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Abstract
In the task of pathogen characterisation, we
aim to discriminate mentions of biological
pathogens that are actively studied in the
research presented in scientific publications.
These are the pathogens that are the focus of
direct experimentation in the research, rather
than those that are referred to for context or
as playing secondary roles. This task is an in-
stance of the more general problem of identi-
fying focus entities in scientific literature, in
which key entities of interest must be discrim-
inated from other potentially relevant entities
of the same type mentioned in the articles.

In this paper, we explore the hypothesis that fo-
cus pathogens can be differentiated from other,
non-actively studied, pathogens mentioned in
articles through analysis of the patterns of men-
tions across different segments of a scientific
paper, that is, using the discourse structure of
the paper. We provide an indicative case study
with the help of a small data set of PubMed ab-
stracts that have been annotated with actively
mentioned pathogens.

1 Introduction

Global monitoring of repositories of potentially
harmful biological materials is an important com-
ponent of ensuring the health and safety of our
populations. In this context, we are building an
information extraction system to identify informa-
tion related to experimentation with potentially dan-
gerous biological pathogens – e.g. viruses, bacte-
ria, and biological toxins – as well as to detect
facilities that may serve as repositories of harmful
pathogens. This system will systematically scan
open access data sets for evidence of research on
those pathogens, thereby supporting gathering of
information from public resources for biosecurity
purposes (Jarrad et al., 2015).

A key requirement for automated characterisa-
tion of research on pathogens using text-based in-

formation sources, including the scientific litera-
ture, is to identify pathogens that are actively stud-
ied. An actively studied pathogen is defined as an
organism that is subjected to direct physical experi-
mentation in the research.

Recognition of potentially relevant entities is rel-
atively advanced using biomedical named entity
recognition tools that detect biological nomencla-
ture such as the names of biological organisms (e.g.
as studied in the context of BioCreative (Smith
et al., 2008)). However, differentiating mentions of
actively studied organisms from other, background
or incidental mentions of organisms poses a deeper
natural language processing challenge. In the con-
text of chemical patents, it has been suggested that
only ~10% of chemical mentions play a major role
within the patent (Akhondi et al., 2019). It is insuf-
ficient to simply detect a mention of a potentially
relevant pathogen name; it must also be decided
whether that pathogen is a focus of the experiments.
The main goal of our pathogen characterisation
task is therefore to enable filtering out pathogens
that are mentioned in articles but not considered to
be actively studied in the described research.

Publications may refer to pathogens in various
ways. In addition to mentions in the context of di-
rect experimentation, pathogens may be mentioned
as part of background knowledge or in the context
of discussion or comparison. We propose that a key
element of identifying actively studied pathogens
is understanding where in a publication a pathogen
is described (e.g. in a Methods segment vs. in the
Background segment of the paper), and how the
pathogen is relevant to the research (e.g. mentions
of the pathogen being subjected to specific tests or
examinations that reveal experimentation).

In this paper, we therefore explore the hypothesis
that the context in a scientific paper where a poten-
tially relevant entity is mentioned can provide clues
about whether that entity is a focus (foregrounded)



entity, or an entity in the background; our notion of
an actively studied entity assumes that it is a focus
of the research described in a paper.

We investigate this hypothesis by comparing the
distribution of focus and background entities across
discourse segments, and apply association rule min-
ing to identify combinations of segments that are
relevant to identify focus entities. We present a
small case study illustrating the proposed method-
ology, providing preliminary evidence of the value
of discourse structure – consideration of where en-
tities are mentioned – for identifying focus entities.

2 Related work

Identifying salient entities is a relevant component
of information retrieval and text summarisation.
The study of discourse structure has been suggested
in previous work on entity salience (Boguraev and
Kennedy, 1999; Walker and Walker, 1998). The
work of (Dunietz and Gillick, 2014) evaluates a
comprehensive set of features, showing that the
discourse structure and centrality may support pre-
dicting entity salience. Our task differs in that we
adopt a narrower focus specifically on identification
of actively studied pathogens in scientific research
papers.

Pathogen characterisation has been studied
in recent shared tasks, such as the Bacteria
Biotope task (Bossy et al., 2019). The tool Geo-
Boost (Tahsin et al., 2018) also addresses the iden-
tification of entities from GenBank, which includes
largely information about viruses and bacteria. The
main role of GeoBoost is to identify the location of
these biological entities, which requires perform-
ing natural language processing tasks in addition to
combining information from NCBI resources. This
work does not address saliency of entity mentions.

In our work, we evaluate discourse features
for direct identification of actively researched
pathogens, covering a broad set of pathogen types.

3 Datasets

In our experiments, we constructed a dataset based
on information obtained from the Biological Mate-
rial Information Program (BMIP)1 of the Defense
Threat Reduction Agency (DTRA)2.

1BMIP media article:
https://globalbiodefense.com/2017/05/08/
bmip-pathogen-repositories-worldwide

2https://www.dtra.mil/

3.1 Pathogen entity list

We were provided with a list of all pathogens
tracked in the BMIP database, which we refer to
as the BMIP list. To align these pathogens to pub-
licly available resources, and normalise their repre-
sentation, we mapped each pathogen in the list to
the NCBI Taxonomy (Federhen, 2012) via direct
lookup. These pathogens include viruses, bacte-
ria, viroids, fungi and protozoa. In addition, there
are mentions of toxins and PrPSc prions that were
assigned a custom identifier.

3.2 Gold standard dataset

We have a small initial gold standard dataset that
we use for our investigation. It consists of manual
annotations of relevant pathogens over PubMed
citations. Relevance is defined here as evidence of
an actively studied pathogen, or focus entity.

This gold standard contains 87 PubMed cita-
tions (publication metadata) including titles and
abstracts, each with an associated list of relevant
pathogens. Out of these 87 citations, 35 have no
actively studied pathogen, so we consider 52 cita-
tions in this study. There are a total of 69 relevant
pathogen mentions, corresponding to 32 unique
pathogens (individual NCBI Taxonomy IDs), iden-
tified across the remaining 52 articles. The maxi-
mum number of relevant pathogens annotated for
a document is 5. Nineteen (19) pathogens are an-
notated only once; the pathogen with the largest
number of annotations is H1N1, with total fre-
quency of 11 (i.e. 11 citations are annotated with
this pathogen). Most pathogens in the gold stan-
dard belong to the Influenza virus family.

4 Methods

We approach identifying focus entities of scientific
articles as a two-stage process: pathogen identi-
fication and pathogen characterisation. Here, we
describe our approach to each stage.

4.1 Pathogen identification

In the pathogen identification stage, the objective
is to find all pathogens mentioned in a citation, ir-
respective of whether they are focus or background
entities. Despite some pathogen mentions are avail-
able in author keywords and MeSH indexing, this
information is sparse within the citations in MED-
LINE or not mentioned at all. Both dictionary
lookup and machine learning models learned from
annotated data are possible for this step. Lacking

https://globalbiodefense.com/2017/05/08/bmip-pathogen-repositories-worldwide
https://globalbiodefense.com/2017/05/08/bmip-pathogen-repositories-worldwide
https://www.dtra.mil/


annotated data specifically for the BMIP pathogen
list, we utilise the dictionary-based ConceptMapper
tool (Tanenblatt et al., 2010), found by Funk et al.
(2014) to outperform other methods. We leverage
the NCBI Taxonomy ConceptMapper annotation
pipelines for the CRAFT corpus3. We construct
the dictionary based on the BMIP list of relevant
pathogens, mapped to the NCBI Taxonomy using
the database downloaded from the OBO Foundry4.

The BMIP list of pathogens also includes men-
tions of pathogens that are either toxins gener-
ated by pathogens or PrPSc prions, which are pro-
teins with a pathological folding. Toxin mentions
are identified using regular expressions that have
higher recall than just using a dictionary matching
while obtaining the same level of precision.

Using these strategies for identifying pathogens,
we detect 49 mentions annotated as focus entities
(out of the 69 from the 52 citations) and 9 mentions
that we treat as background entities.

4.2 Pathogen characterisation

Given the list of pathogens in an abstract, the next
step is to characterise which of these pathogens are
focus entities, i.e. actively researched.

As described before, we hypothesise that focus
pathogens are more likely to appear in some seg-
ments than others (e.g. in Methods segments vs.
Fact segments), and that therefore the mention pat-
terns of actively studied (focus) pathogens across
segments are different from the mention patterns
of not-actively studied (background) pathogens.

To model mention patterns, we adopt the method
of association rule classification Liu et al. (1998)5

to infer rules based on which discourse segments
a pathogen is mentioned in that predict that the
pathogen is a focus entity.

We treat the event of mentioning a pathogen once
or more in a scientific article as a transaction event.
Each transaction consists of items corresponding to
the discourse structure labels of the different men-
tions of the pathogen. For instance, if the pathogen
Bacillus anthracis is mentioned once in the title
and once in the methods segment of a citation, we
add a transaction to our dataset with the itemset
(TITLE, METHOD). Given this transaction dataset,
we employ association rule mining to mine top

3https://github.com/UCDenver-ccp/
ccp-nlp-pipelines

4OBO NCBI taxonomy: http://www.obofoundry.
org/ontology/ncbitaxon.html

5Using: https://pypi.org/project/pyarc/

association rules for focus entities.
The class association rules (CAR) are obtained

using a two-part algorithm. First, rules are gener-
ated using the APRIORI algorithm (Agrawal et al.,
1994). The algorithm generates association rules
that have enough support and confidence. The rules
are generated without any target classification task
under consideration, i.e. mention patterns for both
focus and background entities are considered.

In the second part, the generated rules are used
to build a classifier using the CAR M1 algo-
rithm (Agrawal et al., 1994). The rules are sorted
by confidence and then by support. Following this
order, if a rule correctly classifies examples in the
instance set, the rule is selected and those exam-
ples are removed. The total number of errors is
recorded for the rule as the error of the rule on
the instance set and the error of the default class
(selected using the majority class of the remaining
examples). Additional rules are selected using the
remaining examples and this process continues un-
til there are no more rules or examples. From the
set of selected rules, the one with the lowest total
numbers of errors is identified and the rules after
that one are discarded, which reduces the error of
the set. A rule is added at the end that returns the
default class, which is the most frequent class not
covered by the selected rules.

4.3 Discourse segment labeling

Ideally, we would hope to access articles with ex-
plicit discourse structure such as the introduction,
methods, and results headings. However, such la-
belling is available for less than one quarter of
PubMed abstracts (Jimeno Yepes et al., 2013). We
therefore use automated discourse structure tagging
to label segments in each abstract.

We build on existing work in scientific discourse
tagging (Dasigi et al., 2017), which utilises a deep
learning sequence-labeling model that identifies
structure within experiment narratives in the scien-
tific literature. A seven-label taxonomy is adopted
from de Waard and pan der Maat (2012), containing
GOAL, FACT, RESULT, HYPOTHESIS, METHOD,
PROBLEM, and IMPLICATION. Li et al. (2019,
2021) extends the previous work, training on their
SciDT dataset that contains 634 paragraphs and
6124 clauses. Their method combines a SciB-
ERT (Beltagy et al., 2019) feature generator with
a recurrent neural network to predict the scientific
discourse labels.

https://github.com/UCDenver-ccp/ccp-nlp-pipelines
https://github.com/UCDenver-ccp/ccp-nlp-pipelines
http://www.obofoundry.org/ontology/ncbitaxon.html
http://www.obofoundry.org/ontology/ncbitaxon.html
https://pypi.org/project/pyarc/


Rule Sup Conf
method=1,title=1 0.21 1.00
title=1,result=1,goal=0 0.21 1.00
implication=1 0.17 1.00
title=1,result=1,fact=0 0.14 1.00
method=1,fact=1 0.10 1.00
title=1,fact=0,goal=1 0.10 1.00
title=1,fact=0 0.34 0.95
fact=1,goal=0 0.26 0.94
method=0,result=1,goal=0 0.24 0.93

Table 1: CAR M1 rules predicting that the pathogen is
a focus entity. A value of 1 indicates that the pathogen
appears in the corresponding discourse segment, while
0 indicates that the pathogen is absent from that type of
segment. Rules have been selected and sorted based on
the confidence (Conf) and support (Sup) values.

The scientific discourse tagger obtained an F1
of 0.841 on the SciDT dataset. They also added
NONE label to allow for none of the above. We
apply the scientific discourse tagger to assign one
of the eight discourse labels to each sentence in an
abstract. The TITLE label was assigned using the
available citation metadata.

5 Results

We ran the CAR M1 algorithm on our data set an-
notated with pathogen mentions and present the
inferred rules in Table 1. There are 9 rules that pre-
dict focus entities. The first rule means that if the
pathogen is mentioned in the METHOD and TITLE

segments of the citation, then it is a focus pathogen.
The second rule means that if the pathogen is men-
tioned in the TITLE and RESULT segment but not
in the GOAL segment, then it is a focus pathogen.

Doing an analysis of the rules, we find that most
of the rules indicate that a pathogen being men-
tioned in the title is a sign that it is a focus pathogen,
which is expected since the title denotes the most
important concepts of the article. The rules also
indicate that a mention of a pathogen in the re-
sults segment is relevant to the classification of
the entity as a focus pathogen. Consideration of
combinations of segments is more effective to iden-
tify focus entities than occurrence in any individual
segment, apart from IMPLICATION.

Table 2 shows the frequency of pathogen men-
tions in the various discourse segments. We find
that the focus pathogens are significantly more
prevalent in the TITLE, RESULT and FACT seg-

Background Focus
Label S. Freq % Freq %
METHOD 73 3 33.33 17 34.69
RESULT 186 4 44.44 29 59.18
FACT 51 2 22.22 21 42.86
IMPLICATION 44 0 0.00 10 20.41
GOAL 25 3 33.33 15 30.61
PROBLEM 8 0 0.00 3 6.12
HYPOTHESIS 15 0 0.00 1 2.04
TITLE 52 3 33.33 39 79.59
NONE 3 0 0.00 1 0.00
Pathogens - 9 100.00 49 100.0

Table 2: Frequency (Freq) of the mentions of back-
ground and focus entities in various discourse segments
of PubMed citations. The percentages indicate the pro-
portion of pathogen mentions of each type occurring in
each scientific discourse segment. “S.” stands for the
overall number of sentences per type in the 52 citations.

ments, which correlates with the predicates of the
inferred rules. Background pathogens seem to be
equally prevalent in both the METHOD and GOAL

segments when compared to the focus pathogens.
Some of the labels, such as HYPOTHESIS, PROB-
LEM and NONE, have low frequency in our data
set and did not participate in any of the generated
rules.

6 Conclusion

We have proposed an approach to the problem
of detecting focus versus ground entities using
class association rules over entity mentions in dis-
course segments, specifically examining its use for
pathogen characterisation. Focus pathogens tend to
appear in the title and results segments of abstracts,
where the key findings of research are highlighted.
Our case study suggests that discourse information
provides valuable cues to identify focus pathogens.

Given the small-scale data we have available,
this work is only indicative of the promise of the ap-
proach. We are developing a larger data set, which
will support comprehensive exploration of more
refined rules. This data set would also support the
exploration of additional existing methods, such as
centrality and transformer based methods.
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