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Introduction

Language and vision research has attracted great attention from both natural language processing (NLP)
and computer vision (CV) researchers. Gradually, this area is shifting from passive perception, templated
language and synthetic imagery or environments to active perception, natural language and real-world
environments. Thus far, few workshops on language and vision research have been organized by groups
from the NLP community. This year, we are organizing the second workshop on Advances in Language
and Vision Research (ALVR) in order to promote the frontier of language and vision research and bring
interested researchers together to discuss how to best tackle real-world problems in this area.

This workshop covers (but is not limited to) the following topics:

• New tasks and datasets that provide real-world solutions in the intersection of NLP and CV;

• Language-guided interaction with the real world, e.g. navigation via instruction following or
dialogue;

• External knowledge integration in visual and language understanding;

• Visually grounded multilingual study, e.g. multimodal machine translation;

• Fairness in multimodal machine learning;

• Shortcoming of existing language and vision tasks and datasets;

• Benefits of using multimodal learning in downstream NLP tasks;

• Self-supervised representation learning in language and vision;

• Transfer learning (including few/zero-shot learning) and domain adaptation;

• Cross-modal learning beyond image understanding, such as videos and audios;

• Multidisciplinary study that may involve linguistics, cognitive science, robotics, etc.

The details of our workshop can be found at https://alvr-workshop.github.io/.

Proceedings of the ALVR workshop from previous years can be found on ACL Anthology:
https://www.aclweb.org/anthology/venues/alvr/
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Abstract
Caption translation aims to translate image an-
notations (captions for short). Recently, Mul-
timodal Neural Machine Translation (MNMT)
has been explored as the essential solution. Be-
sides of linguistic features in captions, MNMT
allows visual (image) featuresto be used. The
integration of multimodal features reinforces
the semantic representation and considerably
improves translation performance. However,
MNMT suffers from the incongruence be-
tween visual and linguistic features. To over-
come the problem, we propose to extend
MNMT architecture with a harmonization net-
work, which harmonizes multimodal features
(linguistic and visual features) by unidirec-
tional modal space conversion. It enables mul-
timodal translation to be carried out in a seem-
ingly monomodal translation pipeline. We ex-
periment on the golden Multi30k-16 and 17.
Experimental results show that, compared to
the baseline, the proposed method yields the
improvements of 2.2% BLEU for the scenario
of translating English captions into German
(En→De) at best, 7.6% for the case of English-
to-French translation (En→Fr) and 1.5% for
English-to-Czech (En→Cz). The utilization of
harmonization network leads to the competi-
tive performance to the-state-of-the-art.

1 Introduction

Caption translation is required to translate a source-
language caption into target-language, where a cap-
tion refers to the sentence-level text annotation of
an image. As defined in the shared multimodal
translation task1 in WMT, caption translation can
be conducted over both visual features in images
and linguistic features of the accompanying cap-
tions. The question of how to opportunely utilize
images for caption translation motivates the study
of multimodality, including not only the extraction
of visual features but the cooperation between vi-
sual and linguistic features. In this paper, we follow

1http://www.statmt.org/wmt16/

the previous work (Specia et al., 2016) to boil cap-
tion translation down to a problem of multimodal
machine translation.

So far, a large majority of previous studies tend
to develop a neural network based multimodal ma-
chine translation model (viz., MNMT), which con-
sists of three basic components:

• Image encoder which characterizes a captioned
image as a vector of global or multi-regional
visual features using a convolutional neural net-
work (CNN) (Huang et al., 2016).

• Neural translation network (Caglayan et al.,
2016; Sutskever et al., 2014; Bahdanau et al.,
2014) which serves both to encode a source-
language caption and to generate the target-
language caption by decoding, where the latent
information that flows through the network is
referred to linguistic feature.

• Multimodal learning network which uses vi-
sual features to enhance the encoding of linguis-
tic semantics (Ngiam et al., 2011). Besides of
the concatenation and combination of linguis-
tic and visual features, vision-to-language atten-
tion mechanisms serve as the essential opera-
tions for cross-modality learning. Nowadays,
they are implemented with single-layer attentive
(Caglayan et al., 2017a; Calixto et al., 2017b),
doubly-attentive (Calixto et al., 2017a), inter-
polated (Hitschler et al., 2016) and multi-task
(Zhou et al., 2018) neural networks, respectively.

Multimodal learning networks have been suc-
cessfully grounded with different parts of various
neural translation networks. They are proven ef-
fective in enhancing translation performance. Nev-
ertheless, the networks suffer from incongruence
between visual and linguistic features because:

• Visual and linguistic features are projected into
incompatible semantic spaces and therefore fail
to be corresponded to each other.
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Ground-truth: 

Two brown 
horses pulling 

a sleigh 
through snow. 

 

Ground-truth: 

Sled dogs 
running and 

pulling a sled. 

 

Counterfeit: 

Two brown 
horses running 

and pulling a 
sled. 

Image 

captioning 

Cross-modality learning 

Encoder-decoder NMT 

Translation in DE::  
Zwei braune pferde ziehen einen 

schlitten durch den schnee. 

   
Linguistic feature Linguistic feature 

Visual 

linguistic 

Figure 1: An example in which image captioning con-
tributes to the reduction of incongruence.

• Linguistic features are sequence-dependent.
This is attributable to pragmatics, syntax or
even rhetoric. On the contrary, visual features
are sequence-independent but position-sensitive.
This is attributable to spatial relationships of vi-
sual elements. Thus, a limited number of visual
features can be directly used to improve the un-
derstanding of linguistic features and translation.

Considering the Figure 1(“Counterfeit” means
Image Captioning output), the visual features en-
able a image processing model to recognize “two
horses” as well as their position relative to a
“sleigh”. However, such features are obscure for a
translation model and useful for translating a verb,
such as “pulling” in the caption. In this case, incon-
gruence of heterogeneous features results from the
unawareness of the correspondence between spatial
relationship (“running horses” ahead of “sleigh”)
and linguistic semantics (“pulling”).

To ease the incongruence, we propose to equip
the current MNMT with a harmonization network,
in which visual features are not directly introduced
into the encoding of linguistic semantics. Instead,
they are transformed into linguistic features be-
fore absorbed into semantic representations. In
other words, we tend to make a detour during the
cross-modality understanding, so as to bypass the
modality barrier (Figure 2). In our experiments, we
employ a captioning model to conduct harmoniza-
tion. The hidden states it produced for decoding
caption words are intercepted and involved into the
representation learning process of MNMT.

The rest of the paper is organized as follows:
Section 2 presents the motivation and methodolog-
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Figure 2: Bypassing modality barrier by captioning.

ical framework. Section 3 gives the NMT model
we use. In Section 4, we introduce the captioning
model that is trainable for cross-modality feature
space transformation. Section 5 presents the cap-
tioning based harmonization networks as well as
the resultant MNMT models. We discuss test re-
sults in Section 6 and overview the related work in
Section 7. We conclude the paper in section 8.

2 Fundamentals and Methodological
Framework

We utilize Anderson et al (2018)’s image caption-
ing (CAP for short) to guide the cross-modality
feature transformation, converting visual features
into linguistic. CAP is one of the generation mod-
els which are specially trained to generate language
conditioned on visual features of images. Ideally,
during training, it learns to perceive the correspon-
dence between visual and linguistic features, such
as that between the spatial relationship of “running
dogs ahead of a sled” in Figure 1 and the meaning
of the verb “pulling”. This allows CAP to pro-
duce appropriate linguistic features during testing
in terms of similar visual features, such as that in
the case of predicting the verb “pulling” for the
scenario of “running horses ahead of a sleigh”.

Methodologically speaking, we adopt the lin-
guistic features produced by the encoder of CAP
instead of the captions generated by the decoder of
CAP. On the basis, we integrate both the linguis-
tic features of the original source-language cap-
tion and those produced by CAP into Calixto et al
(2017b)’s attention-based cross-modality learning
model (see Figure 3). Experimenal results show
that the learning model substantially improves Bah-
danau et al (2014)’s encoder-decoder NMT system.

3 Preliminary 1: Attentive
Encoder-Decoder NMT (Baseline)

We take Bahdanau et al. (2014)’s attentive encoder-
decoder NMT as the baseline. It is constructed

2



GRU

GRU

xt-1

s(t-1)

GRU

GRU

xt

s(t)

GRU

GRU

xt+1

s(t+1)

GRU

GRU

xN

s(N)

GRU

GRU

x1

s(0)

s(t) s(t+1) s(N)s(t-1)s(0)

Attention

GRU

GRU hd2(t)

he1(N)

he2(N)

c(t) hd1(t)

+
GRU

GRU hd2(t-1)

c(t-1) hd1(t-1)

+
GRU

c(0) hd1(1)

+

hd2(1)

GRU

GRU hd2(t+1)

c(t+1) hd1(t+1)

+
GRU

GRU hd2(M)

c(M) hd1(M)

+

AttentionAttention Attention Attention

ht(fnl)

hd1/d2(0) GRU

y(t-2) y(t-1) y(t) y(M)

he1(0)

CAP
V

N
M

T 
D

ec
od

er
N

M
T 

En
co

de
r

CAPV

CAP-ATT

CAPV

CAP-TKN

y(t)=y(t)hd2(fnl)

CAPV

CAP-ENC
he1(0)=tanh(W0hd2(fnl))

CNN

CNN

CNN

CAP-DEC

hd1(0)=W'0hd2(fnl)

hd2(0)=W'0hd2(fnl)

Im
ag

e 
En

co
de

r

M
od

al
ity

 T
ra

ns
iti

on

C
A
P-
EN

C
h e

2(
0)
=t
an
h(
W
0h

d2
(fn
l))

C
ro

ss
-m

od
al

ity
 L

ea
rn

in
g

he2(0)

he1(t)

he2(N-t+1)

CAP

GRU

GRU

xt

s(t)

Attention

GRU

GRU hd2(t)

c(t) hd1(t)

+

hd2(t-1)

y(t-1)

he1(t)

he2(N-t+1)

hd1(t)hd1(t-1)

y(t-1)

Baseline NMTCongruent Cross-modality Learning for Multimodal NMT

Figure 3: The overall architecture of MNMT.

with a BiGRU encoder and a Conditional GRU
(CGRU) decoder (Firat and Cho, 2016; Caglayan
et al., 2017a). Attention mechanism is used be-
tween BiGRU and CGRU. The diagram at the right
side of Figure 3 shows the baseline framework.

For a source-language caption, we represent it
with a sequence of randomly-initialized (Kalch-
brenner and Blunsom, 2013) word embeddings
X=(x1, ..., xN ), where each xt is uniformly spec-
ified as a k-dimensional word embedding. Con-
ditioned on the embeddings, Chung et al (2014)’s
BiGRU is used to compute the bidirectional hidden
states S=(s1, ..., sN ), where each st is obtained
by combining the t-th hidden state of forward
GRU and that of backward GRU: st=[

−−−→
GRU e(xt),←−−−

GRU e(xt)]. Padding (Libovickỳ and Helcl, 2018)
and dynamic stabilization (Ba et al., 2016) are used.

Firat and Cho (2016)’s CGRU is utilized for de-
coding, which comprises two forward GRU units,
i.e.,
−−−→
GRUd1 and

−−−→
GRUd2 respectively.

−−−→
GRUd1

plays the role of producing the inattentive de-
coder hidden states Hd1=(hd11 , ..., h

d1
M ), where

each hd1t is computed based on the output state
hd1t−1 and prediction yt−1 at the previous time step:
hd1t =
−−−→
GRUd1(hd1t−1, yt−1) (Note: the prediction yt

denotes the k-dimensional embedding of the pre-
dicted word at the t-th decoding step). By contrast,−−−→
GRUd2 serves to produce the attentive decoder
hidden states Hd2=(hd21 , ..., h

d2
M ), where each hd2t

is computed conditioned on the previous atten-
tive state hd2t−1, the current inattentive state hd1t ,
as well as the current attention-aware context ct:

hd2t =
−−−→
GRUd2(hd2t−1, h

d1
t ⊕ ct). The context ct is ob-

tained by the attention mechanism over the global
encoder hidden states S: ct = αtS, where αt de-
notes the attention weight at the t-th time step.
Eventually, the prediction of each target-language
word is carried out as follows (where, Wh, Wc,
Wy, bo and by are trainable parameters):

Dt(yt−1, hd2t , ct) ∼





ot =tanh(yt−1 + Whh
d2
t +

Wcct + bo)

P (yt|ot) = softmax(W>
y ot

+ by)
(1)

4 Preliminary 2: Image-dependent
Linguistic Feature Acquisition by CAP

For an image, captioning models serve to gener-
ate a sequence of natural language (caption) that
describes the image. Such kind of models are capa-
ble of transforming visual features into linguistic
features by encoder-decoder networks. We utilize
Anderson et al. (2018)’s CAP to obtain the trans-
formed linguistic features.

4.1 CNN based Image Encoder

What we feed into CAP is a full-size image which
needs to be convolutionally encoded beforehand.
He et al (He et al., 2016a)’s CNNs (known as
ResNet) with deep residual learning mechanism
(He et al., 2016b) is capable of encoding images.
In our experiments, we employ the recent version

3



of ResNet, i.e., ResNet-101 , which is constructed
with 101 convolutional layers. It is pretrained on
ImageNet (Russakovsky et al., 2015) in the sce-
nario of 1000-class image classification.

Using ResNet-101, we characterize an image as
a convolutional feature matrix: V ∈ Rk×2048 =
{v1, ..., vk}, in which each element vi ∈ R2048 is
a real-valued vector and corresponds to an image
region in the size of 14× 14 pixels.

4.2 Top-down Attention-based CAP

CAP learns to generate a caption over V . It is
constructed with two-layer RNNs with LSTM (An-
derson et al., 2018), LSTM1 and LSTM2 respec-
tively. LSTM1 (in layer-1) computes the current
first-layer hidden state ȟd1t conditioned on the cur-
rent first-layer input x̌d1t and previous hidden state
ȟd1t−1: ȟd1t =LSTM1(x̌d1t , ȟd1t−1). The input x̌d1t is ob-
tained by concatenating the previous hidden state
ȟd1t−1 and previous prediction y̌t−1, as well as the
condensed global visual feature v̄: x̌d1t =[v̄, ȟd1t−1,
y̌t−1], where v̄ is calculated by the normalized ac-
cumulation of overall convolutional features in V :
v̄ = 1

k

∑
i vi (∀vi ∈ V ). We specify the first-layer

hidden state as the initial image-dependent linguis-
tic features.

Attention mechanism (Sennrich et al., 2015) is
used for highlighting the attention-worthy image
context, so as to produce the attention-aware vector
of image context v̌t: v̌t =

∑
α̌tV . The attention

weight α̌t is obtained by aligning the current image-
dependent hidden state ȟd1t with every convoluted
visual feature vi: α̌t = softmax.f(ȟd1t , vi), where
f(∗) is the non-linear activation function.

LSTM2 (in layer-2) serves as a neural language
model (viz., language-oriented generation model).
It learns to encode the current second-layer hid-
den state ȟd2t conditioned on the current second-
layer input x̌d2t and previous hidden state ȟd2t−1:
ȟd2t =LSTM1(x̌d2t , ȟd2t−1). The input x̌d2t is ob-
tained by concatenating the current first-layer hid-
den state ȟd1t (emitted from layer-1) and current
attention-aware image context v̌t: x̌d2t =[v̌t, ȟd1t ].
We specific a second-layer hidden state ȟd2t as
the image-dependent attention-aware linguistic fea-
tures. Towards the image captioning task, CAP
generally decodes the second-layer hidden states
ȟd2t to predict caption words. In our case, we tend
to integrate them into multimodal NMT by cross-
modality learning (see the next section).

5 Harmonization for MNMT

In the previous work of multimodal NMT, visual
features in V are directly used for cross-modality
learning. By contrast, we transform visual features
into image-dependent attention-aware linguistic
features (i.e., second-layer hidden states ȟd2t emit-
ted by CAP) before use. We provide four-class vari-
ants of cross-modality learning to improve NMT.
They absorb image-dependent attention-aware lin-
guistic features in different ways, including a vari-
ant that comprises attentive feature fusion (CAP-
ATT) and three variants (CAP-ENC, CAP-DEC
and CAP-TKN) which carry out reinitialization and
target-language embedding modulation. Figure 3
shows the positions in the baseline NMT where the
variants come into play.

CAP-ATT intends to improve NMT by conduct-
ing joint representation learning across the features
of the source-language caption and that of the ac-
companying image. On one side, CAP-ATT adopts
the encoder hidden state st (emitted by the Bi-
GRU encoder of the baseline NMT) and uses it as
the language-dependent linguistic feature. On the
other side, it takes the image-dependent attention-
aware linguistic feature ȟd2t (produced by CAP).
We suppose that the two kinds of features (i.e.,
ȟd2t and st) are congruent with each other. On the
basis, CAP-ATT blends ȟd2t into st to form the
joint representation ŝt. Element-wise feature fu-
sion (Cao and Xiong, 2018) is used to compute ŝt:
ŝt = st � ȟd2t . Using the joint representation ŝt,
CAP-ATT updates the attention-aware context ct
which is fed into the CGRU decoder of the baseline
NMT: ĉt=αtŜ, ∀ŝ ∈ Ŝ. By substituting the up-
dated context ĉt into the computation of the CGRU
decoder, CAP-ATT further refines the decoder hid-
den state hd2t and prediction of target-language
words. Equation 2 formulates the decoding pro-
cess, where Dt is the shorthand of equation (1).

D̂t(yt−1, ĥd2t , ĉt) ∼





ĥd2t =
−−−→
GRUd2(ĥd2t−1, h

d1
t

⊕ ĉt)
yt ⇐Dt(yt−1, ĥ

d2
t , ct)

(2)
CAP-ENC reinitializes the BiGRU encoder of

the baseline NMT with the final image-dependent
attention-aware linguistic feature ȟd2t (t=N ) (pro-
duced by CAP):

←−
h 0 =

−→
h 0 = tanh(W0ȟ

d2
t ),

where
←−
h 0 and

−→
h 0 are the initial states of BiGRU,

and W0 refers to the trainable parameter. CAP-
4



DEC uses ȟd2t (t=N ) to reinitialize the CGRU
decoder of the baseline NMT: hd10 = hd20 =
tanh(W′

0ȟ
d2
t ), where hd10 and hd20 are the ini-

tial decoder hidden states of CGRU. Using ȟd2t
(t=N ), CAP-TKN modulates the predicted target-
language word embedding yt at each decoding step:
yt = yt�tanh(Wtknȟ

d2
t ), where Wtkn is the train-

able parameter. CAP-ALL equips a MNMT sys-
tem with all the variants.

6 Experimentation

6.1 Resource and Experimental Datasets

We perform experiments on Multi30k-16 and
Multi30k-172, which are provided by WMT for the
shared tasks of multilingual captioning and multi-
modal MT (Elliott et al., 2016). The corpora are
used as the extended versions of Flichr30k (Young
et al., 2014), since they contain not only English
(En) image captions but their translations in Ger-
man (De), French (Fr) and Czech (Cz). Hereinafter,
we specify an example in Multi30k as an image
which is accompanied by three En→De, En→Fr
and En→Cz caption-translation pairs. Each of
Multi30k-16 and Multi30k-17 contains about 31K
examples. We experiment on the corpora sepa-
rately, and as usual divide each of them into train-
ing, validation and test sets, at the scale of 29K,
1,014 and 1K examples, respectively.

In addition, we carry out a complementary exper-
iment on the ambiguous COCO which contains 461
examples (Elliott et al., 2017). Due to the inclusion
of ambiguous verbs, the examples in ambiguous
COCO can be used for the evaluation of visual
sense disambiguation in a MNMT scenario.

6.2 Training and Hyperparameter Settings

For preprocessing, we apply Byte-Pair Encoding
(BPE) (Sennrich et al., 2015) for tokenizing all the
captions and translations in Multi30k and COCO,
and use the open-source toolkit3 of Moses (Koehn
et al., 2007) for lowercasing and punctuation nor-
malization. It reproduces the neural network archi-
tecture of Anderson et al (Anderson et al., 2018)’s
top-down attentive CAP. The only difference is that
it merely utilizes ResNet-101 in generating the in-
put set of visual features V , without the use of
Faster R-CNN (Ren et al., 2015). This CAP has

2https://github.com/multi30k/dataset/tree/master/data-
/task1/raw

3https://github.com/moses-smt/mosesdecoder/tree/-
master/scripts/tokenizer

been trained on MSCOCO captions dataset (Lin
et al., 2014) using the same hyperparameter set-
tings as that in Anderson et al. (2018)’s work.

Besides of the baseline NMT (Bahdanau et al.,
2014) mentioned in section 2, we compare our
model with Caglayan et al (Caglayan et al.,
2017a)’s convolutional visualfeature based MNMT.
In this paper, we follow Caglayan et al (Caglayan
et al., 2017a)’s practice to implement and train our
model. First of all, we implement our model with
the nmtpy framework (Caglayan et al., 2017b) us-
ing Theano v0.9. During training, ADAM with
a learning rate of 4e-4 is used and the batch size
is set as 32. We initialize all the parameters (i.e.,
transformation matrices and biases) using Xavier
and clip the total gradient norm to 5. We drop
out the input embeddings, hidden states and output
states with the probabilities of (0.3, 0.5, 0.5) for
En→De MT, (0.2, 0.4, 0.4) for En→Fr and (0.1,
0.3, 0.3) for En→Cz. In order to avoid overfitting,
we apply a L2 regularization term with a factor of
1e-5. We specify the dimension as 128 for all token
embeddings (k = 128) and 256 for hidden states.

6.3 Comparison to the Baseline

We carry out 5 independent experiments (5 runs)
for each of the proposed MNMT variants. In each
run, any of the variants is retrained and redeveloped
under cold-start conditions using a set of randomly-
selected seeds by MultEval4. Eventually, the resul-
tant models are evaluated on the test set with BLEU
(Papineni et al., 2002), METEOR (Denkowski and
Lavie, 2014) and TER (Snover et al., 2006).

For each variant, we report not only the compre-
hensive performance (denoted as ensemble) which
is obtained using ensemble learning (Garmash and
Monz, 2016) but that without ensemble learning.
In the latter case, the average performance (µ) and
deviations (σ) in the 5 runs are reported.

6.3.1 Performance on Multi30k
Tables 1 and 2 respectively show the performance
of our models on Multi30k-16 and Multi30k-17 for
the translation scenarios of En→De, En→Fr and
En→Cz. Each of our MNMT models in the tables
is denoted with a symbol "+", which indicates that a
MNMT model is constructed with the baseline and
one of our cross-modality learning models. The
baseline is specified as the monomodal NMT model
which is developed by Bahdanau et al. (2014) (as

4https://github.com/jhclark/multeval
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En→De
Multi30k-16 (µ ± σ/ensemble) Multi30k-17 (µ ± σ/ensemble)

BLEU METEOR TER BLEU METEOR TER
Baseline 38.1±0.8/40.7 57.3±0.5/59.2 N/A 30.8±1.0/33.7 51.6±0.5/53.8 N/A
+CAP−ATT 39.2±0.8/41.3 57.5±0.6/59.4 40.9±0.8/39.5 32.1±0.9/33.6 51.0±0.7/52.9 48.7±0.8/47.3
+CAP−ENC 39.1±0.8/41.2 57.6±0.7/59.2 40.9±0.8/39.3 32.5±0.8/33.8 52.2±0.7/54.5 48.5±0.8/46.3
+CAP−DEC 38.9±0.8/41.0 57.4±0.7/59.3 41.3±0.8/39.1 33.0±0.8/34.3 51.6±0.7/53.2 48.6±0.8/47.1
+CAP−TKN 39.1±0.8/40.9 57.3±0.6/58.6 41.3±0.8/39.1 32.2±0.8/33.9 51.3±0.7/53.5 48.5±0.8/47.0
+CAP−ALL 39.6±0.9/42.1 57.5±0.7/59.9 41.1±0.8/39.4 31.6±0.8/33.9 51.6±0.7/53.7 49.7±0.7/47.1

En→Fr
Multi30k-16 (µ ± σ/ensemble) Multi30k-17 (µ ± σ/ensemble)

BLEU METEOR TER BLEU METEOR TER
Baseline 52.5±0.3/54.3 69.6±0.1/71.3 N/A 50.4±0.9/53.0 67.5±0.7/69.8 N/A
+CAP−ATT 60.1±0.8/63.3 74.3±0.6/77.1 25.1±0.7/22.7 52.5±0.9/56.1 68.2±0.7/71.2 31.5±0.7/28.4
+CAP−ENC 59.3±0.9/62.8 73.5±0.6/76.4 26.2±0.7/23.3 52.2±0.8/55.8 68.1±0.7/71.1 31.5±0.7/28.5
+CAP−DEC 60.1±0.9/62.6 74.2±0.7/76.3 25.6±0.6/23.0 51.9±0.9/55.7 67.6±0.7/71.3 31.6±0.7/28.1
+CAP−TKN 60.3±0.8/63.0 74.5±0.6/76.6 25.2±0.6/23.0 52.7±0.9/56.0 68.3±0.6/71.3 31.5±0.7/28.6
+CAP−ALL 60.1±0.8/62.7 74.3±0.6/76.4 25.0±0.4/23.1 52.8±0.9/56.1 68.6±0.6/71.1 31.2±0.7/28.9

Table 1: Performance for both En→De and En→Fr on Multi30k-16 and Multi30k-17.

En→Cz
Multi30k(2016) (µ ± σ /ensemble)

BLEU METEOR TER
Baseline 30.5±0.8/32.6 29.3±0.4/31.4 N/A

+CAP−ATT 31.8±0.9/33.4 30.2±0.4/32.6 46.1±0.8/43.6
+CAP−ENC 31.7±0.8/33.3 29.9±0.4/32.1 46.3±0.8/43.5
+CAP−DEC 31.6±0.9/33.3 30.0±0.4/32.3 45.6±0.8/43.6
+CAP−TKN 32.0±0.9/33.9 30.1±0.4/32.3 45.7±0.8/43.3
+CAP−ALL 31.8±0.9/33.6 29.9±0.4/31.5 45.3±0.8/43.3

Table 2: Performance for En→Cz on Multi30k-16

mentioned in section 2) and redeveloped as the
baselines in a variety of research studies on mul-
timodal NMT (Calixto et al., 2017a,b; Caglayan
et al., 2017a). We quote the results reported in
Caglayan et al. (2017a)’s work as they were better.

It can be observed that our MNMT models out-
perform the baseline. They benefits from the per-
formance gains yielded by the variants of CAP
based cross-modality learning, which are no less
than 1.5% BLEU when ensemble learning is used,
and 0.6% when not to use it. In particular, +CAP-
ATT obtains a performance increase of up to 7.6%
BLEU (µ) in the scenario of En→Fr MT. The gains
in METEOR score we obtain are less obvious than
that in BLEU, which is about 5.3% (µ) at best.

We follow Clark et al. (2011) to perform sig-
nificance test. The test results show that +CAP-
ATT, +CAP-DEC and +CAP-TKN achieve a p-
value of 0.02, 0.01 and 0.007, respectively. Clark
et al. (2011) have proven that the performance im-
provements are significant only if the p-value is
less than 0.05. Therefore, the proposed method
yields statistically significant performance gains.

6.3.2 Performance on Ambiguous COCO
Table 3 shows the translation performance. It can
be found that our models yield a certain amount of
gains (in BLEU scores) for En→De translation, and
raise both BLEU and METEOR scores for En→Fr.

The METER scores for En→De are comparable to
that the baseline achieved. However, the improve-
ment is less significant compared to that obtained
on Multi30k-16&17 (see Table 1). Considering
that the ambiguous COCO contains a larger num-
ber of ambiguous words than Multi30k-16&17, we
suggest that our method fails to largely shield the
baseline from the misleading of ambiguous words.

Nevertheless, our method doesn’t result in a two-
fold error propagation, but on the contrary it allevi-
ates the negative influences of the errors because:

• Error propagation, in general, is inevitable when
a GRU or LSTM unit is used. Both are trained
to predict a sequence of words one by one. Ap-
propriate prediction of previous words is crucial
for ensuring the correctness of subsequent words.
Thus, once a mistake is made at a certain decod-
ing step, the error will be propagated forward,
and mislead the prediction of subsequent words.

• The baseline is equipped with a GRU decoder
and therefore suffers from error propagation.
More seriously, ambiguous words increase the
risk of error propagation. This causes a sig-
nificant performance reduction on Ambiguous
COCO. For example, the BLEU score for
En→De is 28.7% at best. It is far below that
(40.7%) obtained on Multi30k-16&17.

• Two-fold error propagation is suspected to occur
when LSTM-based CAP is integrated with the
baseline. Though the opposite is actually true.
After CAP is used, the translation performance
is improved instead of falling down.

6.4 Comparison to the state of the art
We survey the state-of-the-art research activities in
the field of MNMT, and compare them with ours
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Ambiguous
coco (2017)

En→De (µ ± σ/ensemble) En→Fr (µ ± σ/ensemble)
BLEU METEOR TER BLEU METEOR TER

Helcl et al (2017) 25.7 45.6 N/A 43.0 62.5 N/A
Caglayan et al (2017) 29.4� 49.2� N/A 46.2� 66.0� N/A
Zhou et al (2018) 28.3 48.0 N/A 45.0 64.7 N/A
Baseline 26.4±0.2/28.7 46.8±0.7/48.9 N/A 41.2±1.2/43.3 61.3±0.9/63.3 N/A
+CAP-ATT 27.1±1.2/29.3 47.7±0.9/48.8 53.0±1.1/50.7 43.8±1.2/46.8 62.2±0.9/65.0 36.5±1.0/34.5
+CAP-ENC 27.1±1.1/29.4 47.5±0.9/48.7 54.1±1.1/51.2 42.8±1.2/46.3 60.8±0.9/65.3 38.1±1.0/33.4
+CAP-DEC 27.8±1.1/29.9 47.8±1.0/49.3 53.8±1.1/50.8 43.2±1.2/46.1 61.5±0.9/65.3 37.3±1.0/34.3
+CAP-TKN 27.3±1.2/29.6 46.4±0.9/48.9 54.2±1.2/51.1 44.5±1.2/46.8 62.4±0.9/65.3 37.8±1.0/34.0
+CAP-ALL 27.6±1.1/29.8 46.4±0.9/48.9 54.4±1.2/50.8 44.3±1.2/47.1 62.6±0.9/65.4 36.4±1.0/33.5

Table 3: Performance on Amb-COCO (Note: "�" is the sign of the performance when ensemble learning is used.)

En→De
Multi30k-16 Multi30k-17

BLEU METEOR BLEU METEOR
Huang et al (2016) 36.5 54.1
Calixto et al (2017a) 36.5 55.0
Calixto et al (2017b) 41.3� 59.2�
Elliott et al (2017) 40.2� 59.3�
Helcl et al (2017) 34.6 51.7 28.5 49.2
Caglayan et al (2017a) 41.2� 59.4� 33.5� 53.8�
Helcl et al (2018) 38.7 57.2
Zhou et al (2018) 31.6 52.2
Ours (µ) 39.6 57.5 33.0 52.2
Ours (ensemble) 42.1 59.9 34.3 54.5

En→Fr
Multi30k-16 Multi30k-17

BLEU METEOR BLEU METEOR
Helcl et al (2017) 50.3 67.0
Caglayan et al (2017a) 56.7� 73.0� 55.7� 71.9�
Helcl et al (2018) 60.8 75.1
Zhou et al (2018) 53.8 70.3
Ours (µ) 60.1 74.3 52.8 68.6
Ours (ensemble) 63.3 77.1 56.1 71.1

En→Cz
Multi30k-16 Multi30k-17

BLEU METEOR BLEU METEOR
Helcl et al (2018) 31.0 29.9
Ours (µ) 32.0 30.2
Ours (ensemble) 33.9 32.6

Table 4: Comparison results on Multi30k (Note: "�" is
the sign indicating the use of ensemble learning).

(as shown in Table 4). Comparison are made for all
the WMT translation scenarios (En→De, Fr and
Cz) on Multi30k-16&17 but merely for En→De
and En→Fr on ambiguous COCO (as shown in Ta-
ble 3). To our best knowledge, there is no previous
attempt to evaluate the performance of an En→Cz
translation model on ambiguous COCO, and thus
a precise comparison for that is not available. It is
noteworthy that some of the cited work reports the
ensemble learning results for MNMT, others make
no mention of it. We label the former with a symbol
of "�" in Tables 3 and 4 to ease the comparison.

It can be observed that our best model outper-
forms the state of the art for most scenarios over dif-
ferent corpora except the En→Fr case on Multi30k-
17. The performance increases are most apparent in
the case of En→Fr on Multi30k-16 when ensemble
learning is used, where the BLEU and METEOR
scores reach the levels of more than 63% and 77%,
with the improvements of 6.6% and 4.1%.

We regard the work of Caglayan et al. (2017a)

and Calixto et al. (2017a) as the representatives in
our systematic analysis. Caglayan et al. (2017a)
directly use raw visual features (i.e., V mentioned
in section 3.1) to enhance NMT at different stages,
including that of initialization, encoding and de-
coding. Calixto et al. (2017a) develop a doubly-
attentive decoder, where both visual features of
images and linguistic features of captions are used
for computing the attention scores during decoding.

• Caglayan et al. (2017a)’s model: Caglayan
et al. (2017a)’s model integrates visual features
V into the decoding process. By contrast, we
conduct the integration using linguistic features
which are transformed from visual features. It is
proven that our integration approach leads to con-
siderable performance increases. Accordingly,
we suppose that reducing incongruence between
visual and linguistic features contributes to cross-
modality learning in MNMT.

• Calixto et al. (2017a)’s model: Our CAP-ATT
is similar to Calixto et al. (2017a)’s model due
to the use of attention mechanisms during decod-
ing. The difference is that CAP-ATT transforms
visual features into linguistic features before at-
tention computation. This operation leads to the
increases of both BLEU (2.7%) and METEOR
(2%) on Multi30k-16. The results demonstrate
that attention scores can be computed more ef-
fectively between features of the same type.

6.5 Performance in Adversarial Evaluation
We examine the use efficiency of images for
MNMT using Elliott’s adversarial evaluation (El-
liott, 2018). Elliott suppose that if a model effi-
ciently uses images during MNMT, its performance
would degrade when it is cheated by some incon-
gruent images. Table 5 shows the test results, where
"C" is specified as a METEOR score which is eval-
uated when there is not any incongruent image in
the test set, while "I" is that when some incogru-
ent images are used to replace the original images.
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If the value of “C” is larger than “I”, a positive
4E-Awareness can be obtained. It illustrates an ac-
ceptable use efficiency. On the contrary, a negative
4E-Awareness is a warning of low efficiency.

Table 5 shows the test results. It can be ob-
served that our +CAP-ATT and +CAP-ALL models
achieve positive 4E-Awareness for all the trans-
lation scenarios on Multi30k-16. In addition, the
models obtain higher values of4E-Awareness than
Caglayan et al. (2017a)’s models of decinit and
hierattn. As mentioned above, Caglayan et al
directly use visual features to enhance the MNMT,
while we use the image-dependent linguistic fea-
tures that are transformed from visual features.
Therefore, we suppose that modality transforma-
tion leads to a higher use efficiency of images.

7 RELATED WORK

We have mentioned the previous work of MNMT
in section 1, where the research interest has been
classified into image encoding, encoder-decoder
NMT construction and cross-modality learning.
Besides, we present the methods of Caglayan et al.
(2017a) and Calixto et al. (2017a) in the section
4.4.2, along with the systematic analysis. Besides,
many scholars within the research community have
made great efforts upon the development of sophis-
ticated NMT architectures, including multi-source
(Zoph and Knight, 2016), multi-task (Dong et al.,
2015) and multi-way (Firat et al., 2016) NMT, as
well as those equipped with attention mechanisms
(Sennrich et al., 2015). The research activities are
particularly crucial since they broaden the range of
cross-modality learning strategies.

Current research interest has concentrated on the
incorporation of visual features into NMT (Lala
et al., 2018), by means of visual-linguistic con-
text vector concatenation (Libovickỳ et al., 2016),
doubly-attentive decoding (Calixto et al., 2017a),
hierarchical attention combination (Libovickỳ and
Helcl, 2017), cross-attention network (Helcl et al.,
2018), gated attention network (Zhang et al., 2019),
joint (Zhou et al., 2018) and ensemble (Zheng et al.,
2018) learning . In addition, image attention opti-
mization (Delbrouck and Dupont, 2017) and mono-
lingual data expansion (Hitschler et al., 2016) have
been proven effective in this field. Ive et al. (2019)
use an off-shelf object detector and an additional
image dataset (Kuznetsova et al., 2018) to form a
bag of category-level object embeddings. Condi-
tioned on the embeddings, Ive et al. (2019) develop

En→De
Multi30k (2016) (µ± σ)

C I 4E-Awareness
+CAP-ATT 58.5 58.5±0.2 0.001 ±0.002
+CAP-ENC 57.8 58.5±0.1 -0.007 ±0.001
+CAP-DEC 58.3 58.0±0.0 0.020 ±0.001
+CAP-TKN 58.7 58.6±0.1 0.001 ±0.001
+CAP-ALL 59.0 58.5±0.2 0.005 ±0.002
Caglayan et al′s trgmul N/A N/A -0.001 ±0.002
Caglayan et al′s decinit N/A N/A 0.003 ±0.001
Helcl et al′s hierattn N/A N/A 0.019 ±0.003

En→Fr
Multi30k (2016) (µ± σ)

C I 4E-Awareness
+CAP-ATT 74.8 74.2±0.1 0.005 ±0.001
+CAP-ENC 73.8 74.2±0.1 -0.004 ±0.001
+CAP-DEC 74.3 74.3±0.1 -0.001 ±0.001
+CAP-TKN 74.9 74.6±0.1 0.003 ±0.001
+CAP-ALL 74.8 74.5±0.1 0.003 ±0.001

En→Cz
Multi30k (2016) (µ± σ)

C I 4E-Awareness
+CAP-ATT 35.2 34.7±0.2 0.005 ±0.002
+CAP-ENC 34.7 34.4±0.1 0.003 ±0.001
+CAP-DEC 34.8 34.4±0.1 0.004 ±0.001
+CAP-TKN 34.9 35.1±0.1 -0.002 ±0.001
+CAP-ALL 34.6 33.8±0.1 0.007 ±0.001

Table 5: Test results in Elliott’s utility test.

a sophisticated MNMT model which integrates self-
attention and cross-attention mechanisms into the
encoder-decoder based deliberation architecture.

This paper also touches on the research area of
image captioning. Mao et al. (2014) provide an
interpretable image modeling method using multi-
modal RNN. Vinyals et al. (2015) design a caption
generator (IDG) by Seq2Seq framework. Further,
Xu et al. (2015) propose an attention-based IDG.

8 CONCLUSION

We demonstrate that the captioning based harmo-
nization model reduces incongruence between mul-
timodal features. This contributes to the perfor-
mance improvement of MNMT. It is proven that
our method increases the use efficiency of images.

The interesting phenomenon we observed in the
experiments is that modality incongruence reduc-
tion is more effective in the scenario of En→Fr
translation than that of En→De and En→Cz. This
raises a problem of adaptation to languges. In the
future, we will study on the distinct grammatical
and syntactic principles of target languages, as well
as their influences on the adaptation. For exam-
ple, the syntax of French can be considered as
most strict. Thus, a sequence-dependent feature
vector may be more adaptive to MNMT towards
French. Accordingly, we will attempt to develop
a generative adversarial network based adaptation
enhancement model. The goal is to refine the gen-
erated linguistic features by learning to detect and
eliminate the features of less adaptability.
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Abstract

In this paper, we propose an error causal in-
ference method that could be used for find-
ing dominant features for a faulty instance un-
der a well-trained multi-modality input model,
which could apply to any testing instance. We
evaluate our method using a well-trained multi-
modalities stylish caption generation model
and find those causal inferences that could pro-
vide us the insights for next step optimization.

1 Introduction

As machine learning models become more complex
and training data become bigger, it is harder for
humans to find errors manually once some output
went wrong. This problem is exacerbated by the
black box nature of most machine learning models.
When a model fails, it can be difficult to determine
where the error comes from. This is especially true
in problems that are inherently multimodal, such as
image captioning, where often multiple models are
combined together in order to produce an output.
This lack of transparency or ability to perform a
vulnerability analysis can be a major hindrance to
machine learning practitioners when faced with a
model that doesn’t perform as expected.

Recently, more and more people begin to fuse
text and visual information for downstreaming task.
In many cases, these models utilize specialized,
pre-trained models to extract features. In these sit-
uations, it is highly likely that the source of these
errors is from these pre-trained networks either be-
ing misused or not being interpreted correctly by
the larger machine learning architecture. In this
paper, we explore how one would perform a vul-
nerability analysis in these situations. Specifically,
we are interested in identifying model errors likely
caused by these pre-trained networks. Specifically,
we aim to diagnose these errors by systematically
removing elements of the larger machine learning
model to pinpoint what the causes of errors happen

to be. This is especially critical in tasks that uti-
lize multi-modality input models since often these
models utilize attention. If the model attends to
the wrong features, then this error could potentially
cascade throughout the network. In other words,
we seek to answer the question, "Given a trained
model M which has input features x, y, z, if the
current test example is not performing well, is that
because of the given features or not? If it is, which
specific feature is more likely to blame?"

By answering this question, we can give ma-
chine learning practitioners, specifically those who
are inexperienced with machine learning and AI
concepts, some direction in how to improve the per-
formance of their architecture. We summarize our
contributions as follows: 1. we provide a practical
method to discover causal errors for multi-modality
input ML models; 2. we explore how this method
can be applied to state-of-the-art machine learning
models for performing stylish image captioning;
3. Evaluate our method by through a case study in
which we assess whether we can improve the per-
formance of the investigated instance by removing
or replacing these problematic features.

2 Related Work

Our approach to sourcing these errors uses causal
inference (Peters et al., 2016; Hernán and Robins,
2020). In this section, we will review works related
to causal inference as well as works that provided
the inspiration for this paper.

Invariance Principle Invariance principle has
been used for finding general causal for some out-
come under designed treatment process, where
people desired to find actual effect of a specific
phenomenon. Invariant causal prediction (Peters
et al., 2016) has been proposed to offer an practical
way to find casuals under linear model assumption.
It later got extended to nonlinear model and data
(Heinze-Deml et al., 2018). This invariance can be
roughly phrased as the outcome Y of some model
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M would not change due to environment change
once given the cause for this Y . An example of an
environment change when Y = M(X,Z,W ) and
the cause for Y is X , could be a change on Z or
W . The invariance principle has been popularly
used in machine learning models to train causal
models (Arjovsky et al., 2019; Rojas-Carulla et al.,
2018). We are going to employ the same insight,
using the invariance principle to find cause in our
paper but landing in different perspectives. We are
not intended to train a model, instead, we are going
to use the well-trained models to derive the source
cause for lower performance instances.

Potential Outcome and Counterfactual. (Ru-
bin, 2005) proposed using potential outcomes for
estimating causal effects. Potential outcomes
present the values of the outcome variable Y for
each case at a particular point in time after certain
actions. But usually, we can only observe one of
the potential outcome since situations are based
on executing mutually exclusive actions (e.g. give
the treatment or don’t give the treatment). The
unobserved outcome is called the “counterfactual”
outcome. In this paper we can observe the counter-
factual by removing certain input features from the
language generation based on multi-input task.

Debugging Errors Caused by Feature Defi-
ciencies This paper is also related to debugging
errors from input. While we are more focus on
using a causal inference way to get the real cause
for low performance rather than only exploring as-
sociations (Amershi et al., 2015; Kang et al., 2018)

3 Methodology

The goal of this paper is to perform a causal analy-
sis in order to determine the likely source of errors
in a well-trained model. In the following sections,
we will outline our underlying hypotheses related
to this task and go into details on the task itself.

3.1 Hypothesis

Hypothesis 1: With a fixed model, if the output of
an instance k is unchanged after an intervention, I,
then this is called output invariance. The causes
of the output for this instance k are irrelevant to
the features associated the intervention, I.
Using this output invariance principle, we can iden-
tify features that are irrelevant to the prediction
made. After removing these irrelevant features, the
ones that remain should contribute to any errors
present in the output. Given the strictness of the

output invariance principle, it is often the case that
very few features are identified as the cause of any
error present. In some cases, no features are identi-
fied. In this paper, we are interested in determining
the cause of errors by masking out certain features,
specifically those that are unlikely to be the cause
of an error. As such, we are interested in the spe-
cific case where the removal of certain features
does not cause the performance of the model to
improve. This phenomenon, which we refer to as
output non-increasing will be rephrased below.
Hypothesis 2: With a fixed model, if the output
of an instance, k, after an intervention, I, is either
less than or equal to the original performance of in-
stance k, then this is called output non-increasing.
Then, the features associated with intervention, I,
are likely irrelevant to the cause of any error.
In this paper, we specifically perform interventions
that involving masking/hammering out certain in-
put features. Hammering out features could mean
zero out input features or specific weights, or even
remove certain input modalities, etc.. In this paper
we will change the values of certain input features
f to 0. Then, output is regenerated according to
this new input. If the output is unchanged (or gets
worse), then we will remove this feature f from
the causal features list. Before we perform these
interventions, we first want to identify the errors
which do not relate to any of these features. This
leads to the next hypothesis.
Hypothesis 3: If we hammered out all input fea-
tures and output invariance still holds for instance
k, we will record the cause for instance k hav-
ing lower performance as being due to model and
dataset bias. We will refer to this as bias error.
In this paper, we are interested in more than bias
errors. With this goal, we arrive at our final hypoth-
esis on performing causal inference for identifying
errors.
Hypothesis 4: If the performance of instance k is
poor and the output of instance k is not caused by
bias errors, and if all interventions keep feature f?

unchanged and we still have output non-increasing,
we will say f? is the error feature which causes the
lower performance output for k.
With all of the above hypotheses we can infer
whether the low performance of the instance k
is caused by a single feature f or not. Next we
will show how these hypotheses can be utilized to
identify the causes of errors.
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3.2 Causal Graph: with and without
Hammering out Features

As we know, when we build a model in deep learn-
ing, we always assume a casual graph in advance
and then fit data into the graph for training. Figure 1
shows a sample causal graph (a) with multiple in-
put features. These features will be fit into a black
box model and finally the model will, in this case,
generate some set of output text. Once we have
finished training, we will be able to deploy the
model and see each testing instance’s performance.
With a well-trained model, we can perform many
interventions, or investigate specific features by in-
tervening on them in different environments. In
practice, however, it is impossible for us to obtain
all the random environments. Based hypotheses
3 and 4, along with the steps that people take to
perform causal predictions in linear (Peters et al.,
2016) and non-linear (Heinze-Deml et al., 2018)
situations, we, in this paper, give a more detailed
and practical definition below to help us identify
whether a feature set S is the causal feature set
or not when an instance k having error and this
error is not a bias error defined in hypothesis 3.
Here S could be a feature set composed of a single
feature or multiple features. After hamming out
some features, we call a remaining feature set P as
S’s parental set when S ⊂ P . We denote FS as:
FS = {g(P ) | P is a parental set of S} and

g(P ) =




P if P satisfies output

non-increasing,
∅ otherwise.

Then we could extract the estimated causal fea-
ture set F̂ as:

F̂ =
⋂

F :F∈FS

F (1)

To simply understand above, we basically check
all the parental sets of S on output non-increasing
property to finally make decision on whether S
is an error casual feature set or not. In this pa-
per, we mainly focus on evaluating single feature
set. To better explain, we also display all the in-
terventions (b-h in Figure 1) we have done to the
features (masking out some features) when there
are a total of 3 features in the assumed causal graph.
We will infer the causal feature for a low perfor-
mance instance k based on all of these potential
outcomes before and after interventions. We will
use ox, x ∈ {a, b, c...h} to note the score for output

Figure 1: Displays the causal graph with various sets
of features zeroed out and a red cross mark signifies
zeroing out

generation of graphs in Figure 1. First, we extract
the instances when the error cause is independent
of any features where we find all the instances B,
which satisfy oa == oh. Then the following causal
feature inferences will exclude detected instances
in B first. As we are specifically interested in sin-
gle feature errors, we will enumerate the situation
when causal features are R,C, S for instance k,
respectively. First of all, according to hypothesis
3 and 4, k 6∈ B. The causal feature is S when:
oa >= ob >= oc >= oe; The causal feature is
C when: oa >= oc >= od >= of ; The causal
feature is R when: oa >= ob >= od >= og.

It is important to note that removing an error fea-
ture does not necessarily mean that the performance
will increase, as it is possible that there are other
sources of errors that still keep performance low.
In these rules, we use the "=" sign in its strictest
sense. However, one can always use it in a way that
is interchangeable with "very similar." For exam-
ple, if the difference between two output scores is
10−16, you can choose to regard these two scores
as equal per your needs.

4 Experiment

To show the effectiveness of our approach, we will
examine its performance on a stylish image cap-
tioning task that uses multi-modality feature fusion.
While we focus on this task as an example, this
approach could be applied to many other domains.

4.1 Dataset

We have chosen the dataset and the task based on
three qualities:the work has a well-trained saved
model which we could use for intervention and
inference; this work still has room to be improved
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by identifying and removing the source of potential
errors; the work utilizes multiple input features in
a way that enables removing said features.

Specifically, we choose the work on the 3M
model (Li and Harrison, 2021) for stylish text cap-
tioning. We do this because it relies on generat-
ing captions using several input features includ-
ing pre-trained text features (C), ResNext features
(R), and style information (S) as an input. We
would like to explore whether these input features
have caused problems when instances are under
performing. The dataset we examine is the test
set from the PERSONALITY-CAPTIONS dataset
(Shuster et al., 2019) using in Li and Harrison’s
work along with the pretrained model they provide
1. Even though we use its test set in our experi-
ment, our method could be applied on any set of
data of any size when there is a debugging need for
multi-fusion models. We will leave this for future
work.

4.2 Implementing details

Specifically, we define an instance is under perfor-
mance in 3M (Li and Harrison, 2021) when the
BLEU1 (Papineni et al., 2002) score is lower than
the median BLEU1 value among all testing data.
In total, we have investigated 9981 instances and
4982 of them are classified as under performing.
74 of these have been detected as bias errors. So
finally, 4908 instances have been examined for sin-
gle feature errors.

We first perform causal inference for style fea-
ture and denote those instances that have style error
as Ks. Then perform the causal finding steps for
ResNext and dense captions without differentiat-
ing the order in the remaining instances. The rea-
son to decide such order is due to the structure of
3M, where style is used globally to refine ResNext
and dense captions for later stylish text generations
while ResNext and dense caption have the same
importance for text generations.

4.3 Evaluation

The reason to find the cause for the errors is that
we would like to further improve a model when it
is well-trained or make a remedy when the model
is malfunctioned, especially from the source side.
Thus, we evaluate casual predictions by evaluat-
ing whether we could improve the model’s perfor-
mance by just altering the causal feature. There are

1https://github.com/cici-ai-club/3M

many potential treatments that we could make on
the source side such as data augmentation, feature
replacement, or feature removal. For each instance
k with predicted causal feature f , if its performance
could be improved by improving f , then we will
judge the causal error inference for this instance k
as correct, otherwise incorrect. More details on the
specific interventions we use are outlined below:
Style: (S1) replace current style with 5 other well-
trained styles S, where most instances with style
s, s ∈ S has better BLEU1 score than the medium
BLEU1 score. (S2) remove Style. Dense Caption:
(C1) replace dense caption to ground truth; (C2)
remove dense caption. Resnext: (R1) replace dense
caption to ground truth and then remove Resnext,
where we make sure at least one of the visual fea-
tures is valid. (R2) remove Resnext.

We will record the best output BLEU1 score
after each intervention. If the intervention results
in a higher BLEU1 score than the output prior to
the intervention, then the feature in question will
be marked as the cause of an error. For all the
instances which have been ascribed by a feature f ,
we calculate the percentage of those in which the
BLEU1 score could be improved and report them
in Table 1.

5 Result and Discussion

The result is shown in the Table 1. We see that for
each feature, most of the instances have increased
their performance by improving the predicted fea-
tures. This performance is also a conservative value
as we only did limited feature improvements. For
example, for Resnext, we have no better features
available and, thus, could not do a replacement.
Also in Table 1, the style feature is the most pre-
dicted error causal feature among all three feature
modalities. We have 1041 instances point its per-
formance error towards style. We speculate this is
resulting from the weak training of a certain set of
styles, since the BLEU score can be improved if
replaced with other better-trained styles for 89.4%
of these instances. To further investigate this, we
report the frequency of the styles in those 1041 in-
stances in Figure 2 and intend to see whether the
estimated error styles are distributed sparsely (all
styles are not trained well) or densely (a certain set
of styles is not trained well). From Figure 2 we
can see that many styles repeatedly appear as errors
for various instances, which aligns our speculation.
With these predicted error styles, we can either do
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Table 1: The evaluation result for each feature under
casual inference. Predictions Count are the number of
instances predicted with corresponding feature errors.

Feature Predictions Count Improvement(%)
Style 1041 0.894

Dense Caption 378 0.797
Resnext 300 0.769

Figure 2: The styles are those frequently predicted as
the causal errors; the horizontal bar represents the fre-
quency. Here we select the top 50 styles.

some data augmentation to cover the gap between
training and testing or redesign the training process
to enable the model to focus more intently on these
styles.

6 Conclusion

In this paper, we apply an extended invariance
principle to provide a method for performing error
causal inference. We evaluate our method under on
a stylish image captioning model that uses multi-
modal fusion in its input features. We show that
we could improve the performance of this model
based on simply removing or replacing those found
causal errors. Over 70% of the predicted errors
could be modified to improve performance. Also,
our method is model-agnostic, it could be used for
different fusion model for optimization, debugging
or assessing purpose.
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Abstract
Controlling the generation of image cap-
tions attracts lots of attention recently. In
this paper, we propose a framework lever-
aging partial syntactic dependency trees as
control signals to make image captions in-
clude specified words and their syntactic struc-
tures. To achieve this purpose, we propose a
Syntactic Dependency Structure Aware Model
(SDSAM), which explicitly learns to generate
the syntactic structures of image captions to in-
clude given partial dependency trees. In addi-
tion, we come up with a metric to evaluate how
many specified words and their syntactic de-
pendencies are included in generated captions.
We carry out experiments on two standard
datasets: Microsoft COCO and Flickr30k. Em-
pirical results show that image captions gen-
erated by our model are effectively controlled
in terms of specified words and their syntactic
structures. The code is available on GitHub1.

1 Introduction

Controllable image captioning emerges as a popu-
lar research topic in recent years. Existing works
attempt to enhance models’ controllability and cap-
tions’ diversity by controlling the attributes of im-
age captions such as style (Mathews et al., 2016),
sentiments (Gan et al., 2017), contents (Dai et al.,
2018; Cornia et al., 2019; Zhong et al., 2020) and
part-of-speech (Deshpande et al., 2019). However,
some important attributes of image captions like
words and syntactic structures, are ignored in pre-
vious works. For example, for the image in the
Figure 2, the work (Cornia et al., 2019) specifies a
set of objects like ‘dog, man, frisebee’ as a control
signal, but there still exist lots of possibilities of
composing them into different captions, such as ‘a
dog and a man play frisebee on grass’ and ‘a dog
playing with a man catches frisebee’, since both
words and syntactic structures are not determined
yet.

1https://github.com/ZVengin/DepControl_ALVR

a   dog   plays   frisbee   with   a   man   on   grass

det subj dobj

case
pobj:with

pobj:on

casedet

play

dog man

subj pobj:with

syntactic dependency tree partial syntactic dependency tree

ROOT

root

Figure 1: An example of syntactic dependency
tree(left) and partial dependency tree (right)

To address this challenging issue, we propose
a framework, which employs partial dependency
trees as control signals. As shown in Figure 1, a
partial dependency tree, a sub-tree of a syntactic
dependency tree, contains words and their syntactic
structures, and thus we can utilize it to specify
control information about words and their syntactic
structures.

In addition, we develop a pipeline model called
syntactic dependency structure-aware model (SD-
SAM) which first derives a full syntactic depen-
dency tree and then flatten it into a caption. The
motivation behind this pipeline model is that we
assume explicitly generating syntactic dependency
trees as intermediate representations can better help
the model learn how to apply the specified syntac-
tic information to the captions and the intermediate
representations can give users an intuitive impres-
sion on which part of the captions’ syntactic struc-
tures is controlled.

Finally, we propose a syntactic dependency-
based evaluation metric which evaluates whether
the generated captions have been controlled in
terms of syntactic structures. Our metric is com-
puted based on the overlap of syntactic depen-
dencies which is different from existing metrics
like BLEU (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2014), ROUGE (Lin, 2004),
CIDEr (Vedantam et al., 2015) and SPICE (Ander-
son et al., 2018) which rely on the overlap of n-
grams or semantic graphs. Empirical results show
that image captions generated by our model are
effectively controlled in terms of specified words
and their syntactic structures.
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Syntactic Dependency Tree Decoder

Figure 2: Model architecture: our model generates captions in two steps: (1) generating syntactic dependency tree
using syntactic dependency tree generator. (2) flatting it into a caption using caption generator.

2 Framework Definition

The task presented in this paper is defined as gen-
erating a caption sentence (i.e. word sequence)
y = 〈w1, · · · , w|y|〉 given an image I and a par-
tial dependency tree P as input, so that the de-
pendency tree Ty of y includes P as far as pos-
sible. The syntactic dependency tree of a sen-
tence, as shown in Figure 1, refers to a tree struc-
ture to represent syntactic relations between words.
A syntactic dependency tree Tx of a sentence
x = 〈w1, · · · , w|x|〉 is defined as a set of depen-
dencies, {D1, D2, · · · , D|Tx|}, where |Tx| denotes
the number of dependencies in Tx. Each depen-
dency Dk is expressed in the form of wi

ei,j−−→ wj ,
where wi and wj are the head word and the de-
pendent word of Dk, and ei,j is the dependency
label. We denote child nodes of wi as C(wi); i.e.
C(wi) = {wj |wi

ei,j−−→ wj ∈ Tx}. A partial de-
pendency tree P here refers to a sub-tree of the
syntactic dependency tree of some sentence.That
is, P ⊆ Tx for some sentence x.

3 Syntactic Dependency Structure Aware
Model

The syntactic dependency structure-aware
model(SDSAM) shown in Figure 2 generates
image captions in two steps: (1) the syntactic
dependency tree generator on the left part derives
a full syntactic dependency tree from the image
and the partial dependency tree. (2) the caption
generator on the right part will flatten the syntactic
dependency tree into a caption.

The Syntactic Dependency Tree Generator
The syntactic dependency tree generator encodes
the input image with a CNN network implemented
with Resent152 (He et al., 2016) into image fea-
tures and encodes the partial dependency tree with
a syntactic dependency tree encoder implemented

with Tree-LSTM (Tai et al., 2015) into partial de-
pendency tree features.

After combining the image features and the par-
tial dependency tree features, the syntactic depen-
dency tree generator derives the full syntactic de-
pendency tree using the syntactic dependency tree
decoder from the combined features s. The syn-
tactic dependency tree decoder consists of two at-
tention modules, Attnin and Attnout, and two inter-
weaved GRU networks (Cho et al., 2014), GRUv

and GRUh. The decoding process is carried out
from the root node to leaf nodes in a top-down
manner. For a node wi, its child nodes are decoded
one by one from left-to-right. Each child node is
predicted based on the information of its parent
node and its left sibling node generated in previous
steps. At the mean while, the attention modules
highlight the words to be generated for the current
child node. Assuming we decode the child wj of
node wi, the hidden state of node wi and node wj
are denoted as hi and hj respectively. The left sib-
ling of node wj is denoted as wj−1 and its hidden
state as hj−1. For each input image, we detect a
set of keywords c = {r1, · · · , r|c|} following the
method proposed in (You et al., 2016), and encode
c into a matrix C ∈ REw×|c|, where Ew is the size
of word embedding.

h0 = U
(s)s (1)

h̃i = GRUv(hi,wi) (2)

cin = Attnin(wi,C) (3)

hj = GRUh(h̃i, [hj−1;wj−1; cin]) (4)

cout = Attnout(hj ,C) (5)

wj ∼ Softmax(U (w)hj + V
(w)cout) (6)

ei,j ∼ Softmax(U (e)hj + V
(e)h̃i) (7)
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where:

Attn(q,C) = Cα (8)

α = Softmax(ATv) (9)

A = tanh(U (α)(q · 1T) + V (α)C) (10)

In the above formulas, U (s) ∈ RH×Es , U (w) ∈
RVw×H , U (e) ∈ RVe×H ,U (α) ∈ REa×Eq , V (w) ∈
RVw×H , V (e) ∈ RVe×H and V (α) ∈ REa×Ew are
parameters for reshaping features. Here Es, Ea and
Eq are the size of the input feature s, the attention
feature A and the query q respectively. Vw and
Ve are the vocabulary size for the node and edge
respectively and H is the size of hidden states. In
equation (10), v ∈ REa×1 is a parameter and 1 ∈
R|c|×1 is a vector with all elements being one.

The Caption Generator The caption generator
takes the syntactic dependency tree generated in the
first step as input and encodes it with the syntactic
dependency tree encoder into syntactic dependency
tree features. The caption generator combines it
with image features extracted in the first step and
use the combined features to initialize the LSTM
decoder (Hochreiter and Schmidhuber, 1997) to
generate the caption.

4 Experiment

Preparing Datasets with Partial Dependency
Trees For evaluation, we apply two methods to
create partial dependency trees for on Microsoft
COCO (Chen et al., 2015) and Flickr30k (Young
et al., 2014). The first method extracts partial
dependency trees from reference captions. We
parsing reference captions to syntactic dependency
trees using Spacy 2 and then randomly sample sub-
sets from each syntactic dependency tree. Sampled
partial dependency trees are then paired with corre-
sponding reference captions. The dataset created
by this procedure is denoted as testgold in Section
5.

The other method creates partial dependency
trees from images in two steps: (1) we first train
a syntactic dependency classifier to predict syntac-
tic dependencies for an input image. (2) Predicted
syntactic dependencies are combined to form a
syntactic dependency graph for the input image,
from which partial dependency trees are sampled.
The dataset created by this procedure is denoted as
testpred in Section 5.

2https://spacy.io

For training, following the first method, we di-
rectly sample a partial dependency tree from one
of the reference captions for each image and the
paired reference caption is used as a training target.

Evaluation Metric The evaluation metrics for
image captioning fall into two categories: (1)Qual-
ity: evaluating the relevance to human anno-
tations with metrics including BLEU (Papineni
et al., 2002) and METEOR (Denkowski and Lavie,
2014); ROUGE (Lin, 2004), and CIDEr (Vedan-
tam et al., 2015) and SPICE (Anderson et al.,
2018). (2)Control-ability: evaluating whether gen-
erated image captions are successfully controlled
by partial dependency trees. We devise a new met-
ric called Dependency Based Evaluation Metric
(DBEM) for this purpose. Assuming that a par-
tial dependency tree P = {D1, · · · , D|P |} is input,
DBEM calculates how many syntactic dependen-
cies specified in the partial dependency tree are
included in the dependency tree Ty of generated
caption y. The DBEM score for the evaluation
dataset is given as an average of this score for each
input. Formally,

DBEM (P, Ty) =

∑
D∈P 1(D,Ty)

|P | , (11)

1(D,T ) =

{
1 if D ∈ T
0 if D /∈ T.

(12)

Experiment Setting The training of our model is
split into two stages including training the syntactic
dependency tree generator and training the caption
generator. We set the size of hidden states to be
512, the word embedding size to be 512, and the
dependency label embedding size to be 300. We
train our model using the Adam optimizer (Kingma
and Ba, 2015) with a learning rate 5e−4 for the
first stage and 1e−4 for the second stage. Two
models, including our SDSAM model and the NIC
model (Vinyals et al., 2015) with its encoder being
replaced with Resnet152, are compared under three
different control inputs. (1) None control: input is
an image. (2) Half control: input is an image and
the words of a partial dependency tree. (3) Full
control: input is an image and a partial dependency
tree.

5 Results and Analysis

Quality (1) Results on testgold: We show BLEU-
4 (B4), METEOR (M), ROUGE (R), CIDEr (C),
and SPICE (S) scores on testgold in Table 1, whose

18



Microsoft COCO Flickr30k
Control Model B-4 M R C S B-4 M R C S

None
NIC 9.3 15.5 35.6 88.5 21.7 5.9 11.4 28.6 36.3 14.1

SDSAM 9.6 16.0 35.5 94.4 23.7 4.6 10.8 25.8 34.9 14.8

Half
NIC 25.5 27.3 52.2 232.2 41.9 12.7 18.3 38.3 88.7 26.4

SDSAM 24.7 26.6 52.6 234.4 44.1 12.4 18.4 40.2 103.8 32.8

Full
NIC 32.5 29.9 58.3 294.1 47.1 15.0 19.1 41.0 105.5 27.7

SDSAM 30.2 29.2 57.1 282.3 48.4 13.4 18.9 41.5 114.2 33.7

Table 1: Evaluation of quality on testgold. Each generated caption is only evaluated against its corresponding
reference caption.

Microsoft COCO Flickr30k
Control Model B-4 M R C S B-4 M R C S

None
NIC 27.2 23.8 51.2 86.7 17.1 18.1 18.1 42.8 35.3 11.5

SDSAM 28.0 24.5 50.9 90.2 18.0 15.8 17.5 39.7 35.6 11.7

Half
NIC 27.9 24.4 52.0 88.4 18.3 18.2 17.6 42.3 32.1 11.9

SDSAM 26.8 24.4 51.1 88.7 18.5 17.2 17.4 40.5 32.9 12.3

Full
NIC 25.6 24.6 51.0 86.5 18.6 15.7 18.4 41.5 31.2 12.5

SDSAM 26.0 24.5 50.8 87.7 19.0 16.7 17.7 40.7 32.4 12.4

Table 2: Evaluation of quality on testpred. Each generated caption is evaluated against all reference captions of its
corresponding image.

partial dependency trees are sampled from refer-
ence captions. This table shows that both NIC
and SDSAM achieve significant improvements on
evaluation scores when more control signals are in-
put. This indicates that generated captions become
closer to reference captions. These improvements
are expectable since control signals contain infor-
mation of reference captions. This result attests that
partial dependency trees carry information useful
for generating specific sentences. When both mod-
els are given the same control signals, SDSAM
has comparable performance to NIC in n-gram
based metrics (i.e. BLEU-4, METEOR, ROUGE
and CIDEr), while achieving a significantly better
performance on SPICE, which is a semantic rela-
tion based metric. This result reveals an interesting
phenomenon that explicitly learning the syntactic
structures of captions can improve performance on
the semantic relation based metric.

(2) Results on testpred: We show the evaluation
results on testpred in Table 2, whose partial depen-
dency trees are generated from images. For NIC
and SDSAM, evaluation scores mostly remain the
same level, but slight improvements are observed
in SPICE. This result reveals that partial depen-
dency trees generated from images do not have a
significant impact on the quality of image captions,
while giving partial dependency trees as control
signals do not harm caption quality. For the same
control signals, SDSAM has a better performance

on SPICE in most cases, which follows the results
on testgold.

Controllability DBEM scores on testgold and
testpred are shown in Table 3. The table shows
that the DBEM scores of both models are very low
when no control is given. This reveals that only
a small proportion of syntactic dependencies in
partial dependency trees appear in reference cap-
tions by chance, indicating that additional input to
control syntactic structures is meaningful. When
the models are given words as control signals, the
DBEM scores are significantly increased, meaning
that both models can infer syntactic structures from
words even without explicit syntactic structure in-
formation. However, it is also clear that nearly half
of the specified dependencies are missing in gen-
erated captions. These observations suggest that
words provide useful information as control signals,
but are insufficient to specify syntactic structures
completely. When partial dependency trees are
input, the DBEM scores further improve signifi-
cantly. It means that most syntactic dependencies
specified in partial dependency trees are included
in generated captions. This result demonstrates that
syntactic structure information plays an important
role in precisely controlling image captions.

When the models are given no control signals,
SDSAM has better DBEM scores than NIC. This
is possibly because SDSAM explicitly learns to
generate syntactic dependency trees, and can bet-
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testgold testpred
Control Model MSCOCO Flickr30k MSCOCO Flickr30k

None
NIC 7.1 4.5 12.2 15.5

SDSAM 9.5 5.4 19.6 19.8

Half
NIC 47.8 33.9 61.4 64.7

SDSAM 51.4 44.6 64.2 72.3

Full
NIC 68.3 42.7 86.2 85.0

SDSAM 69.5 52.9 87.1 87.5

Table 3: Evaluation of controllability (DBEM scores)

ter generate high-frequency syntactic dependencies
that also frequently appear in partial dependency
trees. When the models are given words and/or
syntactic dependencies as control signals, SDSAM
achieves higher DBEM scores than NIC. This re-
sult demonstrates that explicitly learning to gener-
ate syntactic dependency trees as an intermediate
representation contributes to better controlling of
image captions.

6 Case Study

In Figure 3, we show an example of the output
from our model on testpred. Our syntactic depen-
dency classifier first predicts a syntactic depen-
dency graph from the input image. Once the syn-
tactic dependency graph is constructed, we sam-
ple three partial dependency trees with different
node numbers as shown in the figure. Finally, our
SDSAM model infers the captions from the input
image and the partial dependency trees. From this
example, it is obvious that all words and syntactic
structures specified in partial dependency trees also
appear in the generated captions. Furthermore, the
three generated captions are considerably different
from each other, demonstrating that giving partial
dependency trees as control signals can improve
captions’ diversity.

7 Conclusion

We presented a framework for controlling image
captions in terms of words and syntactic structures
by giving partial dependency trees as control sig-
nals. We develop a syntactic dependency structure
aware model to explicitly learn the syntactic struc-
tures in control signals. Empirical results show that
image captions generated by our model are effec-
tively controlled in terms of specified words and
their syntactic structures. Furthermore, the results
indicate that explicitly learning to generate the syn-
tactic dependency trees of captions enhances the
model’s controllability.

predict

sample

image captions

partial dependency trees

inference

input

syntactic dependency
graph

input

Figure 3: Case study: This figure shows an example
generated during inference phase.
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Abstract

Phrase grounding (PG) is a multimodal task
that grounds language in images. PG systems
are evaluated on well-known benchmarks, us-
ing Intersection over Union (IoU) as evalua-
tion metric. This work highlights a disconcert-
ing bias in the evaluation of grounded plural
phrases, which arises from representing sets
of objects as a union box covering all compo-
nent bounding boxes, in conjunction with the
IoU metric. We detect, analyze and quantify
an evaluation bias in the grounding of plural
phrases and define a novel metric, c-IoU, based
on a union box’s component boxes. We exper-
imentally show that our new metric greatly al-
leviates this bias and recommend using it for
fairer evaluation of plural phrases in PG tasks.

1 Introduction

Phrase grounding (PG) describes the multimodal
task of identifying objects in images and connect-
ing them to free-form phrases in a textual descrip-
tion (caption). A phrase usually describes one, or
sometimes several, specific objects.

Grounding phrases in image regions provides an
essential link between texts and images and serves
as a foundation for multimodal understanding tasks,
including sentence-to-image alignment, Visual QA,
Visual Common-sense Reasoning (VCR), etc.

Benchmarks for training and evaluating PG sys-
tems (Everingham et al., 2010; Lin et al., 2014;
Kazemzadeh et al., 2014; Plummer et al., 2015;
Krishna et al., 2017) generally provide rectangular
bounding boxes as ground truth (GT). Therefore
a PG ground truth is represented as a phrase link-
ing to a (gold) bounding box enclosing the image
patch referred to by the phrase. Some datasets pro-
vide pixel segmentation masks (Lin et al., 2014),
which enable more precise evaluations but are more
difficult and costly to produce. Thus, the trend to-
wards annotating bounding boxes persists in recent
datasets (Ilinykh et al., 2019).

Figure 1: Illustration of how to compute the evaluation
metric IoU and its adaptation c-IoU (with ground truth
(GT) bounding boxes in blue, and predicted boxes in
yellow). The numerator represents the computed inter-
section area, the denominator represents the union area.
IoU and c-IoU only differ for plural phrases: IoU com-
putes a union box (dashed) covering all components,
while c-IoU only considers the area of the individual
components to compute the intersection and union.

Plural phrases describe multiple entities in an
image, either through a collective term (e.g. crowd)
or a plural form (e.g. two children). Depending
on the annotation, the gold box consists either of
a single box enclosing all entities or several com-
ponent boxes representing the individual entities.
By convention1, component boxes are merged into
one union box spanning all individual boxes, func-
tioning as a single gold box. Figure (2.a) gives an
example of a union box for a plural phrase with
two components. This reduction of multiple boxes
to a single union box is widely established in PG
evaluation, both for ground truths and predictions.

Although plural phrases are underrepresented in
PG benchmarks, they constitute substantial propor-
tions, and appropriate annotation and evaluation
of component boxes is essential to achieve high-

1as, e.g., adopted in Plummer et al. (2015) and since then
presumably adopted in the community for comparability
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Figure 2: Ground truth (green/top) and prediction (orange/bottom) cases with components (blue) and union boxes
(dashed). The Ground Truth box label in green represents the phrase being grounded; the orange phrase marked in
the prediction represents the concept fitting the detected plural object. The scores represent the IoU score (red, left)
and the c-IoU score (blue, right), respectively. Predictions with scores ≥ 0.5 are considered correct. The check
boxes show whether the metrics correctly evaluate the prediction. For example, for sub-figures (a+b) the c-IoU
score is 0.17 and so the prediction is considered incorrect (≤ 0.5), thus the c-IoU metric correctly evaluates that
the detected hands constitute an incorrect prediction for juggling pins (blue tick).

quality mappings for all phrase types. However,
the annotation of plural phrases is challenging, as
shown in Testoni et al. (2020); Marín et al. (2020)
who investigate how phrases can refer to groups of
objects or several entities within a group.

(Semi-)supervised PG systems generally do not
differentiate singular and plural phrases and always
predict a single box (Li et al., 2019; Lu et al., 2020;
Plummer et al., 2015). For multiple boxes with
the same predicted label, either the largest box or
the union box is returned. Thus, components are
not individually evaluated, and the same metric,
Intersection over Union (IoU), can be uniformly
applied to a prediction box for any phrase type. IoU
computes the ratio of the area of overlap over the
area of union between a predicted and a gold box
and is usually thresholded at IoU ≥ 0.5.

While IoU is a simple and effective metric for
evaluating 1:1 mappings, we claim that it is unsuit-
able for evaluating plural phrases. We show that
the union box is in fact not an ideal gold represen-
tation for plural phrases: it can make the gold box
overly large, especially when including areas that
do not represent any components, and thus intro-
duces an evaluation bias favoring large prediction
boxes. Our contributions are as follows:

i) We detect, describe and quantify an evalua-
tion bias in the grounding of plural phrases
when applying standard practice of measuring
IoU over union boxes, using an unsupervised
PG system on the PG dataset Flickr30k.

ii) We propose a novel evaluation metric based
on component boxes rather than union boxes.

iii) We show that the new metric alleviates this
bias and reduces the evaluation failures.

2 Evaluation Bias

IoU is the standard evaluation metric used in PG
and rewards predictions that highly overlap with
their gold boxes. For a plural phrase that links to
multiple ground truth boxes, a union box enclosing
all components is generated, so the same evalu-
ation metric can be used for singular and plural
phrase types. However, we argue that this method
introduces a considerable bias, which may result
in unfair evaluations. When evaluating on union
boxes, we ignore all information about the compo-
nents’ sizes and positions, and only consider the
union box outline. If components are spread across
the image, a union box can become much larger
than the combined size of its component boxes,
which makes them imprecise and ambiguous.
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Figures (2.a) vs. (2.b) show an example of two-
component union boxes that are highly overlapping
– one for pins, the other for hands. Hence, a system
that returns the prediction (2.b) for juggling pins
will be unduly considered as correct. Similarly,
for a prediction with too few or too many compo-
nents, IoU often fails to detect such mistakes, as
in (2.c) vs. (2.d). The ground truth (2.c) for two
boys includes only two components, yet a system
predicting four components (including the men on
the boat) will still be correct according to IoU.

This type of ‘false positive‘ arises from the gen-
eration of union boxes, in conjunction with the rel-
atively forgiving nature of the IoU metric for large
predicted boxes. Given such undesirable failure
cases, we conjecture that IoU can lead to unwanted
evaluation biases and we investigate whether it is a
sound metric for evaluating plural phrases.

2.1 Quantifying the Bias
We verify and quantify the potential evaluation bias
on GT annotations of Flickr30k and empirical sys-
tem predictions. Depending on the distribution of
component boxes across the image, the union box
can be large, even if the components themselves
are small. In Fig. (2.a) 75.47% of the union box
area does not represent any component, so we term
this area filler space. On the complete Flickr30k
data, we compute an average of 3.6 components
per plural phrase, which on average cover only 68%
of the union box area, leaving one third (32%) of
the space unfilled. For 24% of all union boxes, the
filler space covers more than 50%, the gold box
being twice as large as its components.

Hence, there is considerable potential for an eval-
uation bias to arise, as the IoU metric may unfairly
favor large prediction boxes in two ways: i) overly
large union boxes allow the prediction of wrong ob-
ject types that happen to fall into the gold union box
area; and ii) even if objects of the correct type are
predicted, a large union box may be filled with too
many or too few objects compared to the GT, and
may still satisfy IoU ≥0.5. To verify this hypothe-
sis, we perform experiments using an unsupervised
PG system, capable of processing plural phrases.

2.2 Bias in Context of System Performance
Most existing PG systems are (semi-)supervised
learners and need to be adapted to the special case
of plural phrases: their object detectors need to
deliver union boxes, instead of single-object boxes.
Since plural phrases are much less frequent than

singular phrases, this distributional bias may lead to
poorer predictions for plural phrases. Recently, un-
supervised PG systems have been proposed (Wang
and Specia, 2019; Parcalabescu and Frank, 2020)
that achieve competitive performance, but are not
subject to such frequency biases. We thus perform
our experiments with a system that replicates Wang
and Specia (2019)’s approach.

The system2 maps phrases to predicted bounding
boxes using similarity rankings derived from word
embeddings for the phrase and the candidate box
labels. Since our object detector only detects single
objects, we automatically generate plural objects
that include several objects, by combining boxes
with the same label.

We apply the system to a test set of 10k images
with 5 captions each, containing 3.3 phrases on
average. We ground ca. 141k phrases, including
ca. 31k plural phrases (21.8%) and measure accu-
racy for the predicted bounding box(es) for a given
phrase, using the IoU evaluation metric (with a
threshold at 0.5) as success criterion.

Table (1.a) displays evaluation results for all
phrases vs. plural phrases only, and in both cases
we distinguish predicted boxes comprising single
objects only vs. all objects (single and plural), for
various settings: i) upper bound (row 1); ii) perfor-
mance of our PG system in different settings (rows
2-4); and iii) manipulated predictions, i.e. max box
and random predictions (rows 5-6).

i) Upper bound Upper bound represents the high-
est possible PG performance, computed as percent-
age of phrases with at least one detected object that
matches the GT. Using only single objects, we find
an upper bound of 72.34 for all phrases and 46.67
for plural phrases. The fact that single objects –
which cannot constitute correct groundings for plu-
ral phrases – provide ‘successful candidates‘ for
nearly half the plural phrases, emphasizes that IoU
is not a suitable metric for plural phrase grounding.
When considering boxes with multiple objects as
candidates, the upper bound increases by 2.82 per-
centage points (pp.) to 75.16 on all phrases and by
20.98 pp. to 67.65 on plural phrases, demonstrating
that plural objects are an essential addition.

ii) PG system evaluation This setting also shows
an increase when considering plural objects, with
an increase for all phrases by 1.69 pp., and for
plural phrases by 5.45 pp. Candidate pruning fur-

2Details of the system are given in the Appendix.
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a) IoU metric All Phrases Plural Phrases

single all single all

Upper bound [+prun.] 72.34 75.16 46.67 67.65

Unsupervised PG 47.94 49.63 31.15 36.60
– [+pruning] - 53.36 - 56.46
– [+pruning, +enlarged] 47.99 52.03 33.84 52.45

Max box predictions 23.63 23.63 32.19 32.19
Random predictions 17.97 20.75 24.09 29.17

b) c-IoU metric All Phrases Plural Phrases

single all single all

Upper bound [+prun.] 72.34 73.69 46.69 60.94

Unsupervised PG 48.05 49.94 31.00 37.37
– [+pruning] - 52.38 - 50.09
– [+pruning, +enlarged] 47.26 51.02 29.84 46.95

Max box predictions 21.45 20.98 22.88 22.19
Random predictions 9.17 13.86 7.62 14.08

Table 1: PG performance in accuracy computed with IoU vs. c-IoU on all vs. plural phrases, considering single
object boxes vs. all (single & multiple) object boxes. +pruning filters candidates: for plural phrases we consider
plural objects only; for singular phrases only single objects. +enlarged: size of detected objs. increased by 50%.

ther increases accuracy by 3.73 pp. on all phrases
and 19.86 pp. on plural phrases, while limiting the
potential exploitation of large candidate boxes.

iii) Manipulated predictions We hypothesized
that using IoU with union boxes is too forgiving
and favors large predictions, so we conduct ex-
periments where we generate overly large object
predictions: in one, predictions cover the entire
image (max box predictions); in the other, original
predictions are enlarged by 50%. For the max box
predictions, we obtain overall 23% correct predic-
tions, and 32% for plural phrases. Thus, every
third plural phrase benefits from very large pre-
diction boxes. Ideally, IoU is designed to punish
predictions that are overly large or not well placed
over the gold box, due to division by union area.
However, the image frame limits the maximum box
size to the size of the image, which reduces the
normalization effect for large objects.

Measuring PG performance with enlarged pre-
diction boxes [+enlarged], increases accuracy by
2.69 pp. for plural phrases when considering sin-
gular objects only – despite singular objects being
unsuitable predictions by definition. This further
supports our hypothesis that large predictions are
generally favored. However, larger predictions do
not increase performance on mixed phrase types,
so singular phrases must be less affected by this
bias. For plural objects, PG performance even de-
creases with enlarged predictions, which suggests
that plural objects cannot benefit from expansion.

In sum, the high upper bound with singular ob-
jects for plural phrases, the strong performance
when predicting the entire image, and the effect on
PG performance when enlarging prediction boxes
all support our hypothesis that the evaluation of
plural phrases by IoU is biased. Hence, a new
metric is needed to counter this bias.

3 Our new Evaluation Metric c-IoU

We aim at a metric that is not based on the union
box, but its components. However – any metric
is only as good as the quality of its underlying
ground truth. When studying the annotation of
plural phrases in Flickr30k, we found that many
of them are imprecise or incomplete. Nearly one
third of plural phrases are annotated with a single
bounding box without components and for 9% the
number of components does not match the cardi-
nality of the referring phrase (e.g. two component
boxes for three women), leaving 37% of the plu-
ral phrases without proper representation of their
components. This high level of noise precludes
any metric that relies on matching the number of
component boxes of ground truth and predictions.

In §2.1 we identified the filler space of union
boxes – jointly with IoU evaluation – as the source
of the detected evaluation bias. To combat this, we
define an adapted IoU that is not computed over the
union box, but its aggregated components, by tak-
ing the intersection of all gold and predicted com-
ponent boxes and dividing by the area of the union
of all (gold and predicted) component boxes. We
call this metric component IoU (c-IoU). c-IoU is
analogous to standard IoU for single-object boxes,
and only affects the evaluation of plural phrases, as
seen in Fig. (1). By considering the area covered
by all component boxes, it gains robustness against
annotation noise.

Fig. (2.a-d) show two examples where IoU fails
to correctly evaluate predictions, while c-IoU suc-
ceeds. The prediction hands for the phrase juggling
pins yields an IoU score of 0.51, which accepts the
prediction. The c-IoU score of 0.17, by contrast, re-
jects this prediction. Similarly, the prediction men
is considered correct for two boys by IoU (0.65),
but correctly rejected by c-IoU (0.39).
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4 Evaluation of Component IoU (c-IoU)

We evaluate c-IoU in the same way as we did in
§2.2 to quantify biases under IoU, and give results
in Table (1.b). We expect c-IoU to avoid biases for
plurals and ensuing false predictions.

The experiments confirm our expectation: large
prediction boxes yield lower scores with c-IoU.
Max box predictions, computed on all objects found
in the image, yields 9.31 pp. lower accuracy on plu-
ral phrases. PG system performance with enlarged
predictions measured on singular objects for plural
phrases increases by 2.69 pp. to 33.84 for IoU, yet
decreases by 1.16 pp. to 29.84 for c-IoU. Therefore,
c-IoU better detects wrong predictions.

But c-IoU does not catch all incorrect predic-
tions: with pruning, accuracy measured with c-IoU
increases less (+12.72 pp. to 50.09) compared to
IoU (+19.86 pp. to 56.46). Data inspection shows
that without pruning, c-IoU allows plural objects
for singular phrases (and vice versa) – typically
the plural object includes the targeted object plus
another small object in the background (see Fig.
(2.e+f)). Since the background object drastically
expands the union box but not the component union
area, IoU may correctly evaluate such cases, while
c-IoU could fail. Hence, a combination of both
metrics could be beneficial, where c-IoU ensures
that the right components are selected, while IoU
may detect out-of-focus objects.

As a final test, we evaluate both metrics on arti-
ficially generated false plural box predictions. For
each phrase, we assemble a random prediction con-
sisting of 2-5 components with different labels. Ide-
ally, most predictions should be labeled as incor-
rect, thus a lower accuracy indicates a more sen-
sitive metric. c-IoU indeed returns much lower
scores than IoU: 9.17 and 7.62 (c-IoU) vs. 19.97
and 24.09 (IoU) on all phrases and plural phrases,
showing that c-IoU effectively counters the bias.

5 Conclusion

We have detected, described and quantified an eval-
uation bias for plural phrases in the PG literature.
Our alternative c-IoU metric, acting on components
rather than union boxes, alleviates this bias, as we
show in experiments with an unsupervised PG sys-
tem. Future work could test more systems to as-
sess by how much state-of-the-art performance is
lower than currently estimated. Evaluation of plu-
ral phrases is further impeded by the low quality
of the gold boxes. Therefore, future benchmarks

need to annotate plural phrases with all their com-
ponents if we wish to enable PG systems to better
learn the intricacies of language (including plural
expressions) in relation to the visual modality.
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A Appendix

System details Our approach replicates the un-
supervised bag-of-objects approach by Wang and
Specia (2019). The phrase and the labels for candi-
date objects are embedded using 300-dimensional
word2vec embeddings (Mikolov et al., 2013). The
object candidates are ranked by their cosine simi-
larity to the phrase, and the object with the most
similar label is returned. If there are several objects
for the highest ranking label, we return the largest
one in case of singular phrases and the union box
(plural object) in case of plural phrases. In contrast
to prior systems that used (multiple) object detec-
tors with large label sets (545 or 1600 labels), our
object detector, trained on Visual Genome (Krishna
et al., 2017), uses only 150 coarse-grained labels.

We test performance on the Flickr30k Entities
(Plummer et al., 2015) dataset for phrase ground-
ing. The test set consists of 10k images with 5
captions each, containing 3.3 phrases on average.
We ground 140 972 phrases, including 30 762 plu-
ral phrases (21.8%). The vocabulary of the phrases
is relatively diverse with 8301 different words on
the test split.

Evaluation examples Fig. (3) shows a few more
examples of ground truths and our system’s predic-
tions, as well as the correctness of the evaluation
using IoU and c-IoU. Fig. (3.a-d) show examples
where IoU accepts predictions with incorrect ob-
ject labels, while c-IoU rejects them. In (3.e+f),
c-IoU finds that two hats are missing while IoU
accepts the incomplete prediction. For example
(3.g+h), c-IoU fails to identify that the prediction
has a missing component. IoU correctly evalu-
ates the prediction as incorrect because of the ob-
vious union box difference, which makes the IoU
drop below 0.5. Example (3.i+j) is a challenging
case, as the phrase [two young men clutch rags in]
their hands requires context for correct grounding,
which is not provided by a PG system that looks
at phrases individually. As expected, our system
additionally predicts the old man’s hand, which is
incorrect but since the superfluous hand has a small
area and is located closely to the others, both evalu-
ation metrics fail to detect this mistake. Finally, in
(3.k+l) the ground truth is missing the annotation
of the components, so that c-IoU cannot correctly
evaluate this correct prediction.
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Figure 3: GT and prediction cases with union boxes (dashed) and components (blue); the check marks show
whether IoU (red) and c-IoU (blue) correctly evaluate the prediction (for further explanation see Figure 2).28
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Abstract

PanGEA, the Panoramic Graph Environment
Annotation toolkit, is a lightweight toolkit
for collecting speech and text annotations in
photo-realistic 3D environments. PanGEA im-
merses annotators in a web-based simulation
and allows them to move around easily as
they speak and/or listen. It includes database
and cloud storage integration, plus utilities for
automatically aligning recorded speech with
manual transcriptions and the virtual pose of
the annotators. Out of the box, PanGEA sup-
ports two tasks – collecting navigation instruc-
tions and navigation instruction following –
and it could be easily adapted for annotat-
ing walking tours, finding and labeling land-
marks or objects, and similar tasks. We share
best practices learned from using PanGEA in
a 20,000 hour annotation effort to collect the
Room-Across-Room dataset. We hope that our
open-source annotation toolkit and insights
will both expedite future data collection efforts
and spur innovation on the kinds of grounded
language tasks such environments can support.

1 Introduction

The release of high-quality 3D building and street
captures (Chang et al., 2017; Mirowski et al., 2019;
Mehta et al., 2020; Xia et al., 2018; Straub et al.,
2019) has galvanized interest in developing em-
bodied navigation agents that can operate in com-
plex human environments. Based on these envi-
ronments, annotations have been collected for a
variety of tasks including navigating to a particu-
lar class of object (ObjectNav) (Batra et al., 2020),
navigating from language instructions aka vision-
and-language navigation (VLN) (Anderson et al.,
2018b; Chen et al., 2019; Qi et al., 2020; Ku et al.,
2020), and vision-and-dialog navigation (Thoma-
son et al., 2020; Hahn et al., 2020). To date, most
of these data collection efforts have required the
development of custom annotation tools.

∗First two authors contributed equally.

To expedite future data collection efforts, in this
paper we introduce PanGEA, an open-sourced an-
notation toolkit designed for these settings.1 Specif-
ically, PanGEA assumes an environment repre-
sented by discrete navigation graphs connecting
high-resolution 360° panoramas, where each node
represents a unique viewpoint in the environment
and actions involve moving between these view-
points. Examples of suitable environments include
the indoor buildings from Matterport3D (Chang
et al., 2017) (using the navigation graphs from An-
derson et al. (2018b)) and the street-level environ-
ments from StreetLearn (Mirowski et al., 2019).

Out of the box, PanGEA supports two annotation
modes: the Guide task and the Follower task. In the
Guide task, Guides look around and move through
an environment to follow a pre-defined path and at-
tempt to create a navigation instruction for others to
follow. In the Follower task, annotators listen to a
Guide’s instructions and attempt to follow the path.
These annotation modes are based on the Vision-
and-Language Navigation (VLN) setting proposed
by Anderson et al. (2018b). However, compared
to similar annotation tools, PanGEA includes sub-
stantial additional capabilities, notably:

• annotation via voice recording (in addition to
text entry)

• virtual pose tracking to record what annotators
look at

• utilities for aligning a transcript of the words
heard or uttered by each annotator with their
visual perceptions and actions

• integration with cloud database and storage
platforms

• a modular API facilitating easy extension to
new tasks and new environments

PanGEA has already been used in two papers. It
was used to collect Room-Across-Room (RxR) (Ku
et al., 2020), a dataset of human-annotated navi-
gation instructions in English, Hindi and Telugu

1github.com/google-research/pangea
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Figure 1: Screenshots of the PanGEA Guide and Follower interfaces. In the Guide task (left), Guides explore a
given path while attempting to create a navigation instruction for others to follow. Guides can pause and restart
the audio recording at any time. After recording is completed, Guides transcribe their own audio. In the Follower
task (right), annotators listen to a Guide’s instructions and attempt to follow the intended path. Followers can skip
around the Guide’s audio using the audio waveform at bottom right. In both tasks, PanGEA tracks the annotators
virtual camera pose and automatically aligns it with the Guide’s audio transcript.

which is the largest VLN dataset by an order of
magnitude. PanGEA was also used to perform
human evaluations of model-generated navigation
instructions in Zhao et al. (2021). It could be triv-
ially adapted to other tasks that combine annotation
with movement, such as annotating walking tours,
or finding and labeling particular landmarks or ob-
jects.

We next describe PanGEA’s capabitilities in
more detail. In the final section we share some best
practices learned from using PanGEA to collect
RxR, which required more than 20,000 annotation
hours.

2 PanGEA Toolkit

Guide Task In the Guide task (Figure 1, left),
Guides look around and move to explore an envi-
ronment while recording an audio narration. For
the RxR data collection, the Guide’s movement
was restricted to a particular path through the envi-
ronment, and annotators were instructed to record
navigation instructions that would be sufficiently
descriptive for others to follow the same path. How-
ever, this restriction can be relaxed to allow free
movement and narration for other purposes. Once
the Guide is satisfied with their recording, they
are asked to manually transcribe their own voice
recording into text. This ensures high quality tran-

scription results.
During the Guide task, in parallel to the anno-

tator’s voice recording, PanGEA captures a times-
tamped record of the annotator’s virtual camera
movements, which we call a pose trace. By default,
PanGEA is configured to use Firebase2, saving the
Guide’s audio recording to a cloud storage bucket,
and the transcript, pose trace and other metadata
to a cloud database for post processing. Inspired
by Localized Narratives (Pont-Tuset et al., 2020),
PanGEA includes a utility to automatically align
each Guide’s pose trace with the manual transcript
of their audio recording. This is achieved by using
a Speech to Text service3 to first generate a noisy-
but-timestamped automatic transcription. PanGEA
then using dynamic time warping to align tokens
in the automatic transcript to the manual transcript
before propagating timestamps from the automatic
to the manual transcription (Figure 2). The result
is fine-grained synchronization between the tran-
scribed text, the pixels seen, and the actions taken
by the Guide.

Follower Task In the Follower task (Figure 1,
right), Followers begin at a specified starting point
in an environment and are asked to follow a Guide’s

2https://firebase.google.com
3https://cloud.google.com/

speech-to-text
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Figure 2: PanGEA time-aligns each annotators manual audio transcription (middle) to a pose trace recording their
virtual camera movements (bottom). This is achieved by first generating a noisy-but-timestamped automatic tran-
scription (top), which is aligned with the manual transcription using dynamic time warping in order to propagate
timestamps to the manual transcription. Figure adapted from Pont-Tuset et al. (2020)

instructions. They observe the environment and
navigate as the Guide’s audio plays. Followers can
skip forward or backward in the audio recording
by clicking on an audio waveform representation
of the Guide’s recording. This allows them to skip
over periods of silence or to listen to part of the
audio again. Once the Follower believes they have
reached the the end of the path, or they give up,
they indicate they are done and the task ends. Note
that although the Follower task supports audio in-
structions, it can be easily adapted to replace the
audio instruction with a textual instruction. This
was the approach taken by Zhao et al. (2021).

As with the Guide task, the Follower’s pose
trace is recorded and saved to a cloud database,
along with the timestamp of the Guide’s audio that
the Follower listened to at each moment. This al-
lows the Follower’s visual percepts and actions
to be accurately aligned with text tokens in the
Guide’s instructions. Similarity between the anno-
tated (Guide) path and the Follower path is also
a natural measure of the joint quality of both the
Guide and the Follower annotations. In the ex-
periments for RxR, the path extracted from the
Follower’s pose trace was also used as additional
supervision when training Follower agents, since it
represents a step-by-step account of how a human
solved the task and the visual inputs they focused
on in order to do so (Ku et al., 2020).

Deployment PanGEA comes with several demos
using a very simplistic environment. To deploy
PanGEA for a new large-scale collection effort re-
quires completing 3 main steps:

• Creating a new app in Firebase to initialize
the cloud storage and cloud database,

• Setting up an appropriate crowdsourcing plat-

form to serve the PanGEA front-end to a pool
of annotators, and

• Setting up the environment to be used, e.g.,
hosting the images and navigation graphs in a
storage bucket in an appropriate format.

Further details are provided in the PanGEA readme.

3 Observations and Best Practices

PanGEA was developed for the collection of the
RxR dataset, a 20,000+ hour annotation effort
based on Matterport3D indoor scenes. Many of
the lessons learned during this collection effort are
codified in the PanGEA toolkit. For example, we
found that uploading recorded audio at the end of
the Guide task was time consuming, and so in the
final version of PanGEA the wav file is uploaded
in the background while the annotator is busy tran-
scribing their audio. We also found that audio anno-
tations could include long periods of silence, so we
provided Follower annotators with an audio wave-
form visualization and an interface to skip over
silence. Some other observations and best prac-
tices for reducing annotation times and improving
annotation quality are shared in this section.

Annotators Complete Tasks in Creative Ways
PanGEA is designed to capture the alignment be-
tween annotators’ visual percepts, actions and ut-
terances to provide fine-grained spatio-temporal
grounding. In initial trials with PanGEA, we found
that some annotators – with the best of intentions
– completely undermined this paradigm. We had
envisioned them speaking while moving and look-
ing at the environment; however, in an effort to
generate more fluent instructions, some annotators
first explored the environment while drafting a nav-
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igation instruction separately in a text editor. Then,
having finalized the textual instruction, the anno-
tator read it all at the end of the audio recording.
While this strategy indeed produced high-quality
navigation instructions, the instructions were no
longer time-aligned to the pose trace. Interestingly,
the language used in the instructions also differed.
Instructions drafted as text tended to use more con-
nective phrases — for example, “turn right and
then you will see a dining table” instead of “turn
right... now you see a dining table”. We found it
challenging to add guardrails in PanGEA that could
prevent this behaviour without unduly restricting
the freedom of the annotators and the flexibility
of the toolkit. Instead, we addressed this issue–
successfully–via explicit training.

Annotator Training To overcome the aforemen-
tioned issue and to improve annotation quality in
general, for RxR, we conducted an interactive vir-
tual training session with annotators, providing
examples of ideal annotations and various failure
modes. Annotators were also able to ask questions
regarding how to best complete the tasks assigned
to them. Although interactive training sessions
are not always possible, at minimum we recom-
mend providing annotators with a training video
that shows a walk-through of the task and notes
common pitfalls to avoid. We provide links to the
demo videos for the RxR Guide task4 and Follower
task5 (initially called the Tourist task).

Pilot Collections and Learning Periods Anno-
tating and following navigation instructions in a
virtual world is a complex task. We recommend
allowing for several small-scale pilot data collec-
tions to identify issues with the collection process.
This includes having the team creating the dataset
perform the tasks using the tool. Secondly, we rec-
ommend allowing for a learning period whenever
a new annotator is introduced to the task, i.e., plan-
ning to discard the first 5–10 annotations produced
by a new annotator. We found that rotating annota-
tors between both Guide and Follower tasks early
in their experience improved annotation quality be-
cause doing so provides much greater awareness of
the needs of Followers when completing the Guide
tasks.

Data Monitoring Dashboard We recommend
using VLN evaluation metrics such as success rate,

4https://youtu.be/aJkJfB8oI2M
5https://youtu.be/vcP-oX1t0CU

navigation error and SPL (Anderson et al., 2018a)
(or similar metrics for alternative tasks) to contin-
ually monitor the quality of the collected Guide
navigation instructions and Follower paths. By
storing the collected annotations in Firebase, it is
relatively easy to construct web-based interfaces
to monitor these metrics. In the case of RxR, we
created a monitoring dashboard that displayed suc-
cess rates for each annotator pool and also each
annotator, with the capability to replay the pose
traces from individual Guide and Follower annota-
tions. Annotators were able to see an anonymized
view on their progress as it related to others, which
helped them assess whether they were performing
the task correctly or needed additional changes and
perhaps explicit guidance.

Speech versus Writing In tasks that require a
person to perform actions while producing or com-
prehending language, it is much easier if people
are allowed to use speech rather than writing be-
cause it allows them to use their hands and eyes
fully for performing actions. This has very real
consequences for thinking about future data collec-
tion efforts. Speech interactions will be essential
for any tasks that include time pressure, such as
collaborative games where players use language to
coordinate. There is also a simple but significant
cost advantage: on average, the transcription por-
tion for an RxR Guide annotation took three to four
times longer than collecting the speech instruction
itself, so either a great deal more instructions could
have been collected, or the cost could have been
significantly reduced. Speech also encodes intona-
tion and is more likely to elicit interesting dialectal
differences. For these and other reasons, we may
thus want to encourage more research that works
on language grounding tasks that work with speech
directly, and provide current best automatic speech
recognition output for those who insist on working
with text only.

4 Future Applications

There are many potential future applications of
PanGEA and tools that could be built based on
the design decisions discussed above. We are par-
ticularly excited about multi-agent problems that
collect pose traces from multiple participants as
they coordinate via language, such as hide and seek
games or tasks where items must be moved from
one location to another to satisfy goals or solve
puzzles, similar to CerealBar (Suhr et al., 2019).
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Abstract
Few-shot learning is to recognize novel classes
with a few labeled samples per class. Al-
though numerous meta-learning methods have
made significant progress, they struggle to di-
rectly address the heterogeneity of training and
evaluating task distributions, resulting in the
domain shift problem when transitioning to
new tasks with disjoint spaces. In this pa-
per, we propose a novel method to deal with
the heterogeneity. Specifically, by simulating
class-difference domain shift during the meta-
train phase, a bilevel optimization procedure
is applied to learn a transferable representation
space that can rapidly adapt to heterogeneous
tasks. Experiments demonstrate the effective-
ness of our proposed method.

1 Introduction

Deep learning methods are now widely used in
diverse applications. However, their efficacy is
largely contingent on a large amount of labelled
data in the target task and domain of interest
(Vaswani et al., 2017). Different from humans that
can easily learn to accomplish new tasks with a few
examples, it is difficult for machines to rapidly gen-
eralize to new concepts with very little supervision,
which calls considerable attention to the challeng-
ing few-shot learning (FSL) setting. For example,
few-shot classification problem requires models
to classify unlabeled samples into novel classes
with only a few labeled samples available for train-
ing (Finn et al., 2017). Commonly understood as
learning to learn, meta-learning paradigm has made
significant progress in FSL by transferring knowl-
edge extracted from a collection of previous tasks
(Vinyals et al., 2016; Snell et al., 2017). Such task-
agnostic knowledge can contribute to the current
testing task with optimizing learning algorithms.
However, beyond its recent achievements, meta-
learning still faces the problem of generalization.

In contrast to supervised machine learning meth-
ods which assume that training and testing data are

sampled i.i.d. from the same distribution, FSL aims
to learn to address tasks from different distributions
with limited data. This refers to the realistic sce-
nario that the label spaces of future testing tasks
can not be obtained in advance and are often dis-
joint with the label spaces of training tasks. In
experiments, this is actualized by splitting all cat-
egories in the dataset into non-overlapping base
classes and novel classes, while training tasks are
sampled from base classes and testing tasks are
samples from novel classes. Therefore, due to the
class label difference, meta-learning approaches
suffer from natural heterogeneous distributions of
tasks. As each task can be regarded as having a
separate domain, it can be considered as a special
case of domain shift that is extremely serious when
a large gap of semantic relationship exists between
base classes and novel classes.

As most of the current meta-learning approaches
make a strong assumption that training tasks and
testing tasks are drawn from the similar distribu-
tions and share the same characteristics, (Chen
et al., 2019) has shown the limitations of existing
approaches in cross-domain FSL scenarios where
base classes and novel classes are from different
datasets. However, few works have focused on
this issue to improve existing approaches. For ex-
ample, as a representative work of metric-based
meta-learning, Prototypical Network (Snell et al.,
2017) learns a metric space where embeddings of
query samples in one class are close to the cen-
troid of support samples in the same class, and far
from centroids of other classes in the task. While
Prototypical Network benefits from a simple but
effective inductive bias, it lacks adaptation to new
tasks or domains.

In this paper, we propose to improve such metric-
based approaches with a bilevel optimization pro-
cedure. Specifically, we simulate class-difference-
caused domain shift during meta-training by si-
multaneously sampling multiple tasks with non-
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Figure 1: Overview of our proposed Meta-ProtoNet.

overlapping class sets. Each time one of the tasks
is prepared as the target task for outer level opti-
mization and the others are first used as the source
tasks for inner level optimization of the network.
Following this training strategy during the meta-
train phase, the model can better adapt to the test-
ing tasks from heterogeneous distributions with an
adaptation step.

Moreover, different from some usual options of
inner objective, we use Shannon entropy as an unsu-
pervised factorization loss to constrain the learned
representations as near-binary codes (Chang et al.,
2019). This can be viewed as learning a discrimi-
native latent factor space for each task where each
factor can be interpreted as a latent attribute that is
corresponding to abstract visual concepts.

To summarize, our main contributions are :1)
considering the challenge of heterogeneous task
distributions faced by few-shot learning, we simu-
late the class-difference-caused domain shift in the
meta-train phase, and devise a metric-based meta-
learning approach integrated with a bilevel opti-
mization for better generalization; 2) we propose
to utilize an unsupervised factorization loss as the
inner objective, making representations to be near-
binary codes that reduce the difficulty of classifier
learning. Meanwhile, due to the bilevel optimiza-
tion between heterogeneous few-shot tasks during
meta-training, the model can rapidly learn the rep-
resentation space for testing tasks; 3) We conduct
extensive experiments and analysis to demonstrate
that our approach effectively improves the perfor-
mance and interpretability under both conventional
and cross-domain few-shot settings without intro-
ducing additional architectures, and thus it can be
regarded as a better baseline.

2 Methodology

2.1 Prototypical Network.

As a simple but effective model for FSL learning,
Prototypical Network (ProtoNet) (Snell et al., 2017)
use an embedding function fθ with parameters θ

to encode each sample into a representation vector.
For each class c in the class set C of the task T , a
prototype vector pc is defined as the mean vector of
the embedded support samples in the class, which
can be expressed as pc = 1

|Sc|
∑

(xi,yi)∈Sc fθ (xi) .
When inferring, the probability over classes for
a query sample xi is a softmax over the inverse
of squared Euclidean distances between the query
representation and prototype vectors, expressed

as Pθ (yi = c | xi) =
exp(−‖fθ(xi)−pc‖2)∑

c′∈C exp(−‖fθ(xi)−pc′‖2)
.

The classification loss is the sum of negative log-
probability of each query sample in task T with
its ground-truth class label: Lclassification (θ) =
−∑c∈C

∑
xi∈Qc logPθ (yi = c | xi) .

2.2 Learning Latent Factors

As the embedding function fθ of Prototypical Net-
work can be any deep neural network, it is often
organized as a convolutional neural network (CNN)
for image classification tasks. In our MetaPro-
toNet, we set the activation function of the last
layer to Sigmoid function σ(x) = 1

1+exp(−x) in-
stead of the most commonly used ReLU function.
This limits the scale of the learned representations
fθ (xi) ∈ (0, 1)d, where d denotes the dimension
number of the representations. Deep architectures
are capable of learning to extract useful infor ma-
tion from the samples, and potentially construct
representations as the composition of the local ab-
stract concepts that are useful for downstream tasks.
Therefore, Sigmoid activated outputs of fθ can be
viewed as multi-label predictions on latent factors,
as the activation of each dimension closer to 0 or
1 can be interpreted as the corresponding visual at-
tributes being present and absent. Moreover, Meta-
ProtoNet constrains the learned representations to
become near-binary codes by applying Shannon
entropy as an unsupervised factorization loss, ex-
pressed as

Lfactorization (θ) = −
∑

xi∈{S,Q}
〈fθ (xi) , log (fθ (xi))〉

(1)
where log(·) is applied element-wise, and 〈·, ·〉
denotes the vector inner product operation. This
not only encourages the representations to become
more interpretable but also decreases the uncer-
tainty of latent factors discovery.
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2.3 Training Meta-ProtoNet

According to (Snell et al., 2017), Prototypical Net-
work can be re-interpreted as a linear classifier that
is applied to the representations learned by the non-
linear embedding function. With the improvement
above, near-binary representations generated by the
embedding function are expected to be preferable
for the jointly learned linear classifier without sac-
rificing representation power and differentiable op-
timization for exactly binary codes (Li et al., 2017).
However, it would result in a suboptimal represen-
tation space for heterogeneous testing tasks since
the metric-based approach is no longer updated to
adapt to new domains in the meta-test phase. To
overcome the approaching domain shift problem,
we devise a bilevel optimization procedure for a
fast adaptation to the feature distribution in the new
task.

Specifically, instead of randomly sampling a
single task, we simultaneously sample m tasks
Tset = {T1, · · · , Tm} without class overlap from
the distribution over training tasks p

(
T tr
)

in the
metatrain stage. For each task in Tset , we first de-
note it as the target task Tt and obtain a copy of
the model parameters θ as θ′, then θ′ is updated by
minimizing the factorization loss over each task Ts
in the source tasks Tset −Tt. Each update of θ′ can
be expressed as

θ′ = θ′ − α∇θ′Lfactorization
(
θ′
)

(2)

where α is the inner learning rate. This is viewed
as the inner level of the bilevel optimization proce-
dure, and after all of Ts are used for the update of
θ′, we utilize Tt to optimize the model. Specifically,
the model parameters θ are updated as follows:

θ = θ − β∇θLoverall (θ′
)

(3)

where β is the outer learning rate. The meta-
optimization is performed over the model param-
eters θ, whereas the objective Loverall (θ′) is com-
puted using the updated model parameters θ′ and
can be expressed as

Loverall (θ′
)
= Lclassification (θ′

)
+γLfactorization (θ′

)

(4)
where γ is the trade-off hyperparameter. The key
idea underlying the algorithm is that to alleviate
the class-difference-caused domain shift, the task-
specific knowledge including semantic information
of categories is decomposed into reusable low-level

task-agnostic knowledge by transferring latent fac-
tors across heterogeneous tasks. Each round of
bilevel optimization can be viewed as a simula-
tion of the whole process including meta-train and
meta-test: In the inner level (corresponding to the
meta-train phase), we encourage the model to learn
to generate latent factors for tasks drawn from the
source distribution. As high performance of classi-
fication on these tasks is not necessary and may be
detrimental to the classification of heterogeneous
target tasks, the inner objective only aims to dis-
cover latent factors and does not include classifica-
tion loss. Moreover, we expect the learned latent
factor space to be transferable, and thus the learn-
ing process of the source tasks can promote the
learning of heterogeneous tasks. Therefore, in the
outer level (corresponding to the meta-test phase),
the model is optimized with the overall loss includ-
ing classification loss and factorization loss.

2.4 Testing Meta-ProtoNet

In the meta-test phase, when adapting to each new
testing task Tj , the trained parameters θ are updated
to θ′ using only one gradient descent step with
the factorization loss over Tj . Therefore, a task-
specific latent factor space of Tj is learned. The
evaluation metric (i.e., the classification accuracy)
is calculated with the updated parameters θ′.

3 Experiments

Datasets. In this paper, we address the few-shot
classification problem under both conventional and
cross-domain FSL settings. These settings are
conducted on three benchmark datasets: miniIma-
geNet (Vinyals et al., 2016), Caltech-UCSD-Birds
200-2011 (CUB) (Wah et al., 2011), and SUN At-
tribute Database (SUN) (Patterson et al., 2014).
Experimental Settings. We conduct experiments
on 5-way 1-shot and 5-way 5-shot settings, there
are 15 query samples per class in each task. We
report the average accuracy (%) and the correspond-
ing 95% confidence interval over the 2000 tasks
randomly sampled from novel classes. To fairly
evaluate the original performance of each method,
we use the same 4-layer ConvNet (Vinyals et al.,
2016) as the backbone for all methods and do not
adopt any data augmentation during training. All
methods are trained via SGD with Adam (Kingma
and Ba, 2014), and the initial learning rate is set
to e−3. For each method, models are trained for
40,000 tasks at most, and the best model on the vali-
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Method
miniImageNet→ CUB miniImageNet→ SUN CUB→ miniImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
Meta-Learner LSTM 23.77 30.58 25.52 32.14 22.58 28.18

MAML 40.29 53.01 46.07 59.08 33.36 41.58
Reptile 24.66 40.86 32.15 50.38 24.56 40.60

Matching Network 38.34 47.64 39.58 53.20 26.23 32.90
Prototypical Network 36.60 54.36 46.31 66.21 29.22 38.73

Relation Network 39.33 50.64 44.55 61.45 28.64 38.01
Baseline 24.16 32.73 25.49 37.15 22.98 28.41

Baseline++ 29.40 40.48 30.44 41.71 23.41 25.82
Meta-ProtoNet 40.61 56.12 49.38 68.80 33.58 43.83

Table 1: Average accuracy (%) comparison to state-of-the-arts with 95% confidence intervals on 5-way classifica-
tion tasks under the cross-domain FSL setting. Best results are displayed in boldface.

Method
miniImageNet CUB SUN

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
Meta-Learner LSTM 24.99 29.79 36.23 44.39 30.99 44.86

MAML 45.69 60.90 48.87 63.99 57.75 71.45
Reptile 26.59 39.87 27.21 42.35 28.30 51.62

Matching Network 47.63 56.28 53.06 62.19 55.02 62.57
Prototypical Network 46.15 65.56 48.21 57.80 55.70 67.32

Relation Network 47.64 63.65 52.76 64.71 58.29 72.15
Baseline 23.84 32.09 25.14 35.35 27.44 34.54

Baseline++ 30.15 41.19 32.48 42.43 35.56 44.42
Meta-ProtoNet 47.87 66.05 53.30 65.37 58.79 73.90

Table 2: Average accuracy (%) comparison to state-of-the-arts with 95% confidence intervals on 5-way classifica-
tion tasks under the conventional FSL setting. Best results are displayed in boldface.

dation classes is used to evaluate the final reporting
performance in the meta-test phase.

Evaluation Using the Conventional Setting. Ta-
ble 1 shows the comparative results under the con-
ventional FSL setting on three benchmark datasets.
It is observed that Meta-ProtoNet outperforms the
original Prototypical Network in all conventional
FSL scenarios. For 1-shot and 5-shot on miniIma-
geNet→ miniImageNet, Meta-ProtoNet achieves
about 1% higher performance than Prototypical
Network. However, Meta-ProtoNet achieves 5%
and 10% higher performance for 1-shot and 5-shot
on CUB→ CUB, and 3% and 6% higher perfor-
mance on SUN → SUN. As the latter two sce-
narios are conducted on fine-grained classification
datasets, we attribute the promising improvement
to that the categories in these fine-grained datasets
share more local concepts than those in coarse-
grained datasets, and thus a more discriminative
space can be rapidly learned with a few steps of
adaptation. Moreover, Meta-ProtoNet achieves the
best performance among all baselines in all con-
ventional FSL scenarios, which shows that our ap-
proach can be considered as a better baseline option
under the conventional FSL setting.

Evaluation Using the Cross-Domain Setting.
We also conduct cross-domain FSL experiments

and report the comparative results in Table 2. Com-
pared to the results under the conventional setting,
it can be observed that all approaches suffer from
a larger discrepancy between the distributions of
training and testing tasks, which results in a per-
formance decline in all scenarios. However, Meta-
ProtoNet still outperforms the original Prototypical
Network in all cross-domain FSL scenarios, demon-
strating that the bilevel optimization strategy for
adaptation and the learning of transferable latent
factors can be utilized to improve simple metric-
based approaches. Also, Meta-ProtoNet achieves
all the best results, indicating that our approach
can be regarded as a promising baseline under the
cross-domain setting.

4 Conclusion

In this paper, we propose Meta-ProtoNet to handle
the challenge of heterogeneous task distributions in
few-shot scenarios, aiming to learn a latent factor
space in which metric-based classification of het-
erogeneous tasks can be better performed. Exten-
sive experiments show that our proposed approach
can be considered as a stronger baseline in both
conventional and cross-domain few-shot settings.
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Abstract

In recent years, a large number of corpora have
been developed for vision and language tasks.
We argue that there is still significant room for
corpora that increase the complexity of both
visual and linguistic domains and which cap-
ture different varieties of perceptual and con-
versational contexts. Working with two cor-
pora approaching this goal, we present a lin-
guistic perspective on some of the challenges
in creating and extending resources combining
language and vision while preserving continu-
ity with the existing best practices in the area
of coreference annotation.

1 Introduction

With the ease of combining representations from
different modalities provided by neural networks,
text and vision are coming together. There is a
growing body of resources addressing a setting in
which the visual context can be exploited to sup-
port a textual task, for example visual coreference
resolution.

Several corpora have been developed in the do-
main of vision and language (V&L), for example
corpora of image captions (Lin et al., 2014; Young
et al., 2014; Krishna et al., 2017), images and para-
graph descriptions (Krause et al., 2017), visual
question answering (Antol et al., 2015), visual dia-
logue (Das et al., 2017) and embodied question an-
swering (Das et al., 2018). Through these the V&L
research has progressively moved from sentence
descriptions to descriptions involving utterances
and conversations, therefore adding complexity to
their semantic representations. In parallel to the
corpora, V&L systems have been developed but
of course these are limited by the complexity of
the task for which the dataset has been collected.
The end goal of the current research is to move to
a more complex linguistic setting involving multi-
party dialogue and visual representations that go
beyond individual images.

Situated reference resolution involves grounding
linguistic expressions in perceptual representations
(Harnad, 1990). Coreference resolution, tradition-
ally a textual task, involves linking linguistic ex-
pressions referring to the same discourse entities
(Stede, 2012). While challenging, the task is de-
fined by the familiar nature of written texts: linear,
planned and structured; defining thus the corefer-
ence mechanisms and devices found in them. In re-
sources combining V&L, however, the textual part
is often a dialogue or pairs of question-answers.
As a result, the coreference devices differ consid-
erably from those found in texts and are closer to
actual conversations whereby people create refer-
ence to entities on the fly. This of course comes
with its own challenges, but there are also some
relations made easier since they can be grounded
in the image.

As V&L come together, there is therefore an in-
creased need for extending resources for the task of
visual coreference resolution. This means engaging
with the challenges along two axes:

• Dialogue: built by two speakers who each
have their own mental state and cognitive pro-
cess but who are communicating through re-
ferring expressions which are projected in the
same conversation.

• Shared physical context: simultaneous access
to an image or other perceptual context which
enables non-linear references to it. Instead,
the reference is guided by visual attention.

We present a linguistic perspective on these chal-
lenges by analysing a pilot annotation of two sit-
uated dialogue corpora: the Cups corpus (Dobnik
et al., 2020) and the Tell-me-more corpus (Ilinykh
et al., 2019), shown below in Figure 1 and ex-
ample (1) respectively. Starting from the annota-
tion scheme for several textual coreference datasets
(Artstein and Poesio, 2006; Pradhan et al., 2007;
Uryupina et al., 2019), this exercise proved useful
to pinpoint in what ways the purely textual doc-
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ument scenario is different from the domain of
embodied interaction.

The first corpus contains a conversation between
two participants over an almost identical visual
scene involving a table and cups where participants
have different locations (Figure 1). Some cups
have been removed from each participant’s view
and they are instructed to discuss over a computer
terminal in order to find the cups that each does not
see. The Tell-me-more corpus consists of images
accompanied with a small text of five complete
sentences, collected by asking participants to de-
scribe the image to a friend, successively adding
details. The genre of these texts is therefore mixed:
in between standard text (as found in news text
for example) and dialogue data which reflects the
features found in conversations rather than written
conventions.

These corpora are complementary as Cups gives
us accurate visual ground truth information with
free and unrestricted dialogue, while Tell-me-more
offers a richer unrestricted image with short and
task constrained (pseudo-)dialogues.

In this paper, we discuss a number of cases from
these corpora that challenge both standard language
grounding annotations as well as standard coref-
erence annotation. This work points thus towards
required future work in creating (co)reference an-
notation schemes that can handle situated dialogue.

2 Related Work

Pointing to the inability of NLP tools to handle the
textual part in situated dialogue, early works had
described the need to ground the dialogue in the
image in a manner informed by linguistics (Byron,
2003).

As content develops in a text, entities are in-
troduced and re-mentioned, establishing discourse
referents. The context is provided by the document
and no extra-linguistic reference is needed for re-
solving the reference to an entity (Karttunen, 1969).
In situated dialogue, on the other hand, the visual
modality brings the extra-linguistic context as a
source of referents. Here, resolving references to
entities can be thus achieved by either looking at
the picture or by reading the discourse. Recording
both strategies separately is crucial if we want to
understand and model them soundly, in keeping
with theories of cognitive processing (cf. (Kelleher
et al., 2005)). Extending the coreference annota-
tion paradigm is thus the best bet although not a lot

(a) Perspective of participant 1.

(b) Perspective of participant 2.

(c) Top-down perspective of the Cups corpus scene with
ground truth object IDs.

Figure 1: Participant 1 cannot see the cups circled in
blue, whereas participant 2 cannot see the cups circled
in red. Person 3 is visible to both participants as a ref-
erence point.

of work exists in this area.

Textual coreference Annotated data for the
coreference resolution task has mainly focused on
news texts and concrete nouns, excluding refer-
ence to events and other coreferential relations
such as bridging, deixis, and ambiguous items
well documented in the linguistic literature but
deemed infrequent or too difficult to process (Poe-
sio, 2016). In contrast, there is a growing body
of literature interested in phenomena beyond the
nominal case (Kolhatkar et al., 2018; Nedoluzhko
and Lapshinova-Koltunski, 2016), resulting in new,
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although still small in size, annotated corpora
(Lapshinova-Koltunski et al., 2018; Zeldes, 2017;
Uryupina et al., 2020).

Visual coreference Coreference work based on
the popular VisDial dataset (Das et al., 2017) tar-
gets only a limited set of referential expressions,
partly because it relies on automatic tools (Kottur
et al., 2018; Yu et al., 2019), which are known
to be problematic with this genre. With a focus
in grounded human interaction, there are corpora
whose textual part comprises question answer pairs
(Antol et al., 2015; Goyal et al., 2017). Those, how-
ever, are short in nature, with few opportunities for
re-mention of the different objects in the image
and hence coreference. Last, corpora designed to-
wards navigation and location (Stoia et al., 2008;
Thomason et al., 2019) focusing on different kind
of task and descriptions might be good candidates
that could be explored and extended in a similar
fashion as our corpora.

Referring expressions generation The goal in
this area is to generate expressions over several
turns of conversation in a natural and non-repetitive
way, following principles of communicative dis-
course as for example in the recent PhotoBook
dataset (Takmaz et al., 2020). Our work is comple-
mentary to such undertakings as it focuses on the
interpretative rather than generative part.

3 Understanding reference in situated
dialogue

The notion of coreference chain–the sequence of
mentions pointing to a same entity in a text–is cen-
tral in coreference resolution. Built on top of the
document as a unit, this notion relies on and in
turn informs theories about accessibility hierarchy
and salience of entities (Ariel, 1988, 2004; Grosz
et al., 1995). In dialogue, however, references criss-
cross between the speakers and, one step further,
in situated dialogue references crisscross between
the speakers and the objects in the image. In this
section we revise the annotation challenges in the
annotation of anaphoric phenomena in data of this
genre.

3.1 Grounding and referentiality

In spoken discourse people try their best to ground
the references so they make sure they understand
each other. To do so, they rely on the mechanisms
of attention (Lavie et al., 2004). Although most

concrete references can be grounded to the image
easily, there are also some difficult cases. Refer-
ences can be found to portions of the image without
a bounding box, such as base of the tub in example
(1).

(1)

1. This is a
picture of a
bathtub.
2. The tub is
white.
3. The wall
and base of the
tub are brown.
4. The door
appears to be
glass.
5. There is a
handrail on the
side wall.

In the previous example the difficulty arises be-
cause the object detector failed to recognise the
target object. However, referring expressions are
referential to a different degree, e.g., “Where are
your blue ones?” – is the speaker referring to a
particular subset of blue cups, all the blue cups in
the scene, blue cups in general, or not referring
to any particular set of objects? The distinction is
sometimes not clear.

Last, as the image determines the scope of the
referentiality, typical semantic properties are fre-
quently used to refer back to the objects in the
image: colour, shapes, sizes. These can be gen-
uinely referential (a form of ellipsis) or used in an
attributive manner. Compare for example white in
the second sentence of (1), with (2) below.

(2) P1: closest to me, from left to
right red, blue, white, red
P2: ok, on your side I only see
red, blue, white

3.2 Speakers’ cognitive state

Contrary to a Gricean-based analysis of spoken
discourse, coherence-based theories of discourse
do not traditionally take the cognitive state of the
speaker as a necessary element to text interpreta-
tion (Bender and Lascarides, 2019). In situated dia-
logue, however, although the image can be treated
as the ground truth of the situation, the speaker’s
cognitive state has to be considered to disambiguate
their utterances, the hearer makes a model of their
beliefs, desires and intentions associated with the
utterance. This is exemplified in the following ex-
cerpt from Cups where both participants do not see
one of the two red cups close by, but each a differ-
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ent one. They mistakenly believe that there is only
one missing red cup and this dis-alignment of their
beliefs gradually leads to increasingly diverging
cognitive states.

(3) P2: there is an empty space on

the table on the second row away

from you

P2: between the red and white mug

(from left to right)

P1: I have one thing there, a

white funny top

P2: ok, i’ll mark it.

DIALOGUE_STATE: B found O-25.

P1: and the red one is slightly

close to you

P1: is that right?

P1: to my left from that red mug

there is a yellow mug

P2: hm...

P2: can’t see that and now i’m

confused

DIALOGUE_STATE: B cannot see O-29.

P2: describe the second row away

from you like you see it

P1: only one thing there, a white

funny top

P2: aha, so it’s closer to you

than those i call "the second row"

P1: behind that, there is a

yellow, red, white and blue

P1: from my left to right

P1: yes, that must be it!

P1: so what do you see in the

"second row" from my perspective?

P2: i see a red, then space, then

white and blue (same as katie’s")

P2: no yellow

P2: is it on the edge of the

table?

P2: on your left

P1: ok, yes!

DIALOGUE_STATE: inconsistent

3.3 Level of specification

We observe a common strategy of grouping things
in order to refer to them collectively. This raises the
question: What is the level of specification needed
in a coreference annotation? One could think about
this in linguistic terms, for instance mass nouns or
sets; alternatively, in computer vision, there is the
distinction between things and stuff (Caesar et al.,

2018).
In (4) below, is the reference to the curtains a

case of a set composed by individual instances, or
is it a mass noun? Note the curtains is a type of
stuff in Caesar et al.’s work.

(4) 1. I see a picture of an
entertainment room. 2. there
is a round table in the foreground
and a fussball table in the middle
of the room, as well as a pool
table further back. 3. there is
a sitting area with chairs facing
a television set. 4. the room
has several windows with green
curtains. 5.the floors are made
of a brown tile.

In (5) from Cups, on the other hand, the speakers
refer to rows of objects even though these are not
arranged in strict geometric lines. Hence, which
objects are included is contextually defined and not
always clear.

(5) P2: ok, so your next row
P2: you said there ’s a takeaway
cup somewhere marooned all alone
P1: Okay. So we have that row I
described with the now found red
cup. Then a takeaway cup that
is between that row and the next.
It’s very much in the middle of
the two rows.

3.4 Information status

Different referring expressions have different prop-
erties and behaviour, an idea behind theories of
salience and accessibility. They are based on the
observation that some forms are used to introduce
entities and some others to refer to them: some
entities are discourse-new and some are discourse-
old. In situated dialogue, the image provides an
additional context and source of referents, but it
does not follow that the status of subsequent men-
tions is old. In the example below, the fact that
the discourse starts with It is licensed by the image
and this source of reference should be accounted
for differently in the annotation than a genuine
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discourse-old case such as the it in sentence 2.

(6) 1. It s a well-lit kitchen with
stainded [sic] wooden cupboards .
2. There’s a microwave mounted
over the stove, which has a
red tea kettle on it. 3. The
appliances are black and stainless
steel in the kitchen. 4. The
countertops look like they ’re
black granite. 5. The window has
sunlight streaming in and it ’s
very brightly light.

4 Conclusions

V&L resources provide a unique opportunity to
explore the notion of discourse entity in grounded
context. Extending the coreference annotation to
this domain is essential to understand the relation-
ship between reference and coreference. The same
mechanisms that humans adopt to solve corefer-
ence in the textual domain should underlay results
in the V&L domain. Indeed, reference is underspec-
ified in both modalities; any kind of information
extraction from these domains will benefit from
mechanisms that resolve this underspecification:
capturing coreference is a door to capturing coher-
ence. Furthermore, a rich annotation scheme leads
to the development of corpora allowing the training
of data driven systems for the V&L domain and
social robotics.
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