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Abstract

Key Point Analysis (KPA) is one of the most
essential tasks in building an Opinion Summa-
rization system, which is capable of generating
key points for a collection of arguments toward
a particular topic. Furthermore, KPA allows
quantifying the coverage of each summary by
counting its matched arguments. With the aim
of creating high-quality summaries, it is neces-
sary to have an in-depth understanding of each
individual argument as well as its universal se-
mantic in a specified context. In this paper, we
introduce a promising model, named Matching
the Statements (MTS) that incorporates the dis-
cussed topic information into arguments/key
points comprehension to fully understand their
meanings, thus accurately performing ranking
and retrieving best-match key points for an in-
put argument. Our approach1 has achieved the
4th place in Track 1 of the Quantitative Sum-
marization – Key Point Analysis Shared Task
by IBM, yielding a competitive performance
of 0.8956 (3rd) and 0.9632 (7th) strict and re-
laxed mean Average Precision, respectively.

1 Introduction

Prior work in Opinion Summarization often fol-
lowed the extractive strategy, which identifies the
most representative pieces of information from the
source text and copies them verbatim to serve as
summaries (Angelidis and Lapata, 2018; Brazin-
skas et al., 2019). Abstractive summarization is a
less popular strategy compared to the previous one
yet offers more coherent output texts. Approaches
governed by this vein could generate new phrases,
sentences or even paragraphs that may not appear
in the input documents (Ganesan et al., 2010; Ison-
uma et al., 2021). Both extractive and abstrac-
tive methods are the straightforward applications
of multi-document summarization (Liu et al., 2018;
Fabbri et al., 2019), which has been an emerging

1The code is available at: https://github.com/
VietHoang1512/KPA

research domain of natural language processing in
recent years.

As is well known, in traditional multi-document
summarization methods, the role of an individual or
a subset of key points among the summaries is of-
ten neglected. To be more specific, Bar-Haim et al.
(2020) posed a question regarding the summarized
ability of a small group of key points, and to some
extent answered that question on their own by de-
veloping baseline models that could produce a con-
cise bullet-like summary for the crowd-contributed
arguments. With a pre-defined list of summaries,
this task is known as Key Point Matching (KPM).
Figure 1 provides a simple illustration of the KPM
problem, where the most relevant key points are
retrieved for each given argument within a certain
topic (i.e. context).

Inspired by the previous work that studied the
problem of learning sentence representation (Cer
et al., 2018; Reimers and Gurevych, 2019) and se-
mantic similarity (Yan et al., 2021), we propose
Matching The Statements (MTS), which further
takes the topic information into account and ef-
fectively utilizes such proper features to learn a
high performance unified model. Our approach
has benefited from the recent developments of
pre-trained language models such as BERT (De-
vlin et al., 2018), ALBERT (Lan et al., 2019) or
RoBERTa (Liu et al., 2019).

Our contributions in this paper could be depicted
as follows:

• Firstly, we design a simple yet efficient net-
work architecture to fuse the context into
sentence-level representations. Instead of let-
ting the model infer the implicit reasoning
structure, we provide our model with the infor-
mation on whether an argument or key point
(which are collectively referred to as state-
ments in the remainder of this paper) supports
its main topic or not.

https://github.com/VietHoang1512/KPA
https://github.com/VietHoang1512/KPA
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  Input argument

  Topic: We should end mandatory retirement
  Argument: Older workers have more experience 
  and expertise than young workers.
  Stance: 1 (supportive)

  Input key points

  Key points:
  - We should let everyone retire when they are ready
  - A mandatory retirement age decreases 
    institutional knowledge
  - A mandatory retirement age harms the economy
  - A mandatory retirement is not fair/discriminatory

A mandatory retirement age 
decreases institutional knowledge

A mandatory retirement 
age harms the economy

A mandatory retirement 
is not fair/discriminatory

We should let everyone 
retire when they are ready

Figure 1: Overview of the Key Point Matching workflow in the Quantitative Summarization – Key Point Analysis
Shared Task Track 1. From the information retrieval perspective, this task is to identify the most salient point that
reinforces a given query.

• Secondly, our method adopts the pseudo-
labels mechanism (Ge et al., 2020; Zhang
et al., 2021), where we label arguments that
belong to the same key point (and the key
point itself) by the same index. The goal is
to learn an embedding space in which the em-
bedded vectors of mutual supportive statement
pairs (i.e. having the same label) are pulled
closer whereas unrelated ones are pushed
apart.

• Finally, we validate the proposed MTS on the
ArgKP-2021 (Bar-Haim et al., 2020) dataset
in a variety of protocols. Extensive experi-
ment results show that our proposed method
strongly outperforms other baselines without
using external data, thus becoming a potential
method for the Key Point Matching problem.

The rest of this paper is organized in the follow-
ing way: Section 2 briefly reviews the related work,
while section 3 formulates the KPM problem. Next,
we describe our methodology in section 4, followed
by the experimental results in section 5. Finally,
section 6 will conclude our work and discuss future
directions for further improvements.

2 Related Work

A standard approach for key points and arguments
analysis is properly extracting their meaningful se-
mantics. Our model stems from recent literatures
that are based on siamese neural networks (Reimers
and Gurevych, 2019; Gao et al., 2021) to measure
the semantic similarity between documents. Even

though, MTS has its own unique characteristics to
incorporate context information.

2.1 Sentence Embeddings

The representation of sentences in a fixed-
dimensional vector space plays a crucial role in
enhancing a model’s performance on downstream
tasks. Early methods relied on static word embed-
dings (Pennington et al., 2014; Bojanowski et al.,
2017), which encoded a sentence by directly av-
eraging its word vectors or employing recurrent
neural network (RNN) encoders (Conneau et al.,
2017) and taking the pooled output from the hidden
units. Despite the fact that these methods can lever-
age both syntactic and semantic features, they often
fail to retain the contextual information or suffer
from slow training (due to the sequential nature of
RNNs).

That is where BERT (Devlin et al., 2018) as
well as its variants come in and dominate the mod-
ern NLP research. Training these architectures
can exploit the parallel computational capacity of
GPUs/TPUs hardware accelerators. In SBERT,
Reimers and Gurevych (2019) proposed a sentence
embedding method via fine-tuning BERT models
on natural language inference (NLI) datasets. More
recent studies in learning sentence representation
followed the contrastive learning paradigm and
achieved state-of-the-art performance on numer-
ous of benchmark tasks (Liao, 2021; Yan et al.,
2021).
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Figure 2: The overall design of our Matching The Statements architecture.

2.2 Semantic matching

Semantic matching is a long-standing problem and
has a wide range of applications, such as: question-
answering (Yang et al., 2015), text summarization
(Zhong et al., 2020) and especially, information
retrieval (Huang et al., 2013; Guo et al., 2016).
Jiang et al. (2019) introduced a hierarchical recur-
rent neural network that could capture long-term
dependency and synthesize information from dif-
ferent granularities (i.e. words, sentences or para-
graphs). Similarly, Yang et al. (2020) replaced the
RNN backbones with transformer-based models
and modified self-attention architectures to adapt
with long document inputs.

However, most of the existing work focuses only
on assessing the similarity between pairs of sen-
tences without paying attention to their context -
which can help the reader to get an overview of the
discussed topic. Recently, the ArgKP-2021 dataset
has been published by Bar-Haim et al. (2020),
which consists of annotations about whether two
statements and their stances towards a specific topic
match or not. The next sections will provide an
overview of this dataset and how our model is ap-
plicable in the Quantitative Summarization – Key
Point Analysis Shared Task 2.

3 Problem definition

In this shared task, we are provided with a dataset
consisting of 28 different topics. Each topic con-

2https://2021.argmining.org/shared_
task_ibm.html

tains a set of associated arguments and key points
in the form of matching (with label 1) or non-
matching (with label 0) pairs. The stances of these
statements (whether a claim agrees or disagrees
with its topic) are also exposed, we further evaluate
the impact of this information in section 5.6.2.

In short, the Key Point Matching problem is
formulated as follows: Given a controversial
topic T with a list of m arguments and n key
points A1, A2, . . . , Am; K1,K2, . . . ,Kn,
along with their corresponding stances
S1, S2, . . . , Sm+n (Si ∈ {−1, 1}), which
imply the attack or support relationships against
the topic, our task is to rank key points that have
the same stance with an input argument by the
matching score. This priority is dependent on both
the topic and the semantic of statements.

4 Methodology

The proposed MTS architecture is graphically
shown in figure 2. It takes four separate inputs:
(i) discussed topic, (ii) first statement, (iii) second
statement, and (iv) their stance toward the topic.
The final output is the similarity score of the fed in
statements with respect to the main context. In the
remainder of this section, we would like to describe
three main components of MTS: encoding, context
integration and statement encoding layers.

4.1 Data preparation

We observe that a small percentage of the argu-
ments (4.71%) belong to two or more key points,

https://2021.argmining.org/shared_task_ibm.html
https://2021.argmining.org/shared_task_ibm.html
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while the rest are matched with at most one. For
that reason, a straightforward idea is gathering ar-
guments, which belong to the same key point, and
label the clusters in order. In other words, each
cluster is represented by a key point Ki, contains
Ki and its matching arguments. Our clustering
technique results in the fact that there are a small
number of arguments that belong to multiple clus-
ters. Arguments that do not match any of the key
points are grouped into the NON-MATCH set.

Intuitively, if two different arguments support
the same key point, they tend to convey similar
meanings and should be considered as a matching
pair of statements. Conversely, statements from
different clusters are considered non-match in our
approach. This pseudo-label method thus utilizes
the similar semantic of within-cluster documents
and enhances the model robustness. In the remain-
der of this paper, those arguments that come from
the same cluster are referred to as positive pairs,
otherwise, they are negative pairs.

During training, we use each key point and its
matching/non-matching arguments (based on the
annotation in the ArgKP-2021 dataset) in a mini-
batch. Moreover, we also sample a small propor-
tion of the NON-MATCH arguments and merge
them into the mini-batch. Specifically, all the NON-
MATCH arguments are considered to come from
different and novel clusters. Because the definition
of positive/negative statement pairs is well-defined,
we can easily compute the loss in each mini-batch
with a usual metric learning loss (Chopra et al.,
2005; Yu and Tao, 2019).

4.2 Encoding layer

We first extract the contextualized representation
for textual inputs using the RoBERTa (Liu et al.,
2019) model. We adopt a canonical method (Sun
et al., 2019) to achieve the final embedding of a
given input, which is concatenating the last four
hidden states of the [CLS] token. These embed-
dings are fed into the context integration layer as
an aggregate representation for topics, arguments
and key points. For example, a statement vector at
this point is denoted as 3:

hX = [ hX1 , h
X
2 , . . . , h

X
4×768 ] (hXi ∈ R)

= [ hX1 , h
X
2 , . . . , h

X
3072 ]

3For a consistent notation, statements and stances are de-
noted by uppercase letters: X and S

with 768 is the number of hidden layers produced
by the RoBERTa-base model.

For the stance encoding, we employ a fully-
connected network with no activation function to
map the scalar input to a N -dimensional vector
space. The representation of each topic, statement
and stance are denoted as hT ,hX and hS , respec-
tively.

4.3 Context integration layer
After using the RoBERTa backbone and a shallow
neural network to extract the embeddings acquired
from multiple inputs, we conduct a simple con-
catenation with the aim of incorporating the topic
(i.e. context) and stance information into its argu-
ment/key point representations. After this step, the
obtained vector for each statement is ([; ] notation
indicates the concatenation operator):

vX = [hS ;hT ;hX ]

where vX ∈ RN+2×3072

4.4 Statement encoding layer
The statement encoding component has another
fully-connected network on top of the context in-
tegration layer to get the final D-dimensional em-
beddings for key points or arguments:

eX = vX W + b

where W ∈ R(N+6144)×D and b ∈ RD are the
weight and bias parameters.

Concretely, training our model is equivalent to
learning a function f(S, T,X) that maps the simi-
lar statements onto close points and dissimilar ones
onto distant points in R(N+6144)×D.

4.5 Training
In each iteration, we consider each input statement
from the incoming mini-batch as an anchor docu-
ment and sample positive/negative documents from
within/inter clusters. For calculating the match-
ing score between two statements, we compute the
cosine distance of their embeddings:

Dcosine(e
X1 , eX2) = 1− cos(eX1 , eX2) (1)

= 1− eX1
T
eX2

||eX1 ||2 ||eX2 ||2
Empirical results show that cosine distance

yields the best performance compared to Manhat-
tan distance (||eX1 − eX2 ||1) and Euclidean dis-
tance (||eX1 − eX2 ||2). Hence, we use cosine as



169

the default distance metric throughout our experi-
ments. We also revisit several loss functions, such
as contrastive loss (Chopra et al., 2005), triplet loss
(Dong and Shen, 2018) and tuplet margin loss (Yu
and Tao, 2019). Unlike previous work, Yu and Tao
(2019) use another distance metric, which will be
described below.

Assume that a mini-batch consists of k + 1 sam-
ples {Xa, Xp, Xn1 , Xn2 , . . . , Xnk−1

}, which satis-
fies the tuplet constraint: Xp is a positive statement
whereas Xni are Xa’s negative statements w.r.t Xa.
Mathematically, the tuplet margin loss function is
defined as:

Ltuplet = log(1 +

k−1∑
i=1

es(cos θani−cos (θap−β)))

where θap is the angle between eXa and eXp ; θani

is the angle between eXa and eXni . β is the mar-
gin hyper-parameter, which imposes the distance
between negative pair to be larger than β. Finally,
s acts like a scaling factor.

Additionally, Yu and Tao (2019) also introduced
the intra-pair variance loss, which was theoreti-
cally proven to mitigate the intra-pair variation and
improve the generalizability. In MTS, we use a
weighted combination of both tuplet margin and
intra-pair variance as our loss function. The formu-
lation of the latter one is:

Lpos = E[(1− ε) E[cos θap]− cos θap]
2
+

Lneg = E[cos θan − (1 + ε) E[cos θan]2+
Lintra−pair = Lpos + Lneg

where [·]+ = max(0, ·).
As pointed out by Hermans et al. (2017);

Wu et al. (2017), training these siamese neu-
ral networks raises a couple of issues regarding
easy/uninformative examples bias. In fact, if we
keep feeding random pairs, more easy ones are in-
cluded and prevent models from training. Hence, a
hard mining strategy becomes crucial for avoiding
learning from such redundant pairs. In MTS, we
adapt the multi-similarity mining from Wang et al.
(2019), which identifies a sample’s hard pairs using
its neighbors.

Given a pre-defined threshold ε, we select the
negative pairs if they have the cosine similarity
greater than the hardest positive pair, minus ε. For
instance, let Xa be a statement, which has its pos-
itive and negative sets of statements denoted by

PXa and NXa , respectively. A negative pair of
statements {Xa, Xn} is chosen if:

cosine(eXa , eXn) ≥ min
Xi∈PXa

cosine(eXa , eXi)− ε

Such pairs are referred to as hard negative pairs,
we carry out a similar process to form hard positive
pairs. If a positive pair {Xa, Xp} is selected, then:

cosine(eXa , eXp) ≤ max
Xi∈NXa

cosine(eXa , eXi) + ε

4.6 Inference

At inference time, we pair up the arguments and
key points that debate on a topic under the same
stance. Afterward, we compute the matching score
based on the angle between their embeddings. For
instance, an argument A and key point K will have
a matching score of:

score(eA, eK) = 1−Dcosine(e
A, eK)

= cos(eA, eK)

The right-hand side function squashes the score
into the probability interval of [0, 1) and compati-
ble with the presented loss function in section 4.5.

5 Experiment

To verify the effectiveness of the Matching The
Statements model, we conduct extensive experi-
ments on the ArgKP-2021 (Bar-Haim et al., 2020)
dataset and compare the performance of MTS
against baselines.

5.1 ArgKP-2021 Dataset

ArgKP-2021 (Bar-Haim et al., 2020), the data set
used in the Quantitative Summarization – Key
Point Analysis Shared Task, is split into training
and development sets with the ratio of 24 : 4. The
training set is composed of 5583 arguments and
207 key points while those figures in the develop-
ment set are 932 and 36. Each argument could
be matched to one or more key points, yet the
latter ones account for a small proportion of the
data, as stated in section 4.1. The texts presented
in ArgKP-2021 are relatively short, with approxi-
mately 18.22 ± 7.76 by words or 108.20 ± 43.51
by characters.

5.2 Evaluation protocol

For evaluation, only the most likely key point is
chosen for each argument based on the predicted
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scores. These pairs are then sorted by their match-
ing scores in descending order, and only the first
half of them are included in the assessment. Ac-
cording to Friedman et al. (2021), there are two
metrics used in Track 1, namely relaxed and strict
mean Average Precision (mAP):

Precision =
True Positive

True Positive + False Positive

Since there are some argument-key point pairs in
the ArgKP-2021 dataset that have indecisive anno-
tations (i.e. their label is neither matched nor non-
matched): in the relaxed mAP evaluation, these
pairs are considered as matched whereas strict mAP
treats them as non-matched pairs.

0.9980 0.9985 0.9990 0.9995 1.0000
prediction matching score

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

gr
ou

d 
tru

th
 m

at
ch

in
g 

sc
or

e

0.6 0.7 0.8 0.9 1.0
prediction matching score

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3: Statement representation before (left) and af-
ter (right) training.

5.3 Embeddings quality

Figure 3 depicts the qualitative representation
learning result of MTS before and after training.
In the beginning, the similarity scores between
matched/non-match key point-argument pairs are
extremely high (≈ 0.999). That means, almost all
the statements are projected into a small region of
the embedding space, and it is difficult to derive
a cut-off threshold to get rid of the non-matching
pairs.

Therefore, the mean Average Precision scores
when we directly use the untrained model with
RoBERTa backbone are relatively low. Though,
our training procedure improves the model’s dis-
tinguishability and reduces the collapsed represen-
tation phenomenon. Indeed, the similarity scores
at this point are stretched out and the mAP scores
significantly increase (strict mAP 0.45→ 0.84;
relaxed mAP 0.62→ 0.94).

5.4 Baselines

For performance benchmarking, we implement two
different baselines and their variations, namely
Simple Argument-Key point matching (SimAKP)
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Figure 4: Mean Average Precision scores over 7 folds.
The "T-" prefix denotes the models that use triplet loss
(Dong and Shen, 2018) while the rest are trained with
the contrastive loss (Chopra et al., 2005).

and Question Answering-liked Argument-Key
point matching (QA) models. We construct a sam-
pling strategy in an online manner: in each mini-
batch, we select the hardest positive/negative pairs
according to the method discussed in Section 4.5
to compute the loss.

Simple Argument-Key point matching: The
architecture of SimAKP is the same as MTS with
the main difference in the data preparation. In-
stead of clustering similar statements, SimAKP
simply performs pair-wise classification on the
ArgKP-2021 dataset. Equivalently, each input to
the SimAKP model consists of an argument-key
point pair. This approach will not make use of the
analogous nature of these claims that matched with
the same key point.

Question Answering-liked Argument-Key
point matching: Inspired by the Question Answer-
ing, we format the arguments and key points fed
to the RoBERTa model in order to incorporate the
context into statements as below:

[CLS] Topic [SEP] [SEP] Statement [SEP]
[CLS] Topic [SEP] [SEP] Key point [SEP]

where [CLS] and [SEP] are two special tokens.
In particular, obtained outputs of RoBERTa

model with the above inputs are then concatenated
with the stance representations to produce a tensor
with shape (batch size, N + 3072), which is fed
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to a fully connected layer to embed the semantic
meaning of each individual statement.

5.5 Results

To facilitate evaluation, we set up a 7-fold cross-
validation, each contains 24 topics for training and
4 topics for development. The train-dev split in
Track 1 of Quantitative Summarization – Key Point
Analysis Shared Task is replicated in fold 1.

As can be seen in Figure 4, we observe that our
proposed MTS (we use triplet loss for a fair com-
parison) consistently outperforms other baselines
in both mAP scores (higher is better). It achieved
competitive scores on all splits, except fold 7. The
reason is that the number of labeled argument-key
point pairs of the development set in this part is the
smallest among 7 folds, and there are substantial
drops in terms of performance for all baselines.

Model strict mAP relaxed mAP
SimAKP 0.790± 0.072 0.914± 0.041
SimAKP

w.o mining
0.783± 0.074 0.917± 0.037

T-SimAKP 0.788± 0.098 0.906± 0.054
T-SimAKP
w.o mining

0.782± 0.101 0.901± 0.076

Table 1: The effect of hard sample mining in baselines.

We also examine the impact of hard negative
mining in Table 1, the baselines are compared
against themselves when using the hard mining
strategy (i.e. avoid learning the embeddings of triv-
ial samples). With the employment of hard mining,
there is an improvement in performance for most
baselines. Except for a small decrease in terms
of relaxed mAP in SimAKP, both contrastive and
triplet loss Simple Argument-Key point matching
models have an average increase of 0.005% in mAP
scores.

5.6 Differential Analysis

To provide insight analysis in the setting of Match-
ing The Statements, we therefore create four dif-
ferent setups: original MTS, MTS with batch nor-
malization (Ioffe and Szegedy, 2015) immediately
after context integration layer, MTS without min-
ing strategy, and triplet-loss MTS. Although tuplet
margin loss has an up/down weighting hard/easy
samples mechanism, we find that MTS with multi-
similarity mining (Wang et al., 2019) performed
best during the exploratory phase.

T-MTS MTS MTS w/o miner MTS w. BN
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0.80±0.08 0.84±0.07 0.82±0.07 0.82±0.08

0.92±0.04 0.94±0.03 0.94±0.03 0.93±0.04

strict mAP relaxed mAP

Figure 5: Switching off different setups shows that
each component of the original MTS’s setting con-
tributes to its performance.

Figure 5 summarizes the average score for all
setups. Overall, MTS performs similarly or better
than its variants (without multi-similarity mining
or adding a batch normalization layer). Replacing
triplet loss with tuplet margin loss helps to boost
both strict mAP and relaxed mAP by 0.2. Even-
tually, in an attempt to produce a consistent and
accurate prediction on the test dataset, an ensemble
of 4/7 best models from splits was used for final
submission. As shown in Table 2, among the per-
formances of the top-10 team, our proposed model
achieved the third position in terms of strict mAP,
7th position in relaxed mAP and 4th overall.

# Team strict
mAP

relaxed
mAP

1 mspl 0.908 (2) 0.972 (3)
2 heinrichreimer 0.912 (1) 0.967 (5)
3 vund 0.878 (4) 0.968 (4)
4 HKL (ours) 0.896 (3) 0.963 (7)
5 sohanpatnaik 0.872 (5) 0.966 (6)
6 fengdoudou 0.853 (10) 0.98 (2)
7 mozhiwen 0.833 (12) 0.985 (1)
8 Fibelkorn 0.869 (6 0.952 (10)
8 emanuele.c 0.868 (7) 0.956 (9)
10 niksss 0.858 (8) 0.95 (11)

Table 2: Leaderboard of the Track 1 Quantitative Sum-
marization – Key Point Analysis.

5.6.1 BERT embeddings
Here, we showcase the benefit of taking the con-
catenation of the last four hidden state layers of the
[CLS] token as the aggregate representation for the
whole document. The first part of Table 3 is a clear
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Embedding strict mAP relaxed mAP #Param
Sum all tokens 0.834± 0.065 0.938± 0.037

125MMean all tokens 0.796± 0.068 0.916± 0.034
[CLS] last hidden layer 0.823± 0.072 0.937± 0.038
[CLS] 4 hidden layers 0.840± 0.071 0.941± 0.034 126M

LUKE 0.808± 0.096 0.926± 0.056 276M
ALBERT 0.748± 0.071 0.879± 0.044 13M
MPNet 0.839± 0.059 0.940± 0.029 111M

DistilBERT 0.724± 0.065 0.864± 0.058 68M
BERT (uncased) 0.746± 0.062 0.888± 0.035

110M
BERT (cased) 0.752± 0.073 0.883± 0.057

Table 3: Comparison between different embedding strategies and pre-trained language models. In this experiment,
we report the result of the base version.

proof for this advantage, using only the last hidden
layer of [CLS] can hurt the overall performance.
Likewise, the mean-pooling or summing up the
token embeddings has worse results, compared to
our method.

To show the generality and applicability of our
proposed model, we retain the MTS configuration
when experimenting with other transformers-based
backbones, such as: BERT (Devlin et al., 2018),
ALBERT (Lan et al., 2019), DistilBERT (Sanh
et al., 2019), LUKE (Yamada et al., 2020) or MP-
Net (Song et al., 2020). According to the second
part of Table 3, among six pre-trained language
models, MPNet yields a comparable result with
RoBERTa (≈ 0.84 & 0.94) while requiring 10%
less number of parameters. We also note that, the
increase in model size of Language Understand-
ing with Knowledge-based Embeddings (LUKE)
compared with RoBERTa results in unexpected per-
formance reduction.

5.6.2 Stance effect

Up till now, we have almost finished the needed
experiments to examine the effectiveness of our
methodology. In this subsection, we further investi-
gate the importance of the stance factor in building
the MTS model by posing a question: "How good
is MTS when it has to predict the implicit relation
between claims and topic". Since the topic infor-
mation is incorporated in encoding the statements,
so perhaps it is sufficient to learn meaningful repre-
sentations, without explicitly providing the stance
information.

By discarding the stance-involved components
in MTS 2, the averaged result in 7 folds conceiv-
ably degrades to 0.741± 0.094 in strict mAP but

rises up to 0.952±0.019 in relaxed mAP. This is be-
cause each argument now can be matched with key
points that have different stances. According to this
exploration, an open challenge for future research
is finding a better way to comprehend statements
within a topic (i.e. let the model infer the stance
itself). For instance, one could consider employ-
ing the attention mechanism between a topic and
its arguments and key points to characterize the
relationship between them.

6 Conclusion

In this paper, we present an efficient key point
matching method based on supervised contrastive
learning. We suppose that clustering the statements
will be beneficial for the model training, and em-
pirically verify this conclusion in the experiments.
In addition, we found a simple and effective tech-
nique to encode these statements, and thus yields
superior performance. In terms of model archi-
tecture, the components are carefully designed to
ensure productivity. Results on Track 1 of Quanti-
tative Summarization – Key Point Analysis show
our method is a conceptually simple approach yet
achieves promising performance.
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