation applications and discussing some inter-

esting issues, such as the document-level ASR error

correction in pipeline systems, and how to enhance

the controllability in end-to-end speech-to-text sys-

tems, etc.

6 Conclusion

This paper presents the results of the Zh→En si-

multaneous translation shared task hosted on the

2nd Workshop on Automatic Simultaneous Trans-

lation (AutoSimTrans). The shared task includes

two tracks, the text-to-text track (Track1) and the

speech-to-text track (Track2). Six systems were

submitted to the shared task, four to Track1 and

two to Track2. We propose an evaluation method

“Monotonic Optimal Sequence” (MOS) to evaluate

both translation quality and time latency. We report

the results and further discuss some important open

issues of simultaneous translation.

Regrettably, the number of submissions is less

than expected, especially for the speech-to-text

track. In fact, there are more than 300 teams regis-

tered. However, most of them did not submit their

results. The possible reason may be that the inter-

disciplinary task is not easy for participants. We

hope to see more participants in the future.
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