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Abstract

Text-pair classification is the task of determin-
ing the class relationship between two sen-
tences. It is embedded in several tasks such as
paraphrase identification and duplicate ques-
tion detection. Contemporary methods use
fine-tuned transformer encoder semantic rep-
resentations of the classification token in the
text-pair sequence from the transformer’s fi-
nal layer for class prediction. However, re-
search has shown that earlier parts of the
network learn shallow features, such as syn-
tax and structure, which existing methods do
not directly exploit. We propose a novel
convolution-based decoder for transformer-
based architecture that maximizes the use of
encoder hidden features for text-pair classifi-
cation. Our model exploits hidden represen-
tations within transformer-based architecture.
It outperforms a transformer encoder baseline
on average by 50% (relative F1-score) on six
datasets from the medical, software engineer-
ing, and open-domains. Our work shows
that transformer-based models can improve
text-pair classification by modifying the fine-
tuning step to exploit shallow features while
improving model generalization, with only a
slight reduction in efficiency.1

1 Introduction

Text-pair classification determines the class rela-
tionship between two sentences; for example, it
determines the inference class relationship (entail-
ment, contradiction, or neutral) between a premise
and a hypothesis (Bowman et al., 2015). Such clas-
sification requires interpreting the semantic con-
tent of sentences to determine their relationships.
Applications of text-pair classification, which we
experiment with here, are natural language infer-
ence (Bowman et al., 2015), question answering
candidate ranking (Ben Abacha et al., 2019) and
duplicate question detection (Wang et al., 2019a;

1Code and dataset will be released upon publication.

Yang et al., 2019). For these tasks, we consider
open, biomedical, and software engineering do-
mains.

Contemporary methods in text-pair classifica-
tion use transformer encoder networks, such as
BERT (Devlin et al., 2019), which are popular in
natural language processing (Wang et al., 2019b;
Sun et al., 2019; Zhu et al., 2019). For these en-
coder models, there are several studies improving
the model in different aspects. Liu et al. (2019b)
and Yang et al. (2019) introduce improvements to
the pretraining by removing Next Sentence Pre-
diction (NSP) and using a larger batch-size with
the LAMB optimizer (You et al., 2020). SciB-
ERT (Beltagy et al., 2019) pretrains BERT over
publications from SemanticScholar and adjusts the
model’s vocabulary to be domain-specific. AL-
BERT (Lan et al., 2020) increases model depth,
adds layer parameter sharing, and includes the sen-
tence coherence over NSP.

These studies primarily improve the transformer
architecture by scaling up overall model capacity
through dataset source (Lee et al., 2019; Alsentzer
et al., 2019) and adjustment of the pretraining
task (Lan et al., 2020; Joshi et al., 2019). They
use only the classification token as the primary fea-
ture for classification. These improvements also
require pretraining the architecture, which requires
a high amount of computing resources.

Increasing model size and complexity is not
the only approach to improve transformer-based
models. Recent research shows that these models
capture different levels of information at different
layers in the network (Tenney et al., 2019). The
information encoded in these levels are surface-
level, structural and syntactic in the lower lay-
ers, and semantic in the upper layers (Jawahar
et al., 2019). Shallow features are potentially
useful because interpreting the semantic content
of sentences may be difficult without additional
knowledge. For instance, in software engineering



question-answering, structural knowledge and pro-
gram syntax may aid in recognizing jargon in a
programming question or the grammar of a pro-
gram; a program does not work if the syntax is
incorrect (e.g., func() vs. func{} only differ by
bracketing in the context of the programming lan-
guage). Likewise, in medical queries, the structural
and syntactic information helps recognition of med-
ical charts; for instance, blood pressure is written
as BP 80/50 and understanding this structure and
syntax (numbering order) aids in the semantic in-
terpretation of hypotension.

We investigate the value of these structural, syn-
tactic and semantic features in existing pretrained
models for text-pair classification tasks in the med-
ical and software engineering fields. Our model ad-
justs the decoder to use the hidden representations
of the BERT transformer encoder model by com-
bining shallow and deep feature representations
of the input sentences. As our method involves
adjusting the decoder, there is no requirement to
pretrain the network, allowing it to be extended to
all transformer-based encoders. Our main contribu-
tions are summarized as follows:

1. We design a decoder architecture to exploit
shallow and deep representations from a trans-
former encoder-based architecture inspired
by previous research on the learning capac-
ity in BERT (Jawahar et al., 2019; Tenney
et al., 2019). Our convolution-based decoder
complements the parallel computation within
transformers and ensures that computing fea-
tures earlier in the network does not sacrifice
overall efficiency.

2. We explore multi-gradient propagation in
transformer architectures to adapt features
from earlier layers in the network for more
direct use in the downstream task. This propa-
gation also improves generalization on tasks
with fewer high-quality training samples.

3. We evaluate and analyze our methodology on
natural language inference, question entail-
ment and duplicate question detection task
that use text-pair classification. Our experi-
ments are in three domains: medical, software
engineering, and open-domain. The diversity
of domains tests the generalizability of our
methods.

4. We automatically create and release a bal-
anced duplicate question detection dataset of

1.6 million English question pairs from Stack-
Overflow.

2 Related Work

Text-pair classification is a specialization of text
classification. Early studies on text-pair classifi-
cation used rule-based inference from a knowl-
edge base of patterns and templates for textual
entailment (Dagan and Glickman, 2004). This
was superseded by supervised probabilistic mod-
els such as support vector machine (Malakasio-
tis and Androutsopoulos, 2007), naı̈ve bayes, and
decision trees (Newman et al., 2006), as well as
unsupervised algorithms such as k-Nearest Neigh-
bours (Inkpen et al., 2006).

Since 2014 (Kim, 2014), neural network-based
techniques dominated the field. They are based
on Convolutional Neural Network (CNN)-based
encoders (Mou et al., 2016; Yin et al., 2016),
Long Short-Term Memory (LSTM) and Recurrent
Neural Network (RNN) sentence interaction en-
coder models (Liu and Huang, 2016; Lan and Xu,
2018a,b) which use shallow reasoning over sen-
tences to capture semantics. These methods are lim-
ited by their model’s receptive fields, as they cannot
model deep semantic contextual knowledge and do
not directly capture shallow information (Devlin
et al., 2019).

Transformer-based methods The above men-
tioned limitations are contrasted by transformer-
based models (Devlin et al., 2019). Although not
strictly designed for text-pair classification, these
models can take in pair sentence inputs for classi-
fication as well as a variety of other tasks (Wang
et al., 2019a).

These models have subsequently seen a rise in
the medical (Ben Abacha et al., 2019; Alsentzer
et al., 2019; Lee et al., 2019) and software engi-
neering fields (Zafar et al., 2019; Tabassum et al.,
2020). In medical text-pair classification, there are
model ensembles (Zhu et al., 2019; Ben Abacha
et al., 2019) which exploit knowledge from multi-
task learning. However, these models are compu-
tationally expensive, using several multi-task deep
neural networks (Liu et al., 2019a) and SciBERT
models for a single prediction, which prevents their
use in applications where continual retraining is
required. Several improvements to the transformer
model in the medical domain involved using dou-
ble transfer learning, where the model is further
pretrained on the target domain before fine-tuning.



BlueBERT(Peng et al., 2019) and BioBERT (Lee
et al., 2019) used additional pretraining data from
PubMed whereas ClinicalBERT (Alsentzer et al.,
2019) used a clinical dataset MIMIC-III (Johnson
et al., 2016) for pretraining data. We note that these
do not change the underlying architecture of en-
coders, and instead improved the model’s effective-
ness on downstream tasks via additional pretraining
on the target domain or increasing ensemble size.
Our work explores the feasibility of utilizing the
underlying architecture instead.

CNN-based methods Our work is inspired by
previous studies in text classification and computer
vision. From text classification, Very Deep Convo-
lutional Neural Network (VDCNN) (Conneau et al.,
2017) is a deep convolutional neural network for
text classification. VDCNN shows the importance
of shortcut connections used heavily in Residual
Networks (He et al., 2016) for effective gradient
propagation when training deep networks, and k-
max pooling for selecting the strongest signals for
classification.

In computer vision, GoogleNet (Szegedy et al.,
2015) introduced auxiliary multi-gradients dur-
ing training to solve the vanishing gradient prob-
lem (Hochreiter, 1998). Solving the vanishing gra-
dient problem is important as early layers in deep
neural networks contain information that correlates
more strongly with the input sequence. However,
these layers receive less information from gradient
propagation as the gradient is propagated from the
output layer to the rest of the network—where each
non-linearity the gradient passed through caused
a sharp reduction in its magnitude. Auxiliary clas-
sifiers are added to the intermediate layers for in-
creased gradient propagation to the early and in-
termediate layers while constraining the network
to utilize early and intermediate features for image
recognition. We experiment with auxiliary classi-
fiers in our work.

3 Deeply Interconnected Convolutional
Transformer Network

Transformer encoders learn different features of a
language at different layers (Jawahar et al., 2019;
Tenney et al., 2019). We explore if combining
shallow features alongside deep features would im-
prove the effectiveness of representation learning.
We therefore design a new method that exploits all
the hidden features within the transformer encoder.
We use CNN-based decoders connected to each

layer of the transformer encoder as a low-parameter
fully-connected network (Lin et al., 2014) to com-
bine hidden features in a highly parallelized man-
ner. In doing so, multiple gradient flows (Szegedy
et al., 2015) are subsequently introduced, allowing
gradient propagation to shallower network layers
and aiding the learning of downstream language
features in earlier parts of the network.

However, the efficacy of multiple gradient flow
is determined by convergence, which poses a signif-
icant challenge for our method as we use randomly
initialized decoders together with a pretrained de-
coder. These two models expect different input
distributions. To tackle this problem, we adopt
convolutional components to help in dimensional-
ity reduction and use larger batch-sizes with the
LAMB optimizer (You et al., 2020) and One Cycle
Policy (Smith, 2018) for hyper-convergence. We
also include residual connections to ensure a stable
gradient throughout the network.

We use convolutional components over LSTMs
as the recurrent step is non-parallelizable (Vaswani
et al., 2017) and slowdown the parallel computa-
tion in the transformer. We adopt two configura-
tions similar to VDCNN and GoogleNet to test the
generality of our method. We demonstrate that a
stronger capability of learning is enabled by our
method in text-pair classification tasks, especially
for domains that require structural and syntactic
knowledge such as the medical and software engi-
neering domains.

3.1 Convolutional Transformer Encoder

Our first proposed network is a Convolutional trans-
former Encoder(TEconv), where each encoder hid-
den layer is connected to a residual block in the
decoder (Figure 1). We base this approach on past
research, which shows that BERT learns surface-
level, syntactic, and semantic features, but at dif-
ferent layers (Jawahar et al., 2019; Tenney et al.,
2019). Thus, combining the final semantic output
with earlier representations could aid downstream
tasks. A possible approach is to concatenate all
hidden states together. However, this approach is
intractable at higher sequence lengths and dimen-
sions, which causes overfitting. Another approach
is to use a linear combination, scalar mix, or simple
averaging (Tenney et al., 2019; Peters et al., 2018).
However, this approach loses information from the
summation (e.g., it may add to zero) which reduces
generalization. Instead, as an intermediary, we use



Figure 1: Network architecture of the Convolutional
BERT Model.

1-convolutional filters as information transforma-
tion gates to transform hidden representations, Hi,
and add it to the next hidden representation, Hi+1:

Oi+1 = RB(Hi) +Hi+1, (1)

where RB denotes a Residual Block, and Oi+1 is
the output for layer i + 1 in the decoder network.
Here, a residual block (Conneau et al., 2017) con-
sists of a single 1-convolution operation along the
sequence dimension. This 1-convolution acts as a
fully connected linear layer across all channels with
very few additional parameters (Lin et al., 2014).

Additionally, due to the use of ReLU activation
function and convolutional operations, output of
the CNN network must be non-negative. This out-
put bound is in contrast with the transformer En-
coder network with no bounds on the outputs. How-
ever, upon inspection, we find that the values were
positive and negative and close to zero. To alle-
viate some of the distribution mismatch, we use
batch normalization (Ioffe and Szegedy, 2015) on
the hidden states inputted into the residual blocks.

3.2 Convolutional Transformer Encoder with
Auxiliary Networks

Our second method, TEaux uses auxiliary net-
works (Szegedy et al., 2015) to propagate gradients

to different areas of the transformer network (see
Figures 2 and 3).

An auxiliary network takes in J different hid-
den representations, Hi:i+j , from the transformer
network. Each hidden representation undergoes
dimensionality reduction using a 1-convolution to
produce an output, Ci, with a feature dimension
of dim(Hi)/j. These outputs, Ci:i+j , are concate-
nated and fed to a residual block, followed by k-
max pooling and a fully connected layer. During
inference, like GoogleNet, only the output of the
final auxiliary network is used and the training loss
function, φfinal, is given as a weighted sum of the
auxiliary networks:

φfinal = φNA + α
N−1∑
i=1

(φiA), (2)

where φiA denotes the loss value of the ith auxil-
iary network, N denotes the number of auxiliary
networks, and α denotes the weight of loss value
of the non-terminal auxiliary networks. We set
α = 0.3, as this was the value used in the origi-
nal GoogleNet (Szegedy et al., 2015). We do not
connect the auxiliary networks to avoid gradient
explosions due to the double-counting of auxiliary
losses propagating in the network.

We use k-max pooling before the fully connected
layer for both networks to select a subset of the
strongest k-signals from the feature maps. We do
this for two reasons: (1) it drastically reduces the
parameters in the linear layer for reduced computa-
tion cost; and, (2) it adds a layer of interpretability
as the k-signals may be converted back to tokens.
However, due to the bidirectional nature of trans-
formers and padding of input, interpretability may
be lost as strong signals could be from the padded
portion of the sequence, which is not interpretable.
In this case, attention flow (Abnar and Zuidema,
2020) might be better.

We do not use dropout in our models as dropout
is a hyperparameter that requires careful tuning,
which adds additional complexity.

We use pretrained weights from BERT small;
however, with the exclusion of dropout, results may
deviate from the literature (Wang and Manning,
2013). To avoid confusion, we named this BERT
variant as Transformer Encoder (TE).

4 Datasets

We use two datasets from medical and software en-
gineering because these domains may benefit from



Figure 2: Network architecture of Convolutional Trans-
former Encoder with auxiliary networks.

Figure 3: Architecture of the Convolutional auxiliary
network.

the structural and syntactic knowledge for down-
stream tasks. We also use two datasets from the
open-domain to test the generality of our method.

MEDIQA The MEDIQA challenge (Ben
Abacha et al., 2019) was part of the BioNLP
2019 shared task. It features three separate
tasks: (1) Recognizing Question Entailment
(RQE), requiring binary entailment classification
between text-pairs for 8,588 medical questions;
(2) MEDical Natural Language (MEDNLI), a
multi-label classification between premises and
hypotheses for 14,049 clinical text-pairs; and, (3)
Question Answering involving binary relevance
classification and re-ranking between a query
and retrieved answer for 476 medical questions.
These datasets are smaller than those found in
the open-domain because obtaining open medical
data is difficult due to ethical, legal, and monetary
concerns (Pampari et al., 2018; Nguyen, 2019; Ive
et al., 2020). We use 5-fold cross-validation to

Original Question Conversion Error setting value for ‘null
Converter’ - Why do I need a Converter in JSF?
Duplicate Question selectOneMenu with complex objects, is
a converter necessary?
Negative Sample Conversion Error setting value ‘1’ for ‘null
Converter’

Figure 4: Stack Overflow dataset examples.

generate non-overlapping training, validation, and
testing splits as such, our results are not directly
compared to the state-of-the-art (SOTA).

Stack Overflow Dataset To test our methods on
a substantial, technical dataset, we create one in the
Software Engineering field. Our Stack Overflow
Duplicate Question dataset evaluates the perfor-
mance of our methods and its ability to generalize
on specialized technical domains. To create the
dataset, we use Okapi BM25 scoring (Robertson
et al., 1994) from ElasticSearch with default param-
eters and word embeddings. Specifically, we use
question titles, which we expand with word embed-
dings trained on the Stack Overflow corpus (Efs-
tathiou et al., 2018) for querying. For each word in
the query, we found the three most similar words
in the embedding space via cosine distance and
added this to the original query, Q, as expansion
terms, E. To promote diversity, we empirically set
the weights of the E in to be 1.3 (multiplicative),
which is higher than Q at 1.0. These expanded
queries, (Q,E), were used to select candidates
with the highest BM25 scores not already marked
as a duplicate of Q. An example from the dataset
is shown in Figure 4. This dataset consists of 1.6
million question pairs, with a balanced label distri-
bution. To our knowledge, this is the first dataset
created from StackOverflow with difficult exam-
ples for text-pair classification before this work.

Open-domain We also benchmark our model
against two open-domain datasets: (1) the Stan-
ford Natural Language Inference (SNLI) (Bowman
et al., 2015) benchmark containing a collection of
570,000 text-pairs, a multi-label inference classi-
fication task; and, (2) Quora (Wang et al., 2019a),
a duplicate question detection dataset of 404,000
text-pairs.

5 Experimental Setup

We use FastAI (Howard and Gugger, 2020), a
PyTorch-based library. We use a one cycle pol-
icy learning rate scheduler over a cycle length of



Method A P R F1

Open-Domain

SNLI

TE 0.798 0.599 0.609 0.604
TEconv 0.869† 0.653‡ 0.657† 0.657
TEaux 0.830 0.624 0.633 0.627
SOTA 0.923 (Liu et al., 2019b)

Quora

TE 0.811 0.739 0.755 0.747
TEconv 0.880‡ 0.842‡ 0.832‡ 0.836‡
TEaux 0.879‡ 0.811‡ 0.878‡ 0.843‡
SOTA 0.923 (Yang et al., 2019)

MediQA

NLI

TE 0.335 0.112 0.333 0.170
TEconv 0.797‡ 0.797‡ 0.797‡ 0.797‡
TEaux 0.728‡ 0.761‡ 0.727‡ 0.723‡
SOTA 0.980 (Ben Abacha et al., 2019)

RQE

TE 0.557 0.278 0.500 0.358
TEconv 0.536 0.567‡ 0.535 0.490‡
TEaux 0.911† 0.9416‡ 0.925‡ 0.908‡
SOTA 0.749 (Ben Abacha et al., 2019)

QA

TE 0.575 0.287 0.500 0.365
TEconv 0.718 0.714‡ 0.713‡ 0.709‡
TEaux 0.947‡ 0.944‡ 0.947‡ 0.945‡
SOTA 0.783 (Ben Abacha et al., 2019)

Stack Overflow DQD
TE 0.919 0.929 0.907 0.918
TEconv 0.943 0.960 0.926 0.942
TEaux 0.939 0.952 0.924 0.938‡

Average
TE 0.667 0.502 0.592 0.529
TEconv 0.779 0.743 0.729 0.724
TEaux 0.846 0.809 0.810 0.798

Table 1: Accuracy (A), Precision (P), Recall (R) and
F1-Score of different datasets. Note: † denotes a statis-
tical significance of p < 0.05 and ‡ for p < 0.001.

15 epochs with a Label Smoothing Cross-Entropy
loss and the LAMB optimizer. The peak learning
rate was found using the learning rate exploration
tool in FastAI. We use a batch size of 255 and
a maximum sequence length of 64 for all tasks.
For all other settings, we use defaults from the Py-
Torch transformer library (Wolf et al., 2019). We
choose the best model over the 15 epochs based
on the validation accuracy for test set inference.
For reproducibility, we use the same seed for each
experiment.

We train our models on a single GPU, V100
Tesla 16 GB. Training is repeated five times for
each configuration to collect reliable statistics for
paired t-test significance testing.

6 Results and Discussion

Effectiveness of the model under different
dataset constraints We compare our model in
differing constraints. We select the domain type
(open or closed), and dataset size as constraints.
We first discuss the main results.

On the SNLI dataset, a large open-domain
dataset, the TEconv model performs the best across
all metrics. A similar observation is made for the
stack overflow dataset, a large technical domain
dataset, where the TEconv model performs the best.

On both datasets, the TEconv model with auxiliary
networks also performs better than the baseline.
This suggests that the model performs well in data-
rich environments.

This result contrasts with results from the smaller
specialized datasets such as the MediQA collection.
In these datasets, we see that the TE model over-
fits on all three medical tasks; this is apparent as
the training and validation loss is lower on the TE
model than the convolutional-based models. This
means the model failed to generalize as test set
performance was low despite performing well on
the validation/training sets. This performance may
be from vocabulary disparity between the train/test
sets and the additional gradients which allowed
convolutional models to reach a better optimum
through regularization (Szegedy et al., 2015). On
the NLI dataset, TEconv significantly improves over
TE and is stronger than TEaux, suggesting that us-
age of all twelve layers of TE is useful for inference
tasks. By contrast, TEaux performed better on RQE
and QA as TEconv overfit on RQE and performed
worse on QA.

Finally, on the Quora dataset, both TEconv mod-
els performed significantly better (p < 0.05) with
the TEaux performing better in recall and F1-score
while TEconv performed better in terms of accuracy
and precision. We note that our models do not
match the state-of-the-art performance due to lack
of large model ensembling and much lower total
parameter count (Yang et al., 2019; Ben Abacha
et al., 2019; Zhu et al., 2019) as our study is fo-
cused on investigating the usefulness of shallow
features. However, our framework could poten-
tially be applied to the current state-of-the-art mod-
els to improve their performance.

To summarize, the TE model performs poorly
in the low-resource technical setting as reflected
by the MediQA dataset results, MediQA has fewer
training examples compared to the open-domain
which made it challenging to train due to over-
fitting. However, we found that increased gradi-
ents allowed for better generalization. Therefore,
in this low-resource setting, the convolutional TE
model seems more suitable. Additionally, in more
data-rich environments such as the Quora, Stack
Overflow and SNLI datasets, we found the models
performed better. However, on the Stack Over-
flow dataset, where the model performs better than
the baseline, it was not statistically significant due
to large variance between runs (σ = 0.02 for F1-



Figure 5: Average gradient over three epochs for all
models on the SNLI dataset.

score).

Does including additional features from the
lower layers of the network help prediction?
For each domain, we select a dataset, and we
analyze text-pairs to see situations where TEconv
benefits from additional features over the base-
line. From Table 2, on the StackOverflow dataset,
we see benefits from understanding using struc-
tural features and program syntax to differenti-
ate between programming languages (e.g., angu-
lar and PHP). Similarly, on the MedNLI dataset,
the model better understands medical numerical
chart structure and syntax which guided better se-
mantic understanding; which transformer encoders
have been known to struggle with (Nguyen et al.,
2019). Open-domain interpretation is more diffi-
cult, for instance, on the SNLI dataset, it seems
additional training gradient, rather than shallow
features, helped the model to learn co-reference res-
olution. Co-reference resolution may have helped
guide the semantic understanding between sentence
pairs, as this task is typically learned in deeper lay-
ers of the network (Tenney et al., 2019).

Furthermore, the model allows for improved gra-
dient flow in the network, as shown in Figure 5,
where the average gradient over three epochs on
the SNLI is depicted. To illustrate each layer, we
average all the gradients at that particular level.
Specifically, the query, value, key attention weights
gradients’ are all averaged together in each hid-
den encoder layer. For the TE network, there is
a diminishing gradient flow, a downwards slope,
throughout the network. This slope contrasts with
the TEconv networks, which show a general increase
in gradient flow (positive slope) throughout the net-
work, allowing for learning in shallower layers of
the network; which is useful because the shallower

Figure 6: Average gradient over three epochs for all
models on the SNLI dataset with Embedding Layer.

Figure 7: Average gradient over three epochs for all
models on the SNLI dataset for the embedding Layer.

features, which are more correlated with the input,
are now used for final layer prediction.

As the models exhibited similar trends in the
embedding layer, we report a singular figure (Fig-
ure 7). A side effect of removing the NSP layer, we
observe a large gradient flow in the segment(ation)
embeddings, as the model learned sentence segmen-
tation between the two text-pairs. This may explain
the capacity of the network to better differentiate
between the text-pairs during classification. The
magnitude of this segmentation gradient is larger in
both TEconv models than the TE model (Figure 5),
allowing for better modeling of pair semantics.

Encoder comparisons: efficiency and effective-
ness Earlier, we hypothesize that using convolu-
tional components should not hinder training speed.
From Table 3, we found that TEconv being a larger
model, sharing the same number of layers as the
original TE model, increases the training time by
13.8%, while the TEaux with only three layers in-
creases only by 7.44% in training time. TEaux of-
fers a trade-off between effectiveness and training
time.

Our results indicate that both models are signifi-
cantly better than the TE baseline in most settings.



Dataset Sentence A Sentence B Gold Label Baseline Prediction

StackOverflow
why does this setTimeout() call work in the console but not
as a greasemonkey script?

setinterval() and .click() in
a Greasemonkey script

Duplicate Not Duplicate

how to resolve Error: [$rootScope:inprog]
http://errors.angularjs.org/1.5.8/$rootScope/inprog?p0=
%24digest in dhtmlxTree

php parse/syntax errors;
and how to solve them?

Not Duplicate Duplicate

MedNLI
In the ED, initial VS were: 8 98 64 131/113 in the ED initial respira-

tory rate was low
Entailment Not Entailment

Received ASA 325mg and Nitro 0.4mg x3. The patient has not had
any vasodilator drugs.

Not Entailment Entailment

SNLI
A young child dressed in a scarf, hat, jacket, gloves, pants,
and boots, outside playing in the snow.

A child plays with a sled
in the snow while dressed
warmly.

Neutral Contradiction

A girl with a blue shirt and a girl with a striped shirt stand
next to a girl with a green shirt sitting in a chair.

Two girls are standing
next to a girl who is sit-
ting.

Entailment Contradiction

Table 2: Examples where shallow features lead to the correct prediction by our models.

The TEaux model propagates higher level gradients
to lower layers, takes less time to train, and is more
consistent between runs as it has fewer parameters.
However, the TEconv model can achieve strong per-
formance, provided the dataset is large enough.

We conduct additional experiments to verify if
(1) convolutional components in the TEconv net-
work improve effectiveness; and, (2) including
more layer representations (shallow and deep) to
the decoder shows improvement over the baseline.
These results are shown in Table 4. We conclude
that the decoders can better use the encoder’s fea-
tures than a linear decoder from the frozen encoder
experiments. Moreover, by comparing TEconv with
and without convolutional sub-networks, we see
that convolutional components allow for better uti-
lization of the additional features in the encoder for
data-rich tasks as accuracy and F1-score increases
for those tasks. Residual connections and addi-
tional features (summation of hidden states+k-max
pooling-convolution) benefit medical tasks, giving
an average 0.05 (absolute) boost in F1-score for
each task, meaning that additional shallow features
still help smaller datasets. However, we find that re-
moving all additional parameters and utilizing only
additional features provides an increase in effective-
ness over the baseline. Our results are consistent
with (Dong et al., 2021) which shows that skip

Model Total Training
Time (hours) % Slower

TE 16.75 –
TEconv 19.50 13.8
TEaux 18.25 7.44

Table 3: Comparison of average training time in hours
between the models over a total of 15 epochs on the
Stack Overflow dataset.

Model A F1

TEfrozen 0.583 0.505
TEconv

frozen 0.608 0.571
TEaux

frozen 0.584 0.544

TEconv w/o Residual Block (no additional parameters) 0.700 0.668
TEconv 0.711 0.636
TE 0.676 0.544

Table 4: Ablation comparisons between transformer en-
coders. Metrics are averaged over all tasks. Experi-
ments encoder layers are frozen during training as de-
noted by frozen. We use mean pooling for the tasks as
the classification feature token is not fine-tuned. We
also include a baseline TEconv model where additional
parameters (such as convolution) are removed. The
original splits for the MediQA datasets are used for
these experiments and as such do not relate to experi-
ments in Table 1.

connections are important for transformer model
effectiveness. Our models exploit skip connections
to combine shallow and deep representations.

Overall, we find that utilizing more layers in
the TE architecture, and propagating gradient to
multiple network layers allows for increased ef-
fectiveness and generalizability through regulariza-
tion (Szegedy et al., 2015), especially on smaller
specialized medical datasets.

7 Conclusions

We investigate whether using shallow hidden
representations—which encode syntactic and struc-
tural information in the transformer encoder
architecture—aids text-pair classification in the
medical, software engineering and open-domains.
To exploit these representations, we use deep con-
volutional neural networks as low-parameter net-
works to increase gradient propagation to the earlier
layers of the network with a minimal decrease in
efficiency. We find that including these representa-
tions, even as a simple summation over all hidden



states, leads to increased system effectiveness. Vali-
dating if this holds for other variants of transformer
encoder architecture is a suitable avenue for future
research.
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